1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/StackSafetyAnalysis.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/Bitcode/BitcodeReader.h" 26 #include "llvm/Bitcode/BitcodeWriter.h" 27 #include "llvm/Bitcode/BitcodeWriterPass.h" 28 #include "llvm/CodeGen/RegAllocRegistry.h" 29 #include "llvm/CodeGen/SchedulerRegistry.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/IRPrintingPasses.h" 33 #include "llvm/IR/LegacyPassManager.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/ModuleSummaryIndex.h" 36 #include "llvm/IR/PassManager.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/LTO/LTOBackend.h" 39 #include "llvm/MC/MCAsmInfo.h" 40 #include "llvm/MC/SubtargetFeature.h" 41 #include "llvm/Passes/PassBuilder.h" 42 #include "llvm/Passes/PassPlugin.h" 43 #include "llvm/Passes/StandardInstrumentations.h" 44 #include "llvm/Support/BuryPointer.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/MemoryBuffer.h" 47 #include "llvm/Support/PrettyStackTrace.h" 48 #include "llvm/Support/TargetRegistry.h" 49 #include "llvm/Support/TimeProfiler.h" 50 #include "llvm/Support/Timer.h" 51 #include "llvm/Support/ToolOutputFile.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include "llvm/Target/TargetOptions.h" 55 #include "llvm/Transforms/Coroutines.h" 56 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 57 #include "llvm/Transforms/Coroutines/CoroEarly.h" 58 #include "llvm/Transforms/Coroutines/CoroElide.h" 59 #include "llvm/Transforms/Coroutines/CoroSplit.h" 60 #include "llvm/Transforms/IPO.h" 61 #include "llvm/Transforms/IPO/AlwaysInliner.h" 62 #include "llvm/Transforms/IPO/LowerTypeTests.h" 63 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 64 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 65 #include "llvm/Transforms/InstCombine/InstCombine.h" 66 #include "llvm/Transforms/Instrumentation.h" 67 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 68 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" 69 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 70 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 71 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 72 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 73 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 74 #include "llvm/Transforms/Instrumentation/MemProfiler.h" 75 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 76 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 77 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 78 #include "llvm/Transforms/ObjCARC.h" 79 #include "llvm/Transforms/Scalar.h" 80 #include "llvm/Transforms/Scalar/EarlyCSE.h" 81 #include "llvm/Transforms/Scalar/GVN.h" 82 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" 83 #include "llvm/Transforms/Utils.h" 84 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 85 #include "llvm/Transforms/Utils/Debugify.h" 86 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 87 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 88 #include "llvm/Transforms/Utils/SymbolRewriter.h" 89 #include <memory> 90 using namespace clang; 91 using namespace llvm; 92 93 #define HANDLE_EXTENSION(Ext) \ 94 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 95 #include "llvm/Support/Extension.def" 96 97 namespace { 98 99 // Default filename used for profile generation. 100 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 101 102 class EmitAssemblyHelper { 103 DiagnosticsEngine &Diags; 104 const HeaderSearchOptions &HSOpts; 105 const CodeGenOptions &CodeGenOpts; 106 const clang::TargetOptions &TargetOpts; 107 const LangOptions &LangOpts; 108 Module *TheModule; 109 110 Timer CodeGenerationTime; 111 112 std::unique_ptr<raw_pwrite_stream> OS; 113 114 TargetIRAnalysis getTargetIRAnalysis() const { 115 if (TM) 116 return TM->getTargetIRAnalysis(); 117 118 return TargetIRAnalysis(); 119 } 120 121 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 122 123 /// Generates the TargetMachine. 124 /// Leaves TM unchanged if it is unable to create the target machine. 125 /// Some of our clang tests specify triples which are not built 126 /// into clang. This is okay because these tests check the generated 127 /// IR, and they require DataLayout which depends on the triple. 128 /// In this case, we allow this method to fail and not report an error. 129 /// When MustCreateTM is used, we print an error if we are unable to load 130 /// the requested target. 131 void CreateTargetMachine(bool MustCreateTM); 132 133 /// Add passes necessary to emit assembly or LLVM IR. 134 /// 135 /// \return True on success. 