1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/CodeGenOptions.h" 12 #include "clang/Basic/Diagnostic.h" 13 #include "clang/Basic/LangOptions.h" 14 #include "clang/Basic/TargetOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "clang/Lex/HeaderSearchOptions.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/ADT/StringSwitch.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/IRPrintingPasses.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/ModuleSummaryIndex.h" 35 #include "llvm/IR/Verifier.h" 36 #include "llvm/LTO/LTOBackend.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/SubtargetFeature.h" 39 #include "llvm/Passes/PassBuilder.h" 40 #include "llvm/Support/BuryPointer.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/MemoryBuffer.h" 43 #include "llvm/Support/PrettyStackTrace.h" 44 #include "llvm/Support/TargetRegistry.h" 45 #include "llvm/Support/Timer.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include "llvm/Transforms/Coroutines.h" 50 #include "llvm/Transforms/IPO.h" 51 #include "llvm/Transforms/IPO/AlwaysInliner.h" 52 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 53 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 54 #include "llvm/Transforms/InstCombine/InstCombine.h" 55 #include "llvm/Transforms/Instrumentation.h" 56 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 57 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 58 #include "llvm/Transforms/ObjCARC.h" 59 #include "llvm/Transforms/Scalar.h" 60 #include "llvm/Transforms/Scalar/GVN.h" 61 #include "llvm/Transforms/Utils.h" 62 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 63 #include "llvm/Transforms/Utils/SymbolRewriter.h" 64 #include <memory> 65 using namespace clang; 66 using namespace llvm; 67 68 namespace { 69 70 // Default filename used for profile generation. 71 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 72 73 class EmitAssemblyHelper { 74 DiagnosticsEngine &Diags; 75 const HeaderSearchOptions &HSOpts; 76 const CodeGenOptions &CodeGenOpts; 77 const clang::TargetOptions &TargetOpts; 78 const LangOptions &LangOpts; 79 Module *TheModule; 80 81 Timer CodeGenerationTime; 82 83 std::unique_ptr<raw_pwrite_stream> OS; 84 85 TargetIRAnalysis getTargetIRAnalysis() const { 86 if (TM) 87 return TM->getTargetIRAnalysis(); 88 89 return TargetIRAnalysis(); 90 } 91 92 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 93 94 /// Generates the TargetMachine. 95 /// Leaves TM unchanged if it is unable to create the target machine. 96 /// Some of our clang tests specify triples which are not built 97 /// into clang. This is okay because these tests check the generated 98 /// IR, and they require DataLayout which depends on the triple. 99 /// In this case, we allow this method to fail and not report an error. 100 /// When MustCreateTM is used, we print an error if we are unable to load 101 /// the requested target. 102 void CreateTargetMachine(bool MustCreateTM); 103 104 /// Add passes necessary to emit assembly or LLVM IR. 105 /// 106 /// \return True on success. 107 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 108 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 109 110 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 111 std::error_code EC; 112 auto F = llvm::make_unique<llvm::ToolOutputFile>(Path, EC, 113 llvm::sys::fs::F_None); 114 if (EC) { 115 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 116 F.reset(); 117 } 118 return F; 119 } 120 121 public: 122 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 123 const HeaderSearchOptions &HeaderSearchOpts, 124 const CodeGenOptions &CGOpts, 125 const clang::TargetOptions &TOpts, 126 const LangOptions &LOpts, Module *M) 127 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 128 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 129 CodeGenerationTime("codegen", "Code Generation Time") {} 130 131 ~EmitAssemblyHelper() { 132 if (CodeGenOpts.DisableFree) 133 BuryPointer(std::move(TM)); 134 } 135 136 std::unique_ptr<TargetMachine> TM; 137 138 void EmitAssembly(BackendAction Action, 139 std::unique_ptr<raw_pwrite_stream> OS); 140 141 void EmitAssemblyWithNewPassManager(BackendAction Action, 142 std::unique_ptr<raw_pwrite_stream> OS); 143 }; 144 145 // We need this wrapper to access LangOpts and CGOpts from extension functions 146 // that we add to the PassManagerBuilder. 147 class PassManagerBuilderWrapper : public PassManagerBuilder { 148 public: 149 PassManagerBuilderWrapper(const Triple &TargetTriple, 150 const CodeGenOptions &CGOpts, 151 const LangOptions &LangOpts) 152 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 153 LangOpts(LangOpts) {} 154 const Triple &getTargetTriple() const { return TargetTriple; } 155 const CodeGenOptions &getCGOpts() const { return CGOpts; } 156 const LangOptions &getLangOpts() const { return LangOpts; } 157 158 private: 159 const Triple &TargetTriple; 160 const CodeGenOptions &CGOpts; 161 const LangOptions &LangOpts; 162 }; 163 } 164 165 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 166 if (Builder.OptLevel > 0) 167 PM.add(createObjCARCAPElimPass()); 168 } 169 170 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 171 if (Builder.OptLevel > 0) 172 PM.add(createObjCARCExpandPass()); 173 } 174 175 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 176 if (Builder.OptLevel > 0) 177 PM.add(createObjCARCOptPass()); 178 } 179 180 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 181 legacy::PassManagerBase &PM) { 182 PM.add(createAddDiscriminatorsPass()); 183 } 184 185 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 186 legacy::PassManagerBase &PM) { 187 PM.add(createBoundsCheckingLegacyPass()); 188 } 189 190 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 191 legacy::PassManagerBase &PM) { 192 const PassManagerBuilderWrapper &BuilderWrapper = 193 static_cast<const PassManagerBuilderWrapper&>(Builder); 194 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 195 SanitizerCoverageOptions Opts; 196 Opts.CoverageType = 197 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 198 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 199 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 200 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 201 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 202 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 203 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 204 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 205 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 206 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 207 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 208 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 209 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 210 PM.add(createSanitizerCoverageModulePass(Opts)); 211 } 212 213 // Check if ASan should use GC-friendly instrumentation for globals. 