1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "clang/Lex/HeaderSearchOptions.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/ADT/StringSwitch.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/IRPrintingPasses.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/ModuleSummaryIndex.h" 35 #include "llvm/IR/Verifier.h" 36 #include "llvm/LTO/LTOBackend.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/SubtargetFeature.h" 39 #include "llvm/Passes/PassBuilder.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/MemoryBuffer.h" 42 #include "llvm/Support/PrettyStackTrace.h" 43 #include "llvm/Support/TargetRegistry.h" 44 #include "llvm/Support/Timer.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include "llvm/Transforms/Coroutines.h" 49 #include "llvm/Transforms/IPO.h" 50 #include "llvm/Transforms/IPO/AlwaysInliner.h" 51 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 52 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 53 #include "llvm/Transforms/InstCombine/InstCombine.h" 54 #include "llvm/Transforms/Instrumentation.h" 55 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 56 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 57 #include "llvm/Transforms/ObjCARC.h" 58 #include "llvm/Transforms/Scalar.h" 59 #include "llvm/Transforms/Scalar/GVN.h" 60 #include "llvm/Transforms/Utils.h" 61 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 62 #include "llvm/Transforms/Utils/SymbolRewriter.h" 63 #include <memory> 64 using namespace clang; 65 using namespace llvm; 66 67 namespace { 68 69 // Default filename used for profile generation. 70 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 71 72 class EmitAssemblyHelper { 73 DiagnosticsEngine &Diags; 74 const HeaderSearchOptions &HSOpts; 75 const CodeGenOptions &CodeGenOpts; 76 const clang::TargetOptions &TargetOpts; 77 const LangOptions &LangOpts; 78 Module *TheModule; 79 80 Timer CodeGenerationTime; 81 82 std::unique_ptr<raw_pwrite_stream> OS; 83 84 TargetIRAnalysis getTargetIRAnalysis() const { 85 if (TM) 86 return TM->getTargetIRAnalysis(); 87 88 return TargetIRAnalysis(); 89 } 90 91 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 92 93 /// Generates the TargetMachine. 94 /// Leaves TM unchanged if it is unable to create the target machine. 95 /// Some of our clang tests specify triples which are not built 96 /// into clang. This is okay because these tests check the generated 97 /// IR, and they require DataLayout which depends on the triple. 98 /// In this case, we allow this method to fail and not report an error. 99 /// When MustCreateTM is used, we print an error if we are unable to load 100 /// the requested target. 101 void CreateTargetMachine(bool MustCreateTM); 102 103 /// Add passes necessary to emit assembly or LLVM IR. 104 /// 105 /// \return True on success. 106 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 107 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 108 109 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 110 std::error_code EC; 111 auto F = llvm::make_unique<llvm::ToolOutputFile>(Path, EC, 112 llvm::sys::fs::F_None); 113 if (EC) { 114 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 115 F.reset(); 116 } 117 return F; 118 } 119 120 public: 121 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 122 const HeaderSearchOptions &HeaderSearchOpts, 123 const CodeGenOptions &CGOpts, 124 const clang::TargetOptions &TOpts, 125 const LangOptions &LOpts, Module *M) 126 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 127 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 128 CodeGenerationTime("codegen", "Code Generation Time") {} 129 130 ~EmitAssemblyHelper() { 131 if (CodeGenOpts.DisableFree) 132 BuryPointer(std::move(TM)); 133 } 134 135 std::unique_ptr<TargetMachine> TM; 136 137 void EmitAssembly(BackendAction Action, 138 std::unique_ptr<raw_pwrite_stream> OS); 139 140 void EmitAssemblyWithNewPassManager(BackendAction Action, 141 std::unique_ptr<raw_pwrite_stream> OS); 142 }; 143 144 // We need this wrapper to access LangOpts and CGOpts from extension functions 145 // that we add to the PassManagerBuilder. 146 class PassManagerBuilderWrapper : public PassManagerBuilder { 147 public: 148 PassManagerBuilderWrapper(const Triple &TargetTriple, 149 const CodeGenOptions &CGOpts, 150 const LangOptions &LangOpts) 151 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 152 LangOpts(LangOpts) {} 153 const Triple &getTargetTriple() const { return TargetTriple; } 154 const CodeGenOptions &getCGOpts() const { return CGOpts; } 155 const LangOptions &getLangOpts() const { return LangOpts; } 156 157 private: 158 const Triple &TargetTriple; 159 const CodeGenOptions &CGOpts; 160 const LangOptions &LangOpts; 161 }; 162 } 163 164 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 165 if (Builder.OptLevel > 0) 166 PM.add(createObjCARCAPElimPass()); 167 } 168 169 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 170 if (Builder.OptLevel > 0) 171 PM.add(createObjCARCExpandPass()); 172 } 173 174 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 175 if (Builder.OptLevel > 0) 176 PM.add(createObjCARCOptPass()); 177 } 178 179 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 180 legacy::PassManagerBase &PM) { 181 PM.add(createAddDiscriminatorsPass()); 182 } 183 184 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 185 legacy::PassManagerBase &PM) { 186 PM.add(createBoundsCheckingLegacyPass()); 187 } 188 189 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 190 legacy::PassManagerBase &PM) { 191 const PassManagerBuilderWrapper &BuilderWrapper = 192 static_cast<const PassManagerBuilderWrapper&>(Builder); 193 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 194 SanitizerCoverageOptions Opts; 195 Opts.CoverageType = 196 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 197 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 198 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 199 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 200 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 201 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 202 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 203 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 204 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 205 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 206 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 207 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 208 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 209 PM.add(createSanitizerCoverageModulePass(Opts)); 210 } 211 212 // Check if ASan should use GC-friendly instrumentation for globals. 