136 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 137 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 138 139 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 140 std::error_code EC; 141 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 142 llvm::sys::fs::OF_None); 143 if (EC) { 144 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 145 F.reset(); 146 } 147 return F; 148 } 149 150 public: 151 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 152 const HeaderSearchOptions &HeaderSearchOpts, 153 const CodeGenOptions &CGOpts, 154 const clang::TargetOptions &TOpts, 155 const LangOptions &LOpts, Module *M) 156 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 157 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 158 CodeGenerationTime("codegen", "Code Generation Time") {} 159 160 ~EmitAssemblyHelper() { 161 if (CodeGenOpts.DisableFree) 162 BuryPointer(std::move(TM)); 163 } 164 165 std::unique_ptr<TargetMachine> TM; 166 167 void EmitAssembly(BackendAction Action, 168 std::unique_ptr<raw_pwrite_stream> OS); 169 170 void EmitAssemblyWithNewPassManager(BackendAction Action, 171 std::unique_ptr<raw_pwrite_stream> OS); 172 }; 173 174 // We need this wrapper to access LangOpts and CGOpts from extension functions 175 // that we add to the PassManagerBuilder. 176 class PassManagerBuilderWrapper : public PassManagerBuilder { 177 public: 178 PassManagerBuilderWrapper(const Triple &TargetTriple, 179 const CodeGenOptions &CGOpts, 180 const LangOptions &LangOpts) 181 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 182 LangOpts(LangOpts) {} 183 const Triple &getTargetTriple() const { return TargetTriple; } 184 const CodeGenOptions &getCGOpts() const { return CGOpts; } 185 const LangOptions &getLangOpts() const { return LangOpts; } 186 187 private: 188 const Triple &TargetTriple; 189 const CodeGenOptions &CGOpts; 190 const LangOptions &LangOpts; 191 }; 192 } 193 194 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 195 if (Builder.OptLevel > 0) 196 PM.add(createObjCARCAPElimPass()); 197 } 198 199 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 200 if (Builder.OptLevel > 0) 201 PM.add(createObjCARCExpandPass()); 202 } 203 204 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 205 if (Builder.OptLevel > 0) 206 PM.add(createObjCARCOptPass()); 207 } 208 209 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 210 legacy::PassManagerBase &PM) { 211 PM.add(createAddDiscriminatorsPass()); 212 } 213 214 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 215 legacy::PassManagerBase &PM) { 216 PM.add(createBoundsCheckingLegacyPass()); 217 } 218 219 static SanitizerCoverageOptions 220 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 221 SanitizerCoverageOptions Opts; 222 Opts.CoverageType = 223 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 224 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 225 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 226 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 227 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 228 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 229 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 230 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 231 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 232 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 233 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 234 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 235 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 236 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 237 return Opts; 238 } 239 240 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 241 legacy::PassManagerBase &PM) { 242 const PassManagerBuilderWrapper &BuilderWrapper = 243 static_cast<const PassManagerBuilderWrapper &>(Builder); 244 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 245 auto Opts = getSancovOptsFromCGOpts(CGOpts); 246 PM.add(createModuleSanitizerCoverageLegacyPassPass( 247 Opts, CGOpts.SanitizeCoverageAllowlistFiles, 248 CGOpts.SanitizeCoverageIgnorelistFiles)); 249 } 250 251 // Check if ASan should use GC-friendly instrumentation for globals. 252 // First of all, there is no point if -fdata-sections is off (expect for MachO, 253 // where this is not a factor). Also, on ELF this feature requires an assembler 254 // extension that only works with -integrated-as at the moment. 255 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 256 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 257 return false; 258 switch (T.getObjectFormat()) { 259 case Triple::MachO: 260 case Triple::COFF: 261 return true; 262 case Triple::ELF: 263 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 264 case Triple::GOFF: 265 llvm::report_fatal_error("ASan not implemented for GOFF"); 266 case Triple::XCOFF: 267 llvm::report_fatal_error("ASan not implemented for XCOFF."); 268 case Triple::Wasm: 269 case Triple::UnknownObjectFormat: 270 break; 271 } 272 return false; 273 } 274 275 static void addMemProfilerPasses(const PassManagerBuilder &Builder, 276 legacy::PassManagerBase &PM) { 277 PM.add(createMemProfilerFunctionPass()); 278 PM.add(createModuleMemProfilerLegacyPassPass()); 279 } 280 281 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 282 legacy::PassManagerBase &PM) { 283 const PassManagerBuilderWrapper &BuilderWrapper = 284 static_cast<const PassManagerBuilderWrapper&>(Builder); 285 const Triple &T = BuilderWrapper.getTargetTriple(); 286 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 287 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 288 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 289 