214 // First of all, there is no point if -fdata-sections is off (expect for MachO, 215 // where this is not a factor). Also, on ELF this feature requires an assembler 216 // extension that only works with -integrated-as at the moment. 217 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 218 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 219 return false; 220 switch (T.getObjectFormat()) { 221 case Triple::MachO: 222 case Triple::COFF: 223 return true; 224 case Triple::ELF: 225 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 226 default: 227 return false; 228 } 229 } 230 231 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 232 legacy::PassManagerBase &PM) { 233 const PassManagerBuilderWrapper &BuilderWrapper = 234 static_cast<const PassManagerBuilderWrapper&>(Builder); 235 const Triple &T = BuilderWrapper.getTargetTriple(); 236 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 237 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 238 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 239 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 240 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 241 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 242 UseAfterScope)); 243 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/ false, Recover, 244 UseGlobalsGC, UseOdrIndicator)); 245 } 246 247 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 248 legacy::PassManagerBase &PM) { 249 PM.add(createAddressSanitizerFunctionPass( 250 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 251 PM.add(createAddressSanitizerModulePass( 252 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 253 /*UseOdrIndicator*/ false)); 254 } 255 256 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 257 legacy::PassManagerBase &PM) { 258 const PassManagerBuilderWrapper &BuilderWrapper = 259 static_cast<const PassManagerBuilderWrapper &>(Builder); 260 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 261 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 262 PM.add(createHWAddressSanitizerPass(/*CompileKernel*/ false, Recover)); 263 } 264 265 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 266 legacy::PassManagerBase &PM) { 267 PM.add(createHWAddressSanitizerPass( 268 /*CompileKernel*/ true, /*Recover*/ true)); 269 } 270 271 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 272 legacy::PassManagerBase &PM, 273 bool CompileKernel) { 274 const PassManagerBuilderWrapper &BuilderWrapper = 275 static_cast<const PassManagerBuilderWrapper&>(Builder); 276 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 277 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 278 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 279 PM.add(createMemorySanitizerPass(TrackOrigins, Recover, CompileKernel)); 280 281 // MemorySanitizer inserts complex instrumentation that mostly follows 282 // the logic of the original code, but operates on "shadow" values. 283 // It can benefit from re-running some general purpose optimization passes. 284 if (Builder.OptLevel > 0) { 285 PM.add(createEarlyCSEPass()); 286 PM.add(createReassociatePass()); 287 PM.add(createLICMPass()); 288 PM.add(createGVNPass()); 289 PM.add(createInstructionCombiningPass()); 290 PM.add(createDeadStoreEliminationPass()); 291 } 292 } 293 294 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 295 legacy::PassManagerBase &PM) { 296 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 297 } 298 299 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 300 legacy::PassManagerBase &PM) { 301 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 302 } 303 304 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 305 legacy::PassManagerBase &PM) { 306 PM.add(createThreadSanitizerPass()); 307 } 308 309 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 310 legacy::PassManagerBase &PM) { 311 const PassManagerBuilderWrapper &BuilderWrapper = 312 static_cast<const PassManagerBuilderWrapper&>(Builder); 313 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 314 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 315 } 316 317 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 318 legacy::PassManagerBase &PM) { 319 const PassManagerBuilderWrapper &BuilderWrapper = 320 static_cast<const PassManagerBuilderWrapper&>(Builder); 321 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 322 EfficiencySanitizerOptions Opts; 323 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 324 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 325 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 326 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 327 PM.add(createEfficiencySanitizerPass(Opts)); 328 } 329 330 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 331 const CodeGenOptions &CodeGenOpts) { 332 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 333 if (!CodeGenOpts.SimplifyLibCalls) 334 TLII->disableAllFunctions(); 335 else { 336 // Disable individual libc/libm calls in TargetLibraryInfo. 337 LibFunc F; 338 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 339 if (TLII->getLibFunc(FuncName, F)) 340 TLII->setUnavailable(F); 341 } 342 343 switch (CodeGenOpts.getVecLib()) { 344 case CodeGenOptions::Accelerate: 345 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 346 break; 347 case CodeGenOptions::SVML: 348 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 349 break; 350 default: 351 break; 352 } 353 return TLII; 354 } 355 356 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 357 legacy::PassManager *MPM) { 358 llvm::SymbolRewriter::RewriteDescriptorList DL; 359 360 llvm::SymbolRewriter::RewriteMapParser MapParser; 361 for (const auto &MapFile : Opts.RewriteMapFiles) 362 MapParser.parse(MapFile, &DL); 363 364 MPM->add(createRewriteSymbolsPass(DL)); 365 } 366 367 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 368 switch (CodeGenOpts.OptimizationLevel) { 369 default: 370 llvm_unreachable("Invalid optimization level!"); 371 case 