213 // First of all, there is no point if -fdata-sections is off (expect for MachO, 214 // where this is not a factor). Also, on ELF this feature requires an assembler 215 // extension that only works with -integrated-as at the moment. 216 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 217 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 218 return false; 219 switch (T.getObjectFormat()) { 220 case Triple::MachO: 221 case Triple::COFF: 222 return true; 223 case Triple::ELF: 224 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 225 default: 226 return false; 227 } 228 } 229 230 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 231 legacy::PassManagerBase &PM) { 232 const PassManagerBuilderWrapper &BuilderWrapper = 233 static_cast<const PassManagerBuilderWrapper&>(Builder); 234 const Triple &T = BuilderWrapper.getTargetTriple(); 235 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 236 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 237 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 238 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 239 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 240 UseAfterScope)); 241 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/ false, Recover, 242 UseGlobalsGC)); 243 } 244 245 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 246 legacy::PassManagerBase &PM) { 247 PM.add(createAddressSanitizerFunctionPass( 248 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 249 PM.add(createAddressSanitizerModulePass( 250 /*CompileKernel*/ true, /*Recover*/ true)); 251 } 252 253 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 254 legacy::PassManagerBase &PM) { 255 const PassManagerBuilderWrapper &BuilderWrapper = 256 static_cast<const PassManagerBuilderWrapper &>(Builder); 257 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 258 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 259 PM.add(createHWAddressSanitizerPass(/*CompileKernel*/ false, Recover)); 260 } 261 262 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 263 legacy::PassManagerBase &PM) { 264 PM.add(createHWAddressSanitizerPass( 265 /*CompileKernel*/ true, /*Recover*/ true)); 266 } 267 268 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 269 legacy::PassManagerBase &PM) { 270 const PassManagerBuilderWrapper &BuilderWrapper = 271 static_cast<const PassManagerBuilderWrapper&>(Builder); 272 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 273 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 274 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 275 PM.add(createMemorySanitizerPass(TrackOrigins, Recover)); 276 277 // MemorySanitizer inserts complex instrumentation that mostly follows 278 // the logic of the original code, but operates on "shadow" values. 279 // It can benefit from re-running some general purpose optimization passes. 280 if (Builder.OptLevel > 0) { 281 PM.add(createEarlyCSEPass()); 282 PM.add(createReassociatePass()); 283 PM.add(createLICMPass()); 284 PM.add(createGVNPass()); 285 PM.add(createInstructionCombiningPass()); 286 PM.add(createDeadStoreEliminationPass()); 287 } 288 } 289 290 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 291 legacy::PassManagerBase &PM) { 292 PM.add(createThreadSanitizerPass()); 293 } 294 295 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 296 legacy::PassManagerBase &PM) { 297 const PassManagerBuilderWrapper &BuilderWrapper = 298 static_cast<const PassManagerBuilderWrapper&>(Builder); 299 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 300 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 301 } 302 303 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 304 legacy::PassManagerBase &PM) { 305 const PassManagerBuilderWrapper &BuilderWrapper = 306 static_cast<const PassManagerBuilderWrapper&>(Builder); 307 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 308 EfficiencySanitizerOptions Opts; 309 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 310 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 311 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 312 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 313 PM.add(createEfficiencySanitizerPass(Opts)); 314 } 315 316 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 317 const CodeGenOptions &CodeGenOpts) { 318 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 319 if (!CodeGenOpts.SimplifyLibCalls) 320 TLII->disableAllFunctions(); 321 else { 322 // Disable individual libc/libm calls in TargetLibraryInfo. 323 LibFunc F; 324 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 325 if (TLII->getLibFunc(FuncName, F)) 326 TLII->setUnavailable(F); 327 } 328 329 switch (CodeGenOpts.getVecLib()) { 330 case CodeGenOptions::Accelerate: 331 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 332 break; 333 case CodeGenOptions::SVML: 334 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 335 break; 336 default: 337 break; 338 } 339 return TLII; 340 } 341 342 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 343 legacy::PassManager *MPM) { 344 llvm::SymbolRewriter::RewriteDescriptorList DL; 345 346 llvm::SymbolRewriter::RewriteMapParser MapParser; 347 for (const auto &MapFile : Opts.RewriteMapFiles) 348 MapParser.parse(MapFile, &DL); 349 350 MPM->add(createRewriteSymbolsPass(DL)); 351 } 352 353 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 354 switch (CodeGenOpts.OptimizationLevel) { 355 default: 356 llvm_unreachable("Invalid optimization level!"); 357 case 0: 358 return CodeGenOpt::None; 359 case 1: 360 return CodeGenOpt::Less; 361 case 2: 362 return CodeGenOpt::Default; // O2/Os/Oz 363 case 3: 364 return CodeGenOpt::Aggressive; 365 } 366 } 367 368 static Optional<llvm::CodeModel::Model> 369 getCodeModel(const CodeGenOptions &CodeGenOpts) { 370 