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 290 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 291 llvm::AsanDtorKind DestructorKind = CGOpts.getSanitizeAddressDtor(); 292 llvm::AsanDetectStackUseAfterReturnMode UseAfterReturn = 293 CGOpts.getSanitizeAddressUseAfterReturn(); 294 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 295 UseAfterScope, UseAfterReturn)); 296 PM.add(createModuleAddressSanitizerLegacyPassPass( 297 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator, 298 DestructorKind)); 299 } 300 301 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 302 legacy::PassManagerBase &PM) { 303 PM.add(createAddressSanitizerFunctionPass( 304 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false, 305 /*UseAfterReturn*/ llvm::AsanDetectStackUseAfterReturnMode::Never)); 306 PM.add(createModuleAddressSanitizerLegacyPassPass( 307 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 308 /*UseOdrIndicator*/ false)); 309 } 310 311 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 312 legacy::PassManagerBase &PM) { 313 const PassManagerBuilderWrapper &BuilderWrapper = 314 static_cast<const PassManagerBuilderWrapper &>(Builder); 315 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 316 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 317 PM.add(createHWAddressSanitizerLegacyPassPass( 318 /*CompileKernel*/ false, Recover, 319 /*DisableOptimization*/ CGOpts.OptimizationLevel == 0)); 320 } 321 322 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 323 legacy::PassManagerBase &PM) { 324 const PassManagerBuilderWrapper &BuilderWrapper = 325 static_cast<const PassManagerBuilderWrapper &>(Builder); 326 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 327 PM.add(createHWAddressSanitizerLegacyPassPass( 328 /*CompileKernel*/ true, /*Recover*/ true, 329 /*DisableOptimization*/ CGOpts.OptimizationLevel == 0)); 330 } 331 332 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 333 legacy::PassManagerBase &PM, 334 bool CompileKernel) { 335 const PassManagerBuilderWrapper &BuilderWrapper = 336 static_cast<const PassManagerBuilderWrapper&>(Builder); 337 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 338 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 339 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 340 PM.add(createMemorySanitizerLegacyPassPass( 341 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 342 343 // MemorySanitizer inserts complex instrumentation that mostly follows 344 // the logic of the original code, but operates on "shadow" values. 345 // It can benefit from re-running some general purpose optimization passes. 346 if (Builder.OptLevel > 0) { 347 PM.add(createEarlyCSEPass()); 348 PM.add(createReassociatePass()); 349 PM.add(createLICMPass()); 350 PM.add(createGVNPass()); 351 PM.add(createInstructionCombiningPass()); 352 PM.add(createDeadStoreEliminationPass()); 353 } 354 } 355 356 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 357 legacy::PassManagerBase &PM) { 358 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 359 } 360 361 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 362 legacy::PassManagerBase &PM) { 363 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 364 } 365 366 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 367 legacy::PassManagerBase &PM) { 368 PM.add(createThreadSanitizerLegacyPassPass()); 369 } 370 371 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 372 legacy::PassManagerBase &PM) { 373 const PassManagerBuilderWrapper &BuilderWrapper = 374 static_cast<const PassManagerBuilderWrapper&>(Builder); 375 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 376 PM.add(createDataFlowSanitizerLegacyPassPass(LangOpts.NoSanitizeFiles)); 377 } 378 379 static void addEntryExitInstrumentationPass(const PassManagerBuilder &Builder, 380 legacy::PassManagerBase &PM) { 381 PM.add(createEntryExitInstrumenterPass()); 382 } 383 384 static void 385 addPostInlineEntryExitInstrumentationPass(const PassManagerBuilder &Builder, 386 legacy::PassManagerBase &PM) { 387 PM.add(createPostInlineEntryExitInstrumenterPass()); 388 } 389 390 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 391 const CodeGenOptions &CodeGenOpts) { 392 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 393 394 switch (CodeGenOpts.getVecLib()) { 395 case CodeGenOptions::Accelerate: 396 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 397 break; 398 case CodeGenOptions::LIBMVEC: 399 switch(TargetTriple.getArch()) { 400 default: 401 break; 402 case llvm::Triple::x86_64: 403 TLII->addVectorizableFunctionsFromVecLib 404 (TargetLibraryInfoImpl::LIBMVEC_X86); 405 break; 406 } 407 break; 408 case CodeGenOptions::MASSV: 409 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 410 break; 411 case CodeGenOptions::SVML: 412 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 413 break; 414 case CodeGenOptions::Darwin_libsystem_m: 415 TLII->addVectorizableFunctionsFromVecLib( 416 TargetLibraryInfoImpl::DarwinLibSystemM); 417 break; 418 default: 419 break; 420 } 421 return TLII; 422 } 423 424 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 