0: 372 return CodeGenOpt::None; 373 case 1: 374 return CodeGenOpt::Less; 375 case 2: 376 return CodeGenOpt::Default; // O2/Os/Oz 377 case 3: 378 return CodeGenOpt::Aggressive; 379 } 380 } 381 382 static Optional<llvm::CodeModel::Model> 383 getCodeModel(const CodeGenOptions &CodeGenOpts) { 384 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 385 .Case("tiny", llvm::CodeModel::Tiny) 386 .Case("small", llvm::CodeModel::Small) 387 .Case("kernel", llvm::CodeModel::Kernel) 388 .Case("medium", llvm::CodeModel::Medium) 389 .Case("large", llvm::CodeModel::Large) 390 .Case("default", ~1u) 391 .Default(~0u); 392 assert(CodeModel != ~0u && "invalid code model!"); 393 if (CodeModel == ~1u) 394 return None; 395 return static_cast<llvm::CodeModel::Model>(CodeModel); 396 } 397 398 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 399 if (Action == Backend_EmitObj) 400 return TargetMachine::CGFT_ObjectFile; 401 else if (Action == Backend_EmitMCNull) 402 return TargetMachine::CGFT_Null; 403 else { 404 assert(Action == Backend_EmitAssembly && "Invalid action!"); 405 return TargetMachine::CGFT_AssemblyFile; 406 } 407 } 408 409 static void initTargetOptions(llvm::TargetOptions &Options, 410 const CodeGenOptions &CodeGenOpts, 411 const clang::TargetOptions &TargetOpts, 412 const LangOptions &LangOpts, 413 const HeaderSearchOptions &HSOpts) { 414 Options.ThreadModel = 415 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 416 .Case("posix", llvm::ThreadModel::POSIX) 417 .Case("single", llvm::ThreadModel::Single); 418 419 // Set float ABI type. 420 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 421 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 422 "Invalid Floating Point ABI!"); 423 Options.FloatABIType = 424 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 425 .Case("soft", llvm::FloatABI::Soft) 426 .Case("softfp", llvm::FloatABI::Soft) 427 .Case("hard", llvm::FloatABI::Hard) 428 .Default(llvm::FloatABI::Default); 429 430 // Set FP fusion mode. 431 switch (LangOpts.getDefaultFPContractMode()) { 432 case LangOptions::FPC_Off: 433 // Preserve any contraction performed by the front-end. (Strict performs 434 // splitting of the muladd intrinsic in the backend.) 435 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 436 break; 437 case LangOptions::FPC_On: 438 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 439 break; 440 case LangOptions::FPC_Fast: 441 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 442 break; 443 } 444 445 Options.UseInitArray = CodeGenOpts.UseInitArray; 446 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 447 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 448 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 449 450 // Set EABI version. 451 Options.EABIVersion = TargetOpts.EABIVersion; 452 453 if (LangOpts.SjLjExceptions) 454 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 455 if (LangOpts.SEHExceptions) 456 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 457 if (LangOpts.DWARFExceptions) 458 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 459 460 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 461 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 462 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 463 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 464 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 465 Options.FunctionSections = CodeGenOpts.FunctionSections; 466 Options.DataSections = CodeGenOpts.DataSections; 467 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 468 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 469 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 470 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 471 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 472 Options.EmitAddrsig = CodeGenOpts.Addrsig; 473 474 if (CodeGenOpts.getSplitDwarfMode() != CodeGenOptions::NoFission) 475 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 476 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 477 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 478 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 479 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 480 Options.MCOptions.MCIncrementalLinkerCompatible = 481 CodeGenOpts.IncrementalLinkerCompatible; 482 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 483 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 484 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 485 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 486 Options.MCOptions.ABIName = TargetOpts.ABI; 487 for (const auto &Entry : HSOpts.UserEntries) 488 if (!Entry.IsFramework && 489 (Entry.Group == frontend::IncludeDirGroup::Quoted || 490 Entry.Group == frontend::IncludeDirGroup::Angled || 491 Entry.Group == frontend::IncludeDirGroup::System)) 492 Options.MCOptions.IASSearchPaths.push_back( 493 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 494 } 495 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 496 if (CodeGenOpts.DisableGCov) 497 return None; 498 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 499 return None; 500 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 501 // LLVM's -default-gcov-version flag is set to something invalid. 502 GCOVOptions Options; 503 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 504 Options.EmitData = CodeGenOpts.EmitGcovArcs; 505 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 506 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 507 Options.NoRedZone = CodeGenOpts.DisableRedZone; 508 Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData; 509 Options.Filter = CodeGenOpts.ProfileFilterFiles; 510 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 511 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 512 return Options; 513 } 514 515 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 516 legacy::FunctionPassManager &FPM) { 517 // Handle disabling of all LLVM passes, where we want to preserve the 518 // internal module before any optimization. 519 if (CodeGenOpts.DisableLLVMPasses) 520 return; 521 522 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 523 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 524 // are inserted before PMBuilder ones - they'd get the default-constructed 525 // TLI with an unknown target otherwise. 