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 371 .Case("small", llvm::CodeModel::Small) 372 .Case("kernel", llvm::CodeModel::Kernel) 373 .Case("medium", llvm::CodeModel::Medium) 374 .Case("large", llvm::CodeModel::Large) 375 .Case("default", ~1u) 376 .Default(~0u); 377 assert(CodeModel != ~0u && "invalid code model!"); 378 if (CodeModel == ~1u) 379 return None; 380 return static_cast<llvm::CodeModel::Model>(CodeModel); 381 } 382 383 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 384 if (Action == Backend_EmitObj) 385 return TargetMachine::CGFT_ObjectFile; 386 else if (Action == Backend_EmitMCNull) 387 return TargetMachine::CGFT_Null; 388 else { 389 assert(Action == Backend_EmitAssembly && "Invalid action!"); 390 return TargetMachine::CGFT_AssemblyFile; 391 } 392 } 393 394 static void initTargetOptions(llvm::TargetOptions &Options, 395 const CodeGenOptions &CodeGenOpts, 396 const clang::TargetOptions &TargetOpts, 397 const LangOptions &LangOpts, 398 const HeaderSearchOptions &HSOpts) { 399 Options.ThreadModel = 400 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 401 .Case("posix", llvm::ThreadModel::POSIX) 402 .Case("single", llvm::ThreadModel::Single); 403 404 // Set float ABI type. 405 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 406 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 407 "Invalid Floating Point ABI!"); 408 Options.FloatABIType = 409 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 410 .Case("soft", llvm::FloatABI::Soft) 411 .Case("softfp", llvm::FloatABI::Soft) 412 .Case("hard", llvm::FloatABI::Hard) 413 .Default(llvm::FloatABI::Default); 414 415 // Set FP fusion mode. 416 switch (LangOpts.getDefaultFPContractMode()) { 417 case LangOptions::FPC_Off: 418 // Preserve any contraction performed by the front-end. (Strict performs 419 // splitting of the muladd instrinsic in the backend.) 420 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 421 break; 422 case LangOptions::FPC_On: 423 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 424 break; 425 case LangOptions::FPC_Fast: 426 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 427 break; 428 } 429 430 Options.UseInitArray = CodeGenOpts.UseInitArray; 431 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 432 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 433 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 434 435 // Set EABI version. 436 Options.EABIVersion = TargetOpts.EABIVersion; 437 438 if (LangOpts.SjLjExceptions) 439 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 440 if (LangOpts.SEHExceptions) 441 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 442 if (LangOpts.DWARFExceptions) 443 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 444 445 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 446 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 447 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 448 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 449 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 450 Options.FunctionSections = CodeGenOpts.FunctionSections; 451 Options.DataSections = CodeGenOpts.DataSections; 452 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 453 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 454 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 455 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 456 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 457 Options.EmitAddrsig = CodeGenOpts.Addrsig; 458 459 if (CodeGenOpts.EnableSplitDwarf) 460 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 461 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 462 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 463 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 464 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 465 Options.MCOptions.MCIncrementalLinkerCompatible = 466 CodeGenOpts.IncrementalLinkerCompatible; 467 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 468 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 469 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 470 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 471 Options.MCOptions.ABIName = TargetOpts.ABI; 472 for (const auto &Entry : HSOpts.UserEntries) 473 if (!Entry.IsFramework && 474 (Entry.Group == frontend::IncludeDirGroup::Quoted || 475 Entry.Group == frontend::IncludeDirGroup::Angled || 476 Entry.Group == frontend::IncludeDirGroup::System)) 477 Options.MCOptions.IASSearchPaths.push_back( 478 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 479 } 480 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 481 if (CodeGenOpts.DisableGCov) 482 return None; 483 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 484 return None; 485 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 486 // LLVM's -default-gcov-version flag is set to something invalid. 487 GCOVOptions Options; 488 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 489 Options.EmitData = CodeGenOpts.EmitGcovArcs; 490 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 491 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 492 Options.NoRedZone = CodeGenOpts.DisableRedZone; 493 Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData; 494 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 495 return Options; 496 } 497 498 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 499 legacy::FunctionPassManager &FPM) { 500 // Handle disabling of all LLVM passes, where we want to preserve the 501 // internal module before any optimization. 502 if (CodeGenOpts.DisableLLVMPasses) 503 return; 504 505 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 506 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 507 // are inserted before PMBuilder ones - they'd get the default-constructed 508 // TLI with an unknown target otherwise. 509 Triple TargetTriple(TheModule->getTargetTriple()); 510 std::unique_ptr<TargetLibraryInfoImpl> TLII( 511 createTLII(TargetTriple, CodeGenOpts)); 512 513 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 514 515 // At O0 and O1 we only run the always inliner which is more efficient. At 516 // higher optimization levels we run the normal inliner. 