425 legacy::PassManager *MPM) { 426 llvm::SymbolRewriter::RewriteDescriptorList DL; 427 428 llvm::SymbolRewriter::RewriteMapParser MapParser; 429 for (const auto &MapFile : Opts.RewriteMapFiles) 430 MapParser.parse(MapFile, &DL); 431 432 MPM->add(createRewriteSymbolsPass(DL)); 433 } 434 435 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 436 switch (CodeGenOpts.OptimizationLevel) { 437 default: 438 llvm_unreachable("Invalid optimization level!"); 439 case 0: 440 return CodeGenOpt::None; 441 case 1: 442 return CodeGenOpt::Less; 443 case 2: 444 return CodeGenOpt::Default; // O2/Os/Oz 445 case 3: 446 return CodeGenOpt::Aggressive; 447 } 448 } 449 450 static Optional<llvm::CodeModel::Model> 451 getCodeModel(const CodeGenOptions &CodeGenOpts) { 452 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 453 .Case("tiny", llvm::CodeModel::Tiny) 454 .Case("small", llvm::CodeModel::Small) 455 .Case("kernel", llvm::CodeModel::Kernel) 456 .Case("medium", llvm::CodeModel::Medium) 457 .Case("large", llvm::CodeModel::Large) 458 .Case("default", ~1u) 459 .Default(~0u); 460 assert(CodeModel != ~0u && "invalid code model!"); 461 if (CodeModel == ~1u) 462 return None; 463 return static_cast<llvm::CodeModel::Model>(CodeModel); 464 } 465 466 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 467 if (Action == Backend_EmitObj) 468 return CGFT_ObjectFile; 469 else if (Action == Backend_EmitMCNull) 470 return CGFT_Null; 471 else { 472 assert(Action == Backend_EmitAssembly && "Invalid action!"); 473 return CGFT_AssemblyFile; 474 } 475 } 476 477 static bool initTargetOptions(DiagnosticsEngine &Diags, 478 llvm::TargetOptions &Options, 479 const CodeGenOptions &CodeGenOpts, 480 const clang::TargetOptions &TargetOpts, 481 const LangOptions &LangOpts, 482 const HeaderSearchOptions &HSOpts) { 483 switch (LangOpts.getThreadModel()) { 484 case LangOptions::ThreadModelKind::POSIX: 485 Options.ThreadModel = llvm::ThreadModel::POSIX; 486 break; 487 case LangOptions::ThreadModelKind::Single: 488 Options.ThreadModel = llvm::ThreadModel::Single; 489 break; 490 } 491 492 // Set float ABI type. 493 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 494 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 495 "Invalid Floating Point ABI!"); 496 Options.FloatABIType = 497 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 498 .Case("soft", llvm::FloatABI::Soft) 499 .Case("softfp", llvm::FloatABI::Soft) 500 .Case("hard", llvm::FloatABI::Hard) 501 .Default(llvm::FloatABI::Default); 502 503 // Set FP fusion mode. 504 switch (LangOpts.getDefaultFPContractMode()) { 505 case LangOptions::FPM_Off: 506 // Preserve any contraction performed by the front-end. (Strict performs 507 // splitting of the muladd intrinsic in the backend.) 508 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 509 break; 510 case LangOptions::FPM_On: 511 case LangOptions::FPM_FastHonorPragmas: 512 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 513 break; 514 case LangOptions::FPM_Fast: 515 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 516 break; 517 } 518 519 Options.BinutilsVersion = 520 llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion); 521 Options.UseInitArray = CodeGenOpts.UseInitArray; 522 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 523 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 524 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 525 526 // Set EABI version. 527 Options.EABIVersion = TargetOpts.EABIVersion; 528 529 if (LangOpts.hasSjLjExceptions()) 530 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 531 if (LangOpts.hasSEHExceptions()) 532 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 533 if (LangOpts.hasDWARFExceptions()) 534 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 535 if (LangOpts.hasWasmExceptions()) 536 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 537 538 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 539 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 540 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 541 Options.UnsafeFPMath = LangOpts.UnsafeFPMath; 542 543 Options.BBSections = 544 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 545 .Case("all", llvm::BasicBlockSection::All) 546 .Case("labels", llvm::BasicBlockSection::Labels) 547 .StartsWith("list=", llvm::BasicBlockSection::List) 548 .Case("none", llvm::BasicBlockSection::None) 549 .Default(llvm::BasicBlockSection::None); 550 551 if (Options.BBSections == llvm::BasicBlockSection::List) { 552 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 553 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 554 if (!MBOrErr) { 555 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 556 << MBOrErr.getError().message(); 557 return false; 558 } 559 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 560 } 561 562 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions; 563 Options.FunctionSections = CodeGenOpts.FunctionSections; 564 Options.DataSections = CodeGenOpts.DataSections; 565 Options.IgnoreXCOFFVisibility = LangOpts.IgnoreXCOFFVisibility; 566 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 