526 Triple TargetTriple(TheModule->getTargetTriple()); 527 std::unique_ptr<TargetLibraryInfoImpl> TLII( 528 createTLII(TargetTriple, CodeGenOpts)); 529 530 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 531 532 // At O0 and O1 we only run the always inliner which is more efficient. At 533 // higher optimization levels we run the normal inliner. 534 if (CodeGenOpts.OptimizationLevel <= 1) { 535 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 536 !CodeGenOpts.DisableLifetimeMarkers); 537 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 538 } else { 539 // We do not want to inline hot callsites for SamplePGO module-summary build 540 // because profile annotation will happen again in ThinLTO backend, and we 541 // want the IR of the hot path to match the profile. 542 PMBuilder.Inliner = createFunctionInliningPass( 543 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 544 (!CodeGenOpts.SampleProfileFile.empty() && 545 CodeGenOpts.PrepareForThinLTO)); 546 } 547 548 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 549 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 550 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 551 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 552 553 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 554 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 555 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 556 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 557 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 558 559 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 560 561 if (TM) 562 TM->adjustPassManager(PMBuilder); 563 564 if (CodeGenOpts.DebugInfoForProfiling || 565 !CodeGenOpts.SampleProfileFile.empty()) 566 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 567 addAddDiscriminatorsPass); 568 569 // In ObjC ARC mode, add the main ARC optimization passes. 570 if (LangOpts.ObjCAutoRefCount) { 571 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 572 addObjCARCExpandPass); 573 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 574 addObjCARCAPElimPass); 575 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 576 addObjCARCOptPass); 577 } 578 579 if (LangOpts.CoroutinesTS) 580 addCoroutinePassesToExtensionPoints(PMBuilder); 581 582 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 583 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 584 addBoundsCheckingPass); 585 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 586 addBoundsCheckingPass); 587 } 588 589 if (CodeGenOpts.SanitizeCoverageType || 590 CodeGenOpts.SanitizeCoverageIndirectCalls || 591 CodeGenOpts.SanitizeCoverageTraceCmp) { 592 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 593 addSanitizerCoveragePass); 594 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 595 addSanitizerCoveragePass); 596 } 597 598 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 599 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 600 addAddressSanitizerPasses); 601 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 602 addAddressSanitizerPasses); 603 } 604 605 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 606 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 607 addKernelAddressSanitizerPasses); 608 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 609 addKernelAddressSanitizerPasses); 610 } 611 612 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 613 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 614 addHWAddressSanitizerPasses); 615 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 616 addHWAddressSanitizerPasses); 617 } 618 619 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 620 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 621 addKernelHWAddressSanitizerPasses); 622 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 623 addKernelHWAddressSanitizerPasses); 624 } 625 626 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 627 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 628 addMemorySanitizerPass); 629 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 630 addMemorySanitizerPass); 631 } 632 633 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 634 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 635 addKernelMemorySanitizerPass); 636 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 637 addKernelMemorySanitizerPass); 638 } 639 640 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 641 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 642 addThreadSanitizerPass); 643 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 644 addThreadSanitizerPass); 645 } 646 647 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 648 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 649 addDataFlowSanitizerPass); 650 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 651 addDataFlowSanitizerPass); 652 } 653 654 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 655 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 656 addEfficiencySanitizerPass); 657 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 658 addEfficiencySanitizerPass); 659 } 660 661 // Set up the per-function pass manager. 662 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 663 if (CodeGenOpts.VerifyModule) 664 FPM.add(createVerifierPass()); 665 666 // Set up the per-module pass manager. 667 if (!CodeGenOpts.RewriteMapFiles.empty()) 668 addSymbolRewriterPass(CodeGenOpts, &MPM); 669 670 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 671 MPM.add(createGCOVProfilerPass(*Options)); 672 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 673 MPM.add(createStripSymbolsPass(true)); 674 } 675 676 if (CodeGenOpts.hasProfileClangInstr()) { 677 InstrProfOptions Options; 678 Options.NoRedZone = CodeGenOpts.DisableRedZone; 679 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 680 681 // TODO: Surface the option to emit atomic profile counter increments at 682 // the driver level. 