517 if (CodeGenOpts.OptimizationLevel <= 1) { 518 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 519 !CodeGenOpts.DisableLifetimeMarkers); 520 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 521 } else { 522 // We do not want to inline hot callsites for SamplePGO module-summary build 523 // because profile annotation will happen again in ThinLTO backend, and we 524 // want the IR of the hot path to match the profile. 525 PMBuilder.Inliner = createFunctionInliningPass( 526 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 527 (!CodeGenOpts.SampleProfileFile.empty() && 528 CodeGenOpts.PrepareForThinLTO)); 529 } 530 531 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 532 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 533 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 534 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 535 536 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 537 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 538 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 539 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 540 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 541 542 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 543 544 if (TM) 545 TM->adjustPassManager(PMBuilder); 546 547 if (CodeGenOpts.DebugInfoForProfiling || 548 !CodeGenOpts.SampleProfileFile.empty()) 549 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 550 addAddDiscriminatorsPass); 551 552 // In ObjC ARC mode, add the main ARC optimization passes. 553 if (LangOpts.ObjCAutoRefCount) { 554 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 555 addObjCARCExpandPass); 556 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 557 addObjCARCAPElimPass); 558 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 559 addObjCARCOptPass); 560 } 561 562 if (LangOpts.CoroutinesTS) 563 addCoroutinePassesToExtensionPoints(PMBuilder); 564 565 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 566 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 567 addBoundsCheckingPass); 568 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 569 addBoundsCheckingPass); 570 } 571 572 if (CodeGenOpts.SanitizeCoverageType || 573 CodeGenOpts.SanitizeCoverageIndirectCalls || 574 CodeGenOpts.SanitizeCoverageTraceCmp) { 575 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 576 addSanitizerCoveragePass); 577 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 578 addSanitizerCoveragePass); 579 } 580 581 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 582 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 583 addAddressSanitizerPasses); 584 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 585 addAddressSanitizerPasses); 586 } 587 588 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 589 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 590 addKernelAddressSanitizerPasses); 591 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 592 addKernelAddressSanitizerPasses); 593 } 594 595 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 596 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 597 addHWAddressSanitizerPasses); 598 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 599 addHWAddressSanitizerPasses); 600 } 601 602 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 603 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 604 addKernelHWAddressSanitizerPasses); 605 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 606 addKernelHWAddressSanitizerPasses); 607 } 608 609 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 610 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 611 addMemorySanitizerPass); 612 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 613 addMemorySanitizerPass); 614 } 615 616 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 617 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 618 addThreadSanitizerPass); 619 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 620 addThreadSanitizerPass); 621 } 622 623 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 624 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 625 addDataFlowSanitizerPass); 626 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 627 addDataFlowSanitizerPass); 628 } 629 630 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 631 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 632 addEfficiencySanitizerPass); 633 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 634 addEfficiencySanitizerPass); 635 } 636 637 // Set up the per-function pass manager. 638 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 639 if (CodeGenOpts.VerifyModule) 640 FPM.add(createVerifierPass()); 641 642 // Set up the per-module pass manager. 643 if (!CodeGenOpts.RewriteMapFiles.empty()) 644 addSymbolRewriterPass(CodeGenOpts, &MPM); 645 646 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 647 MPM.add(createGCOVProfilerPass(*Options)); 648 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 649 MPM.add(createStripSymbolsPass(true)); 650 } 651 652 if (CodeGenOpts.hasProfileClangInstr()) { 653 InstrProfOptions Options; 654 Options.NoRedZone = CodeGenOpts.DisableRedZone; 655 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 656 MPM.add(createInstrProfilingLegacyPass(Options)); 657 } 658 if (CodeGenOpts.hasProfileIRInstr()) { 659 PMBuilder.EnablePGOInstrGen = true; 660 if (!CodeGenOpts.InstrProfileOutput.empty()) 661 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 662 else 663 PMBuilder.PGOInstrGen = DefaultProfileGenName; 664 } 665 if (CodeGenOpts.hasProfileIRUse()) 666 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 667 668 if (!CodeGenOpts.SampleProfileFile.empty()) 669 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 670 671 PMBuilder.populateFunctionPassManager(FPM); 672 PMBuilder.populateModulePassManager(MPM); 673 } 674 675 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 676 SmallVector<const char *, 16> BackendArgs; 677 BackendArgs.push_back("clang"); // Fake program name. 678 if (!CodeGenOpts.DebugPass.empty()) { 679 BackendArgs.push_back("-debug-pass"); 680 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 681 } 682 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 683 BackendArgs.push_back("-limit-float-precision"); 