567 Options.UniqueBasicBlockSectionNames = 568 CodeGenOpts.UniqueBasicBlockSectionNames; 569 Options.TLSSize = CodeGenOpts.TLSSize; 570 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 571 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 572 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 573 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 574 Options.StackUsageOutput = CodeGenOpts.StackUsageOutput; 575 Options.EmitAddrsig = CodeGenOpts.Addrsig; 576 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 577 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 578 Options.EnableAIXExtendedAltivecABI = CodeGenOpts.EnableAIXExtendedAltivecABI; 579 Options.ValueTrackingVariableLocations = 580 CodeGenOpts.ValueTrackingVariableLocations; 581 Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex; 582 Options.LoopAlignment = CodeGenOpts.LoopAlignment; 583 584 switch (CodeGenOpts.getSwiftAsyncFramePointer()) { 585 case CodeGenOptions::SwiftAsyncFramePointerKind::Auto: 586 Options.SwiftAsyncFramePointer = 587 SwiftAsyncFramePointerMode::DeploymentBased; 588 break; 589 590 case CodeGenOptions::SwiftAsyncFramePointerKind::Always: 591 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Always; 592 break; 593 594 case CodeGenOptions::SwiftAsyncFramePointerKind::Never: 595 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Never; 596 break; 597 } 598 599 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 600 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 601 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 602 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 603 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 604 Options.MCOptions.MCIncrementalLinkerCompatible = 605 CodeGenOpts.IncrementalLinkerCompatible; 606 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 607 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 608 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 609 Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64; 610 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 611 Options.MCOptions.ABIName = TargetOpts.ABI; 612 for (const auto &Entry : HSOpts.UserEntries) 613 if (!Entry.IsFramework && 614 (Entry.Group == frontend::IncludeDirGroup::Quoted || 615 Entry.Group == frontend::IncludeDirGroup::Angled || 616 Entry.Group == frontend::IncludeDirGroup::System)) 617 Options.MCOptions.IASSearchPaths.push_back( 618 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 619 Options.MCOptions.Argv0 = CodeGenOpts.Argv0; 620 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; 621 Options.DebugStrictDwarf = CodeGenOpts.DebugStrictDwarf; 622 623 return true; 624 } 625 626 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts, 627 const LangOptions &LangOpts) { 628 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 629 return None; 630 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 631 // LLVM's -default-gcov-version flag is set to something invalid. 632 GCOVOptions Options; 633 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 634 Options.EmitData = CodeGenOpts.EmitGcovArcs; 635 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 636 Options.NoRedZone = CodeGenOpts.DisableRedZone; 637 Options.Filter = CodeGenOpts.ProfileFilterFiles; 638 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 639 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 640 return Options; 641 } 642 643 static Optional<InstrProfOptions> 644 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 645 const LangOptions &LangOpts) { 646 if (!CodeGenOpts.hasProfileClangInstr()) 647 return None; 648 InstrProfOptions Options; 649 Options.NoRedZone = CodeGenOpts.DisableRedZone; 650 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 651 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 652 return Options; 653 } 654 655 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 656 legacy::FunctionPassManager &FPM) { 657 // Handle disabling of all LLVM passes, where we want to preserve the 658 // internal module before any optimization. 659 if (CodeGenOpts.DisableLLVMPasses) 660 return; 661 662 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 663 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 664 // are inserted before PMBuilder ones - they'd get the default-constructed 665 // TLI with an unknown target otherwise. 666 Triple TargetTriple(TheModule->getTargetTriple()); 667 std::unique_ptr<TargetLibraryInfoImpl> TLII( 668 createTLII(TargetTriple, CodeGenOpts)); 669 670 // If we reached here with a non-empty index file name, then the index file 671 // was empty and we are not performing ThinLTO backend compilation (used in 672 // testing in a distributed build environment). Drop any the type test 673 // assume sequences inserted for whole program vtables so that codegen doesn't 674 // complain. 675 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 676 MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr, 677 /*ImportSummary=*/nullptr, 678 /*DropTypeTests=*/true)); 679 680 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 681 682 // At O0 and O1 we only run the always inliner which is more efficient. At 683 // higher optimization levels we run the normal inliner. 