683 Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread); 684 685 MPM.add(createInstrProfilingLegacyPass(Options)); 686 } 687 if (CodeGenOpts.hasProfileIRInstr()) { 688 PMBuilder.EnablePGOInstrGen = true; 689 if (!CodeGenOpts.InstrProfileOutput.empty()) 690 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 691 else 692 PMBuilder.PGOInstrGen = DefaultProfileGenName; 693 } 694 if (CodeGenOpts.hasProfileIRUse()) 695 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 696 697 if (!CodeGenOpts.SampleProfileFile.empty()) 698 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 699 700 PMBuilder.populateFunctionPassManager(FPM); 701 PMBuilder.populateModulePassManager(MPM); 702 } 703 704 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 705 SmallVector<const char *, 16> BackendArgs; 706 BackendArgs.push_back("clang"); // Fake program name. 707 if (!CodeGenOpts.DebugPass.empty()) { 708 BackendArgs.push_back("-debug-pass"); 709 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 710 } 711 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 712 BackendArgs.push_back("-limit-float-precision"); 713 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 714 } 715 BackendArgs.push_back(nullptr); 716 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 717 BackendArgs.data()); 718 } 719 720 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 721 // Create the TargetMachine for generating code. 722 std::string Error; 723 std::string Triple = TheModule->getTargetTriple(); 724 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 725 if (!TheTarget) { 726 if (MustCreateTM) 727 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 728 return; 729 } 730 731 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 732 std::string FeaturesStr = 733 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 734 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 735 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 736 737 llvm::TargetOptions Options; 738 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 739 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 740 Options, RM, CM, OptLevel)); 741 } 742 743 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 744 BackendAction Action, 745 raw_pwrite_stream &OS, 746 raw_pwrite_stream *DwoOS) { 747 // Add LibraryInfo. 748 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 749 std::unique_ptr<TargetLibraryInfoImpl> TLII( 750 createTLII(TargetTriple, CodeGenOpts)); 751 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 752 753 // Normal mode, emit a .s or .o file by running the code generator. Note, 754 // this also adds codegenerator level optimization passes. 755 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 756 757 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 758 // "codegen" passes so that it isn't run multiple times when there is 759 // inlining happening. 760 if (CodeGenOpts.OptimizationLevel > 0) 761 CodeGenPasses.add(createObjCARCContractPass()); 762 763 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 764 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 765 Diags.Report(diag::err_fe_unable_to_interface_with_target); 766 return false; 767 } 768 769 return true; 770 } 771 772 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 773 std::unique_ptr<raw_pwrite_stream> OS) { 774 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 775 776 setCommandLineOpts(CodeGenOpts); 777 778 bool UsesCodeGen = (Action != Backend_EmitNothing && 779 Action != Backend_EmitBC && 780 Action != Backend_EmitLL); 781 CreateTargetMachine(UsesCodeGen); 782 783 if (UsesCodeGen && !TM) 784 return; 785 if (TM) 786 TheModule->setDataLayout(TM->createDataLayout()); 787 788 legacy::PassManager PerModulePasses; 789 PerModulePasses.add( 790 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 791 792 legacy::FunctionPassManager PerFunctionPasses(TheModule); 793 PerFunctionPasses.add( 794 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 795 796 CreatePasses(PerModulePasses, PerFunctionPasses); 797 798 legacy::PassManager CodeGenPasses; 799 CodeGenPasses.add( 800 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 801 802 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 803 804 switch (Action) { 805 case Backend_EmitNothing: 806 break; 807 808 case Backend_EmitBC: 809 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 810 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 811 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 812 if (!ThinLinkOS) 813 return; 814 } 815 PerModulePasses.add(createWriteThinLTOBitcodePass( 816 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 817 } else { 818 // Emit a module summary by default for Regular LTO except for ld64 819 // targets 820 bool EmitLTOSummary = 821 (CodeGenOpts.PrepareForLTO && 822 !CodeGenOpts.DisableLLVMPasses && 823 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 824 llvm::Triple::Apple); 825 if (EmitLTOSummary && !TheModule->getModuleFlag("ThinLTO")) 826 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 827 828 PerModulePasses.add( 829 createBitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 830 EmitLTOSummary)); 831 } 832 break; 833 834 case Backend_EmitLL: 835 PerModulePasses.add( 836 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 837 break; 838 839 default: 840 if (!CodeGenOpts.SplitDwarfFile.empty() && 841 (CodeGenOpts.getSplitDwarfMode() == CodeGenOptions::SplitFileFission)) { 842 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfFile); 843 if (!DwoOS) 844 return; 845 } 846 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 847 DwoOS ? &DwoOS->os() : nullptr)) 848 return; 849 } 850 851 // Before executing passes, print the final values of the LLVM options. 852 cl::PrintOptionValues(); 853 854 // Run passes. For now we do all passes at once, but eventually we 855 // would like to have the option of streaming code generation. 856 857 { 858 PrettyStackTraceString CrashInfo("Per-function optimization"); 859 860 PerFunctionPasses.doInitialization(); 861 for (Function &F : *TheModule) 862 if (!F.isDeclaration()) 863 PerFunctionPasses.run(F); 864 PerFunctionPasses.doFinalization(); 865 } 866 867 { 868 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 869 PerModulePasses.run(*TheModule); 870 } 871 872 { 873 PrettyStackTraceString CrashInfo("Code generation"); 874 CodeGenPasses.run(*TheModule); 875 } 876 877 if (ThinLinkOS) 878 ThinLinkOS->keep(); 879 if (DwoOS) 880 DwoOS->keep(); 881 } 882 883 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 884 switch (Opts.OptimizationLevel) { 885 default: 886 llvm_unreachable("Invalid optimization level!"); 887 888 case 1: 889 return PassBuilder::O1; 890 891 case 2: 892 switch (Opts.OptimizeSize) { 893 default: 894 llvm_unreachable("Invalid optimization level for size!"); 895 896 case 0: 897 return PassBuilder::O2; 898 899 case 1: 900 return PassBuilder::Os; 901 902 case 2: 903 return PassBuilder::Oz; 904 } 905 906 case 3: 907 return PassBuilder::O3; 908 } 909 } 910 911 /// A clean version of `EmitAssembly` that uses the new pass manager. 