684 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 685 } 686 BackendArgs.push_back(nullptr); 687 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 688 BackendArgs.data()); 689 } 690 691 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 692 // Create the TargetMachine for generating code. 693 std::string Error; 694 std::string Triple = TheModule->getTargetTriple(); 695 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 696 if (!TheTarget) { 697 if (MustCreateTM) 698 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 699 return; 700 } 701 702 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 703 std::string FeaturesStr = 704 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 705 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 706 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 707 708 llvm::TargetOptions Options; 709 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 710 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 711 Options, RM, CM, OptLevel)); 712 } 713 714 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 715 BackendAction Action, 716 raw_pwrite_stream &OS, 717 raw_pwrite_stream *DwoOS) { 718 // Add LibraryInfo. 719 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 720 std::unique_ptr<TargetLibraryInfoImpl> TLII( 721 createTLII(TargetTriple, CodeGenOpts)); 722 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 723 724 // Normal mode, emit a .s or .o file by running the code generator. Note, 725 // this also adds codegenerator level optimization passes. 726 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 727 728 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 729 // "codegen" passes so that it isn't run multiple times when there is 730 // inlining happening. 731 if (CodeGenOpts.OptimizationLevel > 0) 732 CodeGenPasses.add(createObjCARCContractPass()); 733 734 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 735 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 736 Diags.Report(diag::err_fe_unable_to_interface_with_target); 737 return false; 738 } 739 740 return true; 741 } 742 743 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 744 std::unique_ptr<raw_pwrite_stream> OS) { 745 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 746 747 setCommandLineOpts(CodeGenOpts); 748 749 bool UsesCodeGen = (Action != Backend_EmitNothing && 750 Action != Backend_EmitBC && 751 Action != Backend_EmitLL); 752 CreateTargetMachine(UsesCodeGen); 753 754 if (UsesCodeGen && !TM) 755 return; 756 if (TM) 757 TheModule->setDataLayout(TM->createDataLayout()); 758 759 legacy::PassManager PerModulePasses; 760 PerModulePasses.add( 761 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 762 763 legacy::FunctionPassManager PerFunctionPasses(TheModule); 764 PerFunctionPasses.add( 765 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 766 767 CreatePasses(PerModulePasses, PerFunctionPasses); 768 769 legacy::PassManager CodeGenPasses; 770 CodeGenPasses.add( 771 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 772 773 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 774 775 switch (Action) { 776 case Backend_EmitNothing: 777 break; 778 779 case Backend_EmitBC: 780 if (CodeGenOpts.PrepareForThinLTO) { 781 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 782 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 783 if (!ThinLinkOS) 784 return; 785 } 786 PerModulePasses.add(createWriteThinLTOBitcodePass( 787 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 788 } else { 789 // Emit a module summary by default for Regular LTO except for ld64 790 // targets 791 bool EmitLTOSummary = 792 (CodeGenOpts.PrepareForLTO && 793 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 794 llvm::Triple::Apple); 795 if (EmitLTOSummary && !TheModule->getModuleFlag("ThinLTO")) 796 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 797 798 PerModulePasses.add( 799 createBitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 800 EmitLTOSummary)); 801 } 802 break; 803 804 case Backend_EmitLL: 805 PerModulePasses.add( 806 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 807 break; 808 809 default: 810 if (!CodeGenOpts.SplitDwarfFile.empty()) { 811 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfFile); 812 if (!DwoOS) 813 return; 814 } 815 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 816 DwoOS ? &DwoOS->os() : nullptr)) 817 return; 818 } 819 820 // Before executing passes, print the final values of the LLVM options. 821 cl::PrintOptionValues(); 822 823 // Run passes. For now we do all passes at once, but eventually we 824 // would like to have the option of streaming code generation. 825 826 { 827 PrettyStackTraceString CrashInfo("Per-function optimization"); 828 829 PerFunctionPasses.doInitialization(); 830 for (Function &F : *TheModule) 831 if (!F.isDeclaration()) 832 PerFunctionPasses.run(F); 833 PerFunctionPasses.doFinalization(); 834 } 835 836 { 837 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 838 PerModulePasses.run(*TheModule); 839 } 840 841 { 842 PrettyStackTraceString CrashInfo("Code generation"); 843 CodeGenPasses.run(*TheModule); 844 } 845 846 if (ThinLinkOS) 847 ThinLinkOS->keep(); 848 if (DwoOS) 849 DwoOS->keep(); 850 } 851 852 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 853 switch (Opts.OptimizationLevel) { 854 default: 855 llvm_unreachable("Invalid optimization level!"); 856 857 case 1: 858 return PassBuilder::O1; 859 860 case 2: 861 switch (Opts.OptimizeSize) { 862 default: 863 llvm_unreachable("Invalid optimization level for size!"); 864 865 case 0: 866 return PassBuilder::O2; 867 868 case 1: 869 return PassBuilder::Os; 870 871 case 2: 872 return PassBuilder::Oz; 873 } 874 875 case 3: 876 return PassBuilder::O3; 877 } 878 } 879 880 /// A clean version of `EmitAssembly` that uses the new pass manager. 881 /// 882 /// Not all features are currently supported in this system, but where 883 /// necessary it falls back to the legacy pass manager to at least provide 884 /// basic functionality. 885 /// 886 /// This API is planned to have its functionality finished and then to replace 887 /// `EmitAssembly` at some point in the future when the default switches. 