684 if (CodeGenOpts.OptimizationLevel <= 1) { 685 bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 && 686 !CodeGenOpts.DisableLifetimeMarkers) || 687 LangOpts.Coroutines); 688 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 689 } else { 690 // We do not want to inline hot callsites for SamplePGO module-summary build 691 // because profile annotation will happen again in ThinLTO backend, and we 692 // want the IR of the hot path to match the profile. 693 PMBuilder.Inliner = createFunctionInliningPass( 694 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 695 (!CodeGenOpts.SampleProfileFile.empty() && 696 CodeGenOpts.PrepareForThinLTO)); 697 } 698 699 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 700 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 701 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 702 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 703 // Only enable CGProfilePass when using integrated assembler, since 704 // non-integrated assemblers don't recognize .cgprofile section. 705 PMBuilder.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 706 707 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 708 // Loop interleaving in the loop vectorizer has historically been set to be 709 // enabled when loop unrolling is enabled. 710 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 711 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 712 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 713 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 714 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 715 716 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 717 718 if (TM) 719 TM->adjustPassManager(PMBuilder); 720 721 if (CodeGenOpts.DebugInfoForProfiling || 722 !CodeGenOpts.SampleProfileFile.empty()) 723 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 724 addAddDiscriminatorsPass); 725 726 // In ObjC ARC mode, add the main ARC optimization passes. 727 if (LangOpts.ObjCAutoRefCount) { 728 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 729 addObjCARCExpandPass); 730 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 731 addObjCARCAPElimPass); 732 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 733 addObjCARCOptPass); 734 } 735 736 if (LangOpts.Coroutines) 737 addCoroutinePassesToExtensionPoints(PMBuilder); 738 739 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 740 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 741 addMemProfilerPasses); 742 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 743 addMemProfilerPasses); 744 } 745 746 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 747 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 748 addBoundsCheckingPass); 749 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 750 addBoundsCheckingPass); 751 } 752 753 if (CodeGenOpts.hasSanitizeCoverage()) { 754 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 755 addSanitizerCoveragePass); 756 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 757 addSanitizerCoveragePass); 758 } 759 760 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 761 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 762 addAddressSanitizerPasses); 763 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 764 addAddressSanitizerPasses); 765 } 766 767 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 768 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 769 addKernelAddressSanitizerPasses); 770 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 771 addKernelAddressSanitizerPasses); 772 } 773 774 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 775 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 776 addHWAddressSanitizerPasses); 777 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 778 addHWAddressSanitizerPasses); 779 } 780 781 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 782 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 783 addKernelHWAddressSanitizerPasses); 784 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 785 addKernelHWAddressSanitizerPasses); 786 } 787 788 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 789 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 790 addMemorySanitizerPass); 791 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 792 addMemorySanitizerPass); 793 } 794 795 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 796 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 797 addKernelMemorySanitizerPass); 798 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 799 addKernelMemorySanitizerPass); 800 } 801 802 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 803 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 804 addThreadSanitizerPass); 805 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 806 addThreadSanitizerPass); 807 } 808 809 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 810 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 811 addDataFlowSanitizerPass); 812 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 813 addDataFlowSanitizerPass); 814 } 815 816 if (CodeGenOpts.InstrumentFunctions || 817 CodeGenOpts.InstrumentFunctionEntryBare || 818 CodeGenOpts.InstrumentFunctionsAfterInlining || 819 CodeGenOpts.InstrumentForProfiling) { 820 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 821 addEntryExitInstrumentationPass); 822 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 823 addEntryExitInstrumentationPass); 824 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 825 addPostInlineEntryExitInstrumentationPass); 826 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 827 addPostInlineEntryExitInstrumentationPass); 828 } 829 830 // Set up the per-function pass manager. 