912 /// 913 /// Not all features are currently supported in this system, but where 914 /// necessary it falls back to the legacy pass manager to at least provide 915 /// basic functionality. 916 /// 917 /// This API is planned to have its functionality finished and then to replace 918 /// `EmitAssembly` at some point in the future when the default switches. 919 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 920 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 921 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 922 setCommandLineOpts(CodeGenOpts); 923 924 // The new pass manager always makes a target machine available to passes 925 // during construction. 926 CreateTargetMachine(/*MustCreateTM*/ true); 927 if (!TM) 928 // This will already be diagnosed, just bail. 929 return; 930 TheModule->setDataLayout(TM->createDataLayout()); 931 932 Optional<PGOOptions> PGOOpt; 933 934 if (CodeGenOpts.hasProfileIRInstr()) 935 // -fprofile-generate. 936 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 937 ? DefaultProfileGenName 938 : CodeGenOpts.InstrProfileOutput, 939 "", "", "", true, 940 CodeGenOpts.DebugInfoForProfiling); 941 else if (CodeGenOpts.hasProfileIRUse()) 942 // -fprofile-use. 943 PGOOpt = PGOOptions("", CodeGenOpts.ProfileInstrumentUsePath, "", 944 CodeGenOpts.ProfileRemappingFile, false, 945 CodeGenOpts.DebugInfoForProfiling); 946 else if (!CodeGenOpts.SampleProfileFile.empty()) 947 // -fprofile-sample-use 948 PGOOpt = PGOOptions("", "", CodeGenOpts.SampleProfileFile, 949 CodeGenOpts.ProfileRemappingFile, false, 950 CodeGenOpts.DebugInfoForProfiling); 951 else if (CodeGenOpts.DebugInfoForProfiling) 952 // -fdebug-info-for-profiling 953 PGOOpt = PGOOptions("", "", "", "", false, true); 954 955 PassBuilder PB(TM.get(), PGOOpt); 956 957 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 958 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 959 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 960 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 961 962 // Register the AA manager first so that our version is the one used. 963 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 964 965 // Register the target library analysis directly and give it a customized 966 // preset TLI. 967 Triple TargetTriple(TheModule->getTargetTriple()); 968 std::unique_ptr<TargetLibraryInfoImpl> TLII( 969 createTLII(TargetTriple, CodeGenOpts)); 970 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 971 MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 972 973 // Register all the basic analyses with the managers. 974 PB.registerModuleAnalyses(MAM); 975 PB.registerCGSCCAnalyses(CGAM); 976 PB.registerFunctionAnalyses(FAM); 977 PB.registerLoopAnalyses(LAM); 978 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 979 980 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 981 982 if (!CodeGenOpts.DisableLLVMPasses) { 983 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 984 bool IsLTO = CodeGenOpts.PrepareForLTO; 985 986 if (CodeGenOpts.OptimizationLevel == 0) { 987 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 988 MPM.addPass(GCOVProfilerPass(*Options)); 989 990 // Build a minimal pipeline based on the semantics required by Clang, 991 // which is just that always inlining occurs. 992 MPM.addPass(AlwaysInlinerPass()); 993 994 // At -O0 we directly run necessary sanitizer passes. 995 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 996 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 997 998 // Lastly, add a semantically necessary pass for LTO. 999 if (IsLTO || IsThinLTO) 1000 MPM.addPass(NameAnonGlobalPass()); 1001 } else { 1002 // Map our optimization levels into one of the distinct levels used to 1003 // configure the pipeline. 1004 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1005 1006 // Register callbacks to schedule sanitizer passes at the appropriate part of 1007 // the pipeline. 1008 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1009 PB.registerScalarOptimizerLateEPCallback( 1010 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1011 FPM.addPass(BoundsCheckingPass()); 1012 }); 1013 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1014 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1015 MPM.addPass(GCOVProfilerPass(*Options)); 1016 }); 1017 1018 if (IsThinLTO) { 1019 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 1020 Level, CodeGenOpts.DebugPassManager); 1021 MPM.addPass(NameAnonGlobalPass()); 1022 } else if (IsLTO) { 1023 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 1024 CodeGenOpts.DebugPassManager); 1025 MPM.addPass(NameAnonGlobalPass()); 1026 } else { 1027 MPM = PB.buildPerModuleDefaultPipeline(Level, 1028 CodeGenOpts.DebugPassManager); 1029 } 1030 } 1031 } 1032 1033 // FIXME: We still use the legacy pass manager to do code generation. We 1034 // create that pass manager here and use it as needed below. 1035 legacy::PassManager CodeGenPasses; 1036 bool NeedCodeGen = false; 1037 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1038 1039 // Append any output we need to the pass manager. 1040 switch (Action) { 1041 case Backend_EmitNothing: 1042 break; 1043 1044 case Backend_EmitBC: 1045 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1046 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1047 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1048 if (!ThinLinkOS) 1049 return; 1050 } 1051 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1052 : nullptr)); 1053 } else { 1054 // Emit a module summary by default for Regular LTO except for ld64 1055 // targets 1056 bool EmitLTOSummary = 1057 (CodeGenOpts.PrepareForLTO && 1058 !CodeGenOpts.DisableLLVMPasses && 1059 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1060 llvm::Triple::Apple); 1061 if (EmitLTOSummary && !TheModule->getModuleFlag("ThinLTO")) 1062 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1063 1064 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 1065 EmitLTOSummary)); 1066 } 1067 break; 1068 1069 case Backend_EmitLL: 1070 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1071 break; 1072 1073 case Backend_EmitAssembly: 1074 case Backend_EmitMCNull: 1075 case Backend_EmitObj: 1076 NeedCodeGen = true; 1077 CodeGenPasses.add( 1078 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1079 if (!CodeGenOpts.SplitDwarfFile.empty()) { 1080 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfFile); 1081 if (!DwoOS) 1082 return; 1083 } 1084 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1085 DwoOS ? &DwoOS->os() : nullptr)) 1086 // FIXME: Should we handle this error differently? 