888 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 889 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 890 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 891 setCommandLineOpts(CodeGenOpts); 892 893 // The new pass manager always makes a target machine available to passes 894 // during construction. 895 CreateTargetMachine(/*MustCreateTM*/ true); 896 if (!TM) 897 // This will already be diagnosed, just bail. 898 return; 899 TheModule->setDataLayout(TM->createDataLayout()); 900 901 Optional<PGOOptions> PGOOpt; 902 903 if (CodeGenOpts.hasProfileIRInstr()) 904 // -fprofile-generate. 905 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 906 ? DefaultProfileGenName 907 : CodeGenOpts.InstrProfileOutput, 908 "", "", true, CodeGenOpts.DebugInfoForProfiling); 909 else if (CodeGenOpts.hasProfileIRUse()) 910 // -fprofile-use. 911 PGOOpt = PGOOptions("", CodeGenOpts.ProfileInstrumentUsePath, "", false, 912 CodeGenOpts.DebugInfoForProfiling); 913 else if (!CodeGenOpts.SampleProfileFile.empty()) 914 // -fprofile-sample-use 915 PGOOpt = PGOOptions("", "", CodeGenOpts.SampleProfileFile, false, 916 CodeGenOpts.DebugInfoForProfiling); 917 else if (CodeGenOpts.DebugInfoForProfiling) 918 // -fdebug-info-for-profiling 919 PGOOpt = PGOOptions("", "", "", false, true); 920 921 PassBuilder PB(TM.get(), PGOOpt); 922 923 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 924 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 925 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 926 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 927 928 // Register the AA manager first so that our version is the one used. 929 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 930 931 // Register the target library analysis directly and give it a customized 932 // preset TLI. 933 Triple TargetTriple(TheModule->getTargetTriple()); 934 std::unique_ptr<TargetLibraryInfoImpl> TLII( 935 createTLII(TargetTriple, CodeGenOpts)); 936 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 937 MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 938 939 // Register all the basic analyses with the managers. 940 PB.registerModuleAnalyses(MAM); 941 PB.registerCGSCCAnalyses(CGAM); 942 PB.registerFunctionAnalyses(FAM); 943 PB.registerLoopAnalyses(LAM); 944 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 945 946 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 947 948 if (!CodeGenOpts.DisableLLVMPasses) { 949 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 950 bool IsLTO = CodeGenOpts.PrepareForLTO; 951 952 if (CodeGenOpts.OptimizationLevel == 0) { 953 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 954 MPM.addPass(GCOVProfilerPass(*Options)); 955 956 // Build a minimal pipeline based on the semantics required by Clang, 957 // which is just that always inlining occurs. 958 MPM.addPass(AlwaysInlinerPass()); 959 960 // At -O0 we directly run necessary sanitizer passes. 961 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 962 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 963 964 // Lastly, add a semantically necessary pass for LTO. 965 if (IsLTO || IsThinLTO) 966 MPM.addPass(NameAnonGlobalPass()); 967 } else { 968 // Map our optimization levels into one of the distinct levels used to 969 // configure the pipeline. 970 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 971 972 // Register callbacks to schedule sanitizer passes at the appropriate part of 973 // the pipeline. 974 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 975 PB.registerScalarOptimizerLateEPCallback( 976 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 977 FPM.addPass(BoundsCheckingPass()); 978 }); 979 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 980 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 981 MPM.addPass(GCOVProfilerPass(*Options)); 982 }); 983 984 if (IsThinLTO) { 985 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 986 Level, CodeGenOpts.DebugPassManager); 987 MPM.addPass(NameAnonGlobalPass()); 988 } else if (IsLTO) { 989 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 990 CodeGenOpts.DebugPassManager); 991 MPM.addPass(NameAnonGlobalPass()); 992 } else { 993 MPM = PB.buildPerModuleDefaultPipeline(Level, 994 CodeGenOpts.DebugPassManager); 995 } 996 } 997 } 998 999 // FIXME: We still use the legacy pass manager to do code generation. We 1000 // create that pass manager here and use it as needed below. 1001 legacy::PassManager CodeGenPasses; 1002 bool NeedCodeGen = false; 1003 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1004 1005 // Append any output we need to the pass manager. 1006 switch (Action) { 1007 case Backend_EmitNothing: 1008 break; 1009 1010 case Backend_EmitBC: 1011 if (CodeGenOpts.PrepareForThinLTO) { 1012 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1013 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1014 if (!ThinLinkOS) 1015 return; 1016 } 1017 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1018 : nullptr)); 1019 } else { 1020 // Emit a module summary by default for Regular LTO except for ld64 1021 // targets 1022 bool EmitLTOSummary = 1023 (CodeGenOpts.PrepareForLTO && 1024 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1025 llvm::Triple::Apple); 1026 if (EmitLTOSummary && !TheModule->getModuleFlag("ThinLTO")) 1027 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1028 1029 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 1030 EmitLTOSummary)); 1031 } 1032 break; 1033 1034 case Backend_EmitLL: 1035 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1036 break; 1037 1038 case Backend_EmitAssembly: 1039 case Backend_EmitMCNull: 1040 case Backend_EmitObj: 1041 NeedCodeGen = true; 1042 CodeGenPasses.add( 1043 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1044 if (!CodeGenOpts.SplitDwarfFile.empty()) { 1045 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfFile); 1046 if (!DwoOS) 1047 return; 1048 } 1049 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1050 DwoOS ? &DwoOS->os() : nullptr)) 1051 // FIXME: Should we handle this error differently? 1052 return; 1053 break; 1054 } 1055 1056 // Before executing passes, print the final values of the LLVM options. 