831 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 832 if (CodeGenOpts.VerifyModule) 833 FPM.add(createVerifierPass()); 834 835 // Set up the per-module pass manager. 836 if (!CodeGenOpts.RewriteMapFiles.empty()) 837 addSymbolRewriterPass(CodeGenOpts, &MPM); 838 839 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) { 840 MPM.add(createGCOVProfilerPass(*Options)); 841 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 842 MPM.add(createStripSymbolsPass(true)); 843 } 844 845 if (Optional<InstrProfOptions> Options = 846 getInstrProfOptions(CodeGenOpts, LangOpts)) 847 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 848 849 bool hasIRInstr = false; 850 if (CodeGenOpts.hasProfileIRInstr()) { 851 PMBuilder.EnablePGOInstrGen = true; 852 hasIRInstr = true; 853 } 854 if (CodeGenOpts.hasProfileCSIRInstr()) { 855 assert(!CodeGenOpts.hasProfileCSIRUse() && 856 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 857 "same time"); 858 assert(!hasIRInstr && 859 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 860 "same time"); 861 PMBuilder.EnablePGOCSInstrGen = true; 862 hasIRInstr = true; 863 } 864 if (hasIRInstr) { 865 if (!CodeGenOpts.InstrProfileOutput.empty()) 866 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 867 else 868 PMBuilder.PGOInstrGen = std::string(DefaultProfileGenName); 869 } 870 if (CodeGenOpts.hasProfileIRUse()) { 871 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 872 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 873 } 874 875 if (!CodeGenOpts.SampleProfileFile.empty()) 876 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 877 878 PMBuilder.populateFunctionPassManager(FPM); 879 PMBuilder.populateModulePassManager(MPM); 880 } 881 882 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 883 SmallVector<const char *, 16> BackendArgs; 884 BackendArgs.push_back("clang"); // Fake program name. 885 if (!CodeGenOpts.DebugPass.empty()) { 886 BackendArgs.push_back("-debug-pass"); 887 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 888 } 889 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 890 BackendArgs.push_back("-limit-float-precision"); 891 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 892 } 893 // Check for the default "clang" invocation that won't set any cl::opt values. 894 // Skip trying to parse the command line invocation to avoid the issues 895 // described below. 896 if (BackendArgs.size() == 1) 897 return; 898 BackendArgs.push_back(nullptr); 899 // FIXME: The command line parser below is not thread-safe and shares a global 900 // state, so this call might crash or overwrite the options of another Clang 901 // instance in the same process. 902 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 903 BackendArgs.data()); 904 } 905 906 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 907 // Create the TargetMachine for generating code. 908 std::string Error; 909 std::string Triple = TheModule->getTargetTriple(); 910 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 911 if (!TheTarget) { 912 if (MustCreateTM) 913 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 914 return; 915 } 916 917 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 918 std::string FeaturesStr = 919 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 920 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 921 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 922 923 llvm::TargetOptions Options; 924 if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, 925 HSOpts)) 926 return; 927 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 928 Options, RM, CM, OptLevel)); 929 } 930 931 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 932 BackendAction Action, 933 raw_pwrite_stream &OS, 934 raw_pwrite_stream *DwoOS) { 935 // Add LibraryInfo. 936 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 937 std::unique_ptr<TargetLibraryInfoImpl> TLII( 938 createTLII(TargetTriple, CodeGenOpts)); 939 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 940 941 // Normal mode, emit a .s or .o file by running the code generator. Note, 942 // this also adds codegenerator level optimization passes. 943 CodeGenFileType CGFT = getCodeGenFileType(Action); 944 945 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 946 // "codegen" passes so that it isn't run multiple times when there is 947 // inlining happening. 