1087 return; 1088 break; 1089 } 1090 1091 // Before executing passes, print the final values of the LLVM options. 1092 cl::PrintOptionValues(); 1093 1094 // Now that we have all of the passes ready, run them. 1095 { 1096 PrettyStackTraceString CrashInfo("Optimizer"); 1097 MPM.run(*TheModule, MAM); 1098 } 1099 1100 // Now if needed, run the legacy PM for codegen. 1101 if (NeedCodeGen) { 1102 PrettyStackTraceString CrashInfo("Code generation"); 1103 CodeGenPasses.run(*TheModule); 1104 } 1105 1106 if (ThinLinkOS) 1107 ThinLinkOS->keep(); 1108 if (DwoOS) 1109 DwoOS->keep(); 1110 } 1111 1112 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1113 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1114 if (!BMsOrErr) 1115 return BMsOrErr.takeError(); 1116 1117 // The bitcode file may contain multiple modules, we want the one that is 1118 // marked as being the ThinLTO module. 1119 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1120 return *Bm; 1121 1122 return make_error<StringError>("Could not find module summary", 1123 inconvertibleErrorCode()); 1124 } 1125 1126 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1127 for (BitcodeModule &BM : BMs) { 1128 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1129 if (LTOInfo && LTOInfo->IsThinLTO) 1130 return &BM; 1131 } 1132 return nullptr; 1133 } 1134 1135 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1136 const HeaderSearchOptions &HeaderOpts, 1137 const CodeGenOptions &CGOpts, 1138 const clang::TargetOptions &TOpts, 1139 const LangOptions &LOpts, 1140 std::unique_ptr<raw_pwrite_stream> OS, 1141 std::string SampleProfile, 1142 std::string ProfileRemapping, 1143 BackendAction Action) { 1144 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1145 ModuleToDefinedGVSummaries; 1146 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1147 1148 setCommandLineOpts(CGOpts); 1149 1150 // We can simply import the values mentioned in the combined index, since 1151 // we should only invoke this using the individual indexes written out 1152 // via a WriteIndexesThinBackend. 1153 FunctionImporter::ImportMapTy ImportList; 1154 for (auto &GlobalList : *CombinedIndex) { 1155 // Ignore entries for undefined references. 1156 if (GlobalList.second.SummaryList.empty()) 1157 continue; 1158 1159 auto GUID = GlobalList.first; 1160 for (auto &Summary : GlobalList.second.SummaryList) { 1161 // Skip the summaries for the importing module. These are included to 1162 // e.g. record required linkage changes. 1163 if (Summary->modulePath() == M->getModuleIdentifier()) 1164 continue; 1165 // Add an entry to provoke importing by thinBackend. 1166 ImportList[Summary->modulePath()].insert(GUID); 1167 } 1168 } 1169 1170 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1171 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1172 1173 for (auto &I : ImportList) { 1174 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1175 llvm::MemoryBuffer::getFile(I.first()); 1176 if (!MBOrErr) { 1177 errs() << "Error loading imported file '" << I.first() 1178 << "': " << MBOrErr.getError().message() << "\n"; 1179 return; 1180 } 1181 1182 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1183 if (!BMOrErr) { 1184 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1185 errs() << "Error loading imported file '" << I.first() 1186 << "': " << EIB.message() << '\n'; 1187 }); 1188 return; 1189 } 1190 ModuleMap.insert({I.first(), *BMOrErr}); 1191 1192 OwnedImports.push_back(std::move(*MBOrErr)); 1193 } 1194 auto AddStream = [&](size_t Task) { 1195 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 1196 }; 1197 lto::Config Conf; 1198 if (CGOpts.SaveTempsFilePrefix != "") { 1199 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1200 /* UseInputModulePath */ false)) { 1201 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1202 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1203 << '\n'; 1204 }); 1205 } 1206 } 1207 Conf.CPU = TOpts.CPU; 1208 Conf.CodeModel = getCodeModel(CGOpts); 1209 Conf.MAttrs = TOpts.Features; 1210 Conf.RelocModel = CGOpts.RelocationModel; 1211 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1212 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1213 Conf.SampleProfile = std::move(SampleProfile); 1214 Conf.ProfileRemapping = std::move(ProfileRemapping); 1215 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1216 Conf.DebugPassManager = CGOpts.DebugPassManager; 1217 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1218 Conf.RemarksFilename = CGOpts.OptRecordFile; 1219 Conf.DwoPath = CGOpts.SplitDwarfFile; 1220 switch (Action) { 1221 case Backend_EmitNothing: 1222 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1223 return false; 1224 }; 1225 break; 1226 case Backend_EmitLL: 1227 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1228 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1229 return false; 1230 }; 1231 break; 1232 case Backend_EmitBC: 1233 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1234 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1235 return false; 1236 }; 1237 break; 1238 default: 1239 Conf.CGFileType = getCodeGenFileType(Action); 1240 break; 1241 } 1242 if (Error E = thinBackend( 1243 Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1244 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1245 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1246 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1247 }); 1248 } 1249 } 1250 1251 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1252 const HeaderSearchOptions &HeaderOpts, 1253 const CodeGenOptions &CGOpts, 1254 const clang::TargetOptions &TOpts, 1255 const LangOptions &LOpts, 1256 const llvm::DataLayout &TDesc, Module *M, 1257 BackendAction Action, 1258 std::unique_ptr<raw_pwrite_stream> OS) { 1259 std::unique_ptr<llvm::Module> EmptyModule; 1260 if (!CGOpts.ThinLTOIndexFile.empty()) { 1261 // If we are performing a ThinLTO importing compile, load the function index 1262 // into memory and pass it into runThinLTOBackend, which will run the 1263 // function importer and invoke LTO passes. 