1057 cl::PrintOptionValues(); 1058 1059 // Now that we have all of the passes ready, run them. 1060 { 1061 PrettyStackTraceString CrashInfo("Optimizer"); 1062 MPM.run(*TheModule, MAM); 1063 } 1064 1065 // Now if needed, run the legacy PM for codegen. 1066 if (NeedCodeGen) { 1067 PrettyStackTraceString CrashInfo("Code generation"); 1068 CodeGenPasses.run(*TheModule); 1069 } 1070 1071 if (ThinLinkOS) 1072 ThinLinkOS->keep(); 1073 if (DwoOS) 1074 DwoOS->keep(); 1075 } 1076 1077 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1078 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1079 if (!BMsOrErr) 1080 return BMsOrErr.takeError(); 1081 1082 // The bitcode file may contain multiple modules, we want the one that is 1083 // marked as being the ThinLTO module. 1084 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1085 return *Bm; 1086 1087 return make_error<StringError>("Could not find module summary", 1088 inconvertibleErrorCode()); 1089 } 1090 1091 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1092 for (BitcodeModule &BM : BMs) { 1093 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1094 if (LTOInfo && LTOInfo->IsThinLTO) 1095 return &BM; 1096 } 1097 return nullptr; 1098 } 1099 1100 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1101 const HeaderSearchOptions &HeaderOpts, 1102 const CodeGenOptions &CGOpts, 1103 const clang::TargetOptions &TOpts, 1104 const LangOptions &LOpts, 1105 std::unique_ptr<raw_pwrite_stream> OS, 1106 std::string SampleProfile, 1107 BackendAction Action) { 1108 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1109 ModuleToDefinedGVSummaries; 1110 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1111 1112 setCommandLineOpts(CGOpts); 1113 1114 // We can simply import the values mentioned in the combined index, since 1115 // we should only invoke this using the individual indexes written out 1116 // via a WriteIndexesThinBackend. 1117 FunctionImporter::ImportMapTy ImportList; 1118 for (auto &GlobalList : *CombinedIndex) { 1119 // Ignore entries for undefined references. 1120 if (GlobalList.second.SummaryList.empty()) 1121 continue; 1122 1123 auto GUID = GlobalList.first; 1124 assert(GlobalList.second.SummaryList.size() == 1 && 1125 "Expected individual combined index to have one summary per GUID"); 1126 auto &Summary = GlobalList.second.SummaryList[0]; 1127 // Skip the summaries for the importing module. These are included to 1128 // e.g. record required linkage changes. 1129 if (Summary->modulePath() == M->getModuleIdentifier()) 1130 continue; 1131 // Add an entry to provoke importing by thinBackend. 1132 ImportList[Summary->modulePath()].insert(GUID); 1133 } 1134 1135 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1136 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1137 1138 for (auto &I : ImportList) { 1139 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1140 llvm::MemoryBuffer::getFile(I.first()); 1141 if (!MBOrErr) { 1142 errs() << "Error loading imported file '" << I.first() 1143 << "': " << MBOrErr.getError().message() << "\n"; 1144 return; 1145 } 1146 1147 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1148 if (!BMOrErr) { 1149 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1150 errs() << "Error loading imported file '" << I.first() 1151 << "': " << EIB.message() << '\n'; 1152 }); 1153 return; 1154 } 1155 ModuleMap.insert({I.first(), *BMOrErr}); 1156 1157 OwnedImports.push_back(std::move(*MBOrErr)); 1158 } 1159 auto AddStream = [&](size_t Task) { 1160 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 1161 }; 1162 lto::Config Conf; 1163 if (CGOpts.SaveTempsFilePrefix != "") { 1164 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1165 /* UseInputModulePath */ false)) { 1166 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1167 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1168 << '\n'; 1169 }); 1170 } 1171 } 1172 Conf.CPU = TOpts.CPU; 1173 Conf.CodeModel = getCodeModel(CGOpts); 1174 Conf.MAttrs = TOpts.Features; 1175 Conf.RelocModel = CGOpts.RelocationModel; 1176 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1177 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1178 Conf.SampleProfile = std::move(SampleProfile); 1179 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1180 Conf.DebugPassManager = CGOpts.DebugPassManager; 1181 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1182 Conf.RemarksFilename = CGOpts.OptRecordFile; 1183 Conf.DwoPath = CGOpts.SplitDwarfFile; 1184 switch (Action) { 1185 case Backend_EmitNothing: 1186 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1187 return false; 1188 }; 1189 break; 1190 case Backend_EmitLL: 1191 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1192 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1193 return false; 1194 }; 1195 break; 1196 case Backend_EmitBC: 1197 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1198 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1199 return false; 1200 }; 1201 break; 1202 default: 1203 Conf.CGFileType = getCodeGenFileType(Action); 1204 break; 1205 } 1206 if (Error E = thinBackend( 1207 Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1208 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1209 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1210 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1211 }); 1212 } 1213 } 1214 1215 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1216 const HeaderSearchOptions &HeaderOpts, 1217 const CodeGenOptions &CGOpts, 1218 const clang::TargetOptions &TOpts, 1219 const LangOptions &LOpts, 1220 const llvm::DataLayout &TDesc, Module *M, 1221 BackendAction Action, 1222 std::unique_ptr<raw_pwrite_stream> OS) { 1223 std::unique_ptr<llvm::Module> EmptyModule; 1224 if (!CGOpts.ThinLTOIndexFile.empty()) { 1225 // If we are performing a ThinLTO importing compile, load the function index 1226 // into memory and pass it into runThinLTOBackend, which will run the 1227 // function importer and invoke LTO passes. 1228 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1229 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1230 /*IgnoreEmptyThinLTOIndexFile*/true); 1231 if (!IndexOrErr) { 1232 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1233 "Error loading index file '" + 1234 CGOpts.ThinLTOIndexFile + "': "); 1235 return; 1236 } 1237 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1238 // A null CombinedIndex means we should skip ThinLTO compilation 1239 // (LLVM will optionally ignore empty index files, returning null instead 1240 // of an error). 