1264 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1265 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1266 /*IgnoreEmptyThinLTOIndexFile*/true); 1267 if (!IndexOrErr) { 1268 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1269 "Error loading index file '" + 1270 CGOpts.ThinLTOIndexFile + "': "); 1271 return; 1272 } 1273 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1274 // A null CombinedIndex means we should skip ThinLTO compilation 1275 // (LLVM will optionally ignore empty index files, returning null instead 1276 // of an error). 1277 if (CombinedIndex) { 1278 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1279 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1280 LOpts, std::move(OS), CGOpts.SampleProfileFile, 1281 CGOpts.ProfileRemappingFile, Action); 1282 return; 1283 } 1284 // Distributed indexing detected that nothing from the module is needed 1285 // for the final linking. So we can skip the compilation. We sill need to 1286 // output an empty object file to make sure that a linker does not fail 1287 // trying to read it. Also for some features, like CFI, we must skip 1288 // the compilation as CombinedIndex does not contain all required 1289 // information. 1290 EmptyModule = llvm::make_unique<llvm::Module>("empty", M->getContext()); 1291 EmptyModule->setTargetTriple(M->getTargetTriple()); 1292 M = EmptyModule.get(); 1293 } 1294 } 1295 1296 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1297 1298 if (CGOpts.ExperimentalNewPassManager) 1299 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1300 else 1301 AsmHelper.EmitAssembly(Action, std::move(OS)); 1302 1303 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1304 // DataLayout. 1305 if (AsmHelper.TM) { 1306 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1307 if (DLDesc != TDesc.getStringRepresentation()) { 1308 unsigned DiagID = Diags.getCustomDiagID( 1309 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1310 "expected target description '%1'"); 1311 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1312 } 1313 } 1314 } 1315 1316 static const char* getSectionNameForBitcode(const Triple &T) { 1317 switch (T.getObjectFormat()) { 1318 case Triple::MachO: 1319 return "__LLVM,__bitcode"; 1320 case Triple::COFF: 1321 case Triple::ELF: 1322 case Triple::Wasm: 1323 case Triple::UnknownObjectFormat: 1324 return ".llvmbc"; 1325 } 1326 llvm_unreachable("Unimplemented ObjectFormatType"); 1327 } 1328 1329 static const char* getSectionNameForCommandline(const Triple &T) { 1330 switch (T.getObjectFormat()) { 1331 case Triple::MachO: 1332 return "__LLVM,__cmdline"; 1333 case Triple::COFF: 1334 case Triple::ELF: 1335 case Triple::Wasm: 1336 case Triple::UnknownObjectFormat: 1337 return ".llvmcmd"; 1338 } 1339 llvm_unreachable("Unimplemented ObjectFormatType"); 1340 } 1341 1342 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1343 // __LLVM,__bitcode section. 1344 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1345 llvm::MemoryBufferRef Buf) { 1346 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1347 return; 1348 1349 // Save llvm.compiler.used and remote it. 1350 SmallVector<Constant*, 2> UsedArray; 1351 SmallPtrSet<GlobalValue*, 4> UsedGlobals; 1352 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1353 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1354 for (auto *GV : UsedGlobals) { 1355 if (GV->getName() != "llvm.embedded.module" && 1356 GV->getName() != "llvm.cmdline") 1357 UsedArray.push_back( 1358 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1359 } 1360 if (Used) 1361 Used->eraseFromParent(); 1362 1363 // Embed the bitcode for the llvm module. 1364 std::string Data; 1365 ArrayRef<uint8_t> ModuleData; 1366 Triple T(M->getTargetTriple()); 1367 // Create a constant that contains the bitcode. 1368 // In case of embedding a marker, ignore the input Buf and use the empty 1369 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1370 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1371 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1372 (const unsigned char *)Buf.getBufferEnd())) { 1373 // If the input is LLVM Assembly, bitcode is produced by serializing 1374 // the module. Use-lists order need to be perserved in this case. 1375 llvm::raw_string_ostream OS(Data); 1376 llvm::WriteBitcodeToFile(*M, OS, /* ShouldPreserveUseListOrder */ true); 1377 ModuleData = 1378 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1379 } else 1380 // If the input is LLVM bitcode, write the input byte stream directly. 1381 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1382 Buf.getBufferSize()); 1383 } 1384 llvm::Constant *ModuleConstant = 1385 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1386 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1387 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1388 ModuleConstant); 1389 GV->setSection(getSectionNameForBitcode(T)); 1390 UsedArray.push_back( 1391 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1392 if (llvm::GlobalVariable *Old = 1393 M->getGlobalVariable("llvm.embedded.module", true)) { 1394 assert(Old->hasOneUse() && 1395 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1396 GV->takeName(Old); 1397 Old->eraseFromParent(); 1398 } else { 1399 GV->setName("llvm.embedded.module"); 1400 } 1401 1402 // Skip if only bitcode needs to be embedded. 1403 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1404 // Embed command-line options. 1405 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1406 CGOpts.CmdArgs.size()); 1407 llvm::Constant *CmdConstant = 1408 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1409 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1410 llvm::GlobalValue::PrivateLinkage, 1411 CmdConstant); 1412 GV->setSection(getSectionNameForCommandline(T)); 1413 UsedArray.push_back( 1414 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1415 if (llvm::GlobalVariable *Old = 1416 M->getGlobalVariable("llvm.cmdline", true)) { 1417 assert(Old->hasOneUse() && 1418 "llvm.cmdline can only be used once in llvm.compiler.used"); 1419 GV->takeName(Old); 1420 Old->eraseFromParent(); 1421 } else { 1422 GV->setName("llvm.cmdline"); 1423 } 1424 } 1425 1426 if (UsedArray.empty()) 1427 return; 1428 1429 // Recreate llvm.compiler.used. 1430 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1431 auto *NewUsed = new GlobalVariable( 1432 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1433 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1434 NewUsed->setSection("llvm.metadata"); 1435 } 1436