1241 if (CombinedIndex) { 1242 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1243 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1244 LOpts, std::move(OS), CGOpts.SampleProfileFile, 1245 Action); 1246 return; 1247 } 1248 // Distributed indexing detected that nothing from the module is needed 1249 // for the final linking. So we can skip the compilation. We sill need to 1250 // output an empty object file to make sure that a linker does not fail 1251 // trying to read it. Also for some features, like CFI, we must skip 1252 // the compilation as CombinedIndex does not contain all required 1253 // information. 1254 EmptyModule = llvm::make_unique<llvm::Module>("empty", M->getContext()); 1255 EmptyModule->setTargetTriple(M->getTargetTriple()); 1256 M = EmptyModule.get(); 1257 } 1258 } 1259 1260 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1261 1262 if (CGOpts.ExperimentalNewPassManager) 1263 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1264 else 1265 AsmHelper.EmitAssembly(Action, std::move(OS)); 1266 1267 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1268 // DataLayout. 1269 if (AsmHelper.TM) { 1270 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1271 if (DLDesc != TDesc.getStringRepresentation()) { 1272 unsigned DiagID = Diags.getCustomDiagID( 1273 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1274 "expected target description '%1'"); 1275 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1276 } 1277 } 1278 } 1279 1280 static const char* getSectionNameForBitcode(const Triple &T) { 1281 switch (T.getObjectFormat()) { 1282 case Triple::MachO: 1283 return "__LLVM,__bitcode"; 1284 case Triple::COFF: 1285 case Triple::ELF: 1286 case Triple::Wasm: 1287 case Triple::UnknownObjectFormat: 1288 return ".llvmbc"; 1289 } 1290 llvm_unreachable("Unimplemented ObjectFormatType"); 1291 } 1292 1293 static const char* getSectionNameForCommandline(const Triple &T) { 1294 switch (T.getObjectFormat()) { 1295 case Triple::MachO: 1296 return "__LLVM,__cmdline"; 1297 case Triple::COFF: 1298 case Triple::ELF: 1299 case Triple::Wasm: 1300 case Triple::UnknownObjectFormat: 1301 return ".llvmcmd"; 1302 } 1303 llvm_unreachable("Unimplemented ObjectFormatType"); 1304 } 1305 1306 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1307 // __LLVM,__bitcode section. 1308 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1309 llvm::MemoryBufferRef Buf) { 1310 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1311 return; 1312 1313 // Save llvm.compiler.used and remote it. 1314 SmallVector<Constant*, 2> UsedArray; 1315 SmallPtrSet<GlobalValue*, 4> UsedGlobals; 1316 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1317 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1318 for (auto *GV : UsedGlobals) { 1319 if (GV->getName() != "llvm.embedded.module" && 1320 GV->getName() != "llvm.cmdline") 1321 UsedArray.push_back( 1322 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1323 } 1324 if (Used) 1325 Used->eraseFromParent(); 1326 1327 // Embed the bitcode for the llvm module. 1328 std::string Data; 1329 ArrayRef<uint8_t> ModuleData; 1330 Triple T(M->getTargetTriple()); 1331 // Create a constant that contains the bitcode. 1332 // In case of embedding a marker, ignore the input Buf and use the empty 1333 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1334 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1335 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1336 (const unsigned char *)Buf.getBufferEnd())) { 1337 // If the input is LLVM Assembly, bitcode is produced by serializing 1338 // the module. Use-lists order need to be perserved in this case. 1339 llvm::raw_string_ostream OS(Data); 1340 llvm::WriteBitcodeToFile(*M, OS, /* ShouldPreserveUseListOrder */ true); 1341 ModuleData = 1342 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1343 } else 1344 // If the input is LLVM bitcode, write the input byte stream directly. 1345 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1346 Buf.getBufferSize()); 1347 } 1348 llvm::Constant *ModuleConstant = 1349 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1350 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1351 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1352 ModuleConstant); 1353 GV->setSection(getSectionNameForBitcode(T)); 1354 UsedArray.push_back( 1355 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1356 if (llvm::GlobalVariable *Old = 1357 M->getGlobalVariable("llvm.embedded.module", true)) { 1358 assert(Old->hasOneUse() && 1359 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1360 GV->takeName(Old); 1361 Old->eraseFromParent(); 1362 } else { 1363 GV->setName("llvm.embedded.module"); 1364 } 1365 1366 // Skip if only bitcode needs to be embedded. 1367 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1368 // Embed command-line options. 1369 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1370 CGOpts.CmdArgs.size()); 1371 llvm::Constant *CmdConstant = 1372 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1373 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1374 llvm::GlobalValue::PrivateLinkage, 1375 CmdConstant); 1376 GV->setSection(getSectionNameForCommandline(T)); 1377 UsedArray.push_back( 1378 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1379 if (llvm::GlobalVariable *Old = 1380 M->getGlobalVariable("llvm.cmdline", true)) { 1381 assert(Old->hasOneUse() && 1382 "llvm.cmdline can only be used once in llvm.compiler.used"); 1383 GV->takeName(Old); 1384 Old->eraseFromParent(); 1385 } else { 1386 GV->setName("llvm.cmdline"); 1387 } 1388 } 1389 1390 if (UsedArray.empty()) 1391 return; 1392 1393 // Recreate llvm.compiler.used. 1394 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1395 auto *NewUsed = new GlobalVariable( 1396 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1397 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1398 NewUsed->setSection("llvm.metadata"); 1399 } 1400