948 if (CodeGenOpts.OptimizationLevel > 0) 949 CodeGenPasses.add(createObjCARCContractPass()); 950 951 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 952 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 953 Diags.Report(diag::err_fe_unable_to_interface_with_target); 954 return false; 955 } 956 957 return true; 958 } 959 960 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 961 std::unique_ptr<raw_pwrite_stream> OS) { 962 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 963 964 setCommandLineOpts(CodeGenOpts); 965 966 bool UsesCodeGen = (Action != Backend_EmitNothing && 967 Action != Backend_EmitBC && 968 Action != Backend_EmitLL); 969 CreateTargetMachine(UsesCodeGen); 970 971 if (UsesCodeGen && !TM) 972 return; 973 if (TM) 974 TheModule->setDataLayout(TM->createDataLayout()); 975 976 DebugifyCustomPassManager PerModulePasses; 977 DebugInfoPerPassMap DIPreservationMap; 978 if (CodeGenOpts.EnableDIPreservationVerify) { 979 PerModulePasses.setDebugifyMode(DebugifyMode::OriginalDebugInfo); 980 PerModulePasses.setDIPreservationMap(DIPreservationMap); 981 982 if (!CodeGenOpts.DIBugsReportFilePath.empty()) 983 PerModulePasses.setOrigDIVerifyBugsReportFilePath( 984 CodeGenOpts.DIBugsReportFilePath); 985 } 986 PerModulePasses.add( 987 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 988 989 legacy::FunctionPassManager PerFunctionPasses(TheModule); 990 PerFunctionPasses.add( 991 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 992 993 CreatePasses(PerModulePasses, PerFunctionPasses); 994 995 legacy::PassManager CodeGenPasses; 996 CodeGenPasses.add( 997 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 998 999 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1000 1001 switch (Action) { 1002 case Backend_EmitNothing: 1003 break; 1004 1005 case Backend_EmitBC: 1006 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1007 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1008 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1009 if (!ThinLinkOS) 1010 return; 1011 } 1012 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1013 CodeGenOpts.EnableSplitLTOUnit); 1014 PerModulePasses.add(createWriteThinLTOBitcodePass( 1015 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 1016 } else { 1017 // Emit a module summary by default for Regular LTO except for ld64 1018 // targets 1019 bool EmitLTOSummary = 1020 (CodeGenOpts.PrepareForLTO && 1021 !CodeGenOpts.DisableLLVMPasses && 1022 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1023 llvm::Triple::Apple); 1024 if (EmitLTOSummary) { 1025 if (!TheModule->getModuleFlag("ThinLTO")) 1026 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1027 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1028 uint32_t(1)); 1029 } 1030 1031 PerModulePasses.add(createBitcodeWriterPass( 1032 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1033 } 1034 break; 1035 1036 case Backend_EmitLL: 1037 PerModulePasses.add( 1038 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1039 break; 1040 1041 default: 1042 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1043 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1044 if (!DwoOS) 1045 return; 1046 } 1047 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1048 DwoOS ? &DwoOS->os() : nullptr)) 1049 return; 1050 } 1051 1052 // Before executing passes, print the final values of the LLVM options. 1053 cl::PrintOptionValues(); 1054 1055 // Run passes. For now we do all passes at once, but eventually we 1056 // would like to have the option of streaming code generation. 1057 1058 { 1059 PrettyStackTraceString CrashInfo("Per-function optimization"); 1060 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 1061 1062 PerFunctionPasses.doInitialization(); 1063 for (Function &F : *TheModule) 1064 if (!F.isDeclaration()) 1065 PerFunctionPasses.run(F); 1066 PerFunctionPasses.doFinalization(); 1067 } 1068 1069 { 1070 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 1071 llvm::TimeTraceScope TimeScope("PerModulePasses"); 1072 PerModulePasses.run(*TheModule); 1073 } 1074 1075 { 1076 PrettyStackTraceString CrashInfo("Code generation"); 1077 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1078 CodeGenPasses.run(*TheModule); 1079 } 1080 1081 if (ThinLinkOS) 1082 ThinLinkOS->keep(); 1083 if (DwoOS) 1084 DwoOS->keep(); 1085 } 1086 1087 static OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 1088 switch (Opts.OptimizationLevel) { 1089 default: 1090 llvm_unreachable("Invalid optimization level!"); 1091 1092 case 0: 1093 return OptimizationLevel::O0; 1094 1095 case 1: 1096 return OptimizationLevel::O1; 1097 1098 case 2: 1099 switch (Opts.OptimizeSize) { 1100 default: 1101 llvm_unreachable("Invalid optimization level for size!"); 1102 1103 case 0: 1104 return OptimizationLevel::O2; 1105 1106 case 1: 1107 return OptimizationLevel::Os; 1108 1109 case 2: 1110 return OptimizationLevel::Oz; 1111 } 1112 1113 case 3: 1114 return OptimizationLevel::O3; 1115 } 1116 } 1117 1118 static void addSanitizers(const Triple &TargetTriple, 1119 const CodeGenOptions &CodeGenOpts, 1120 const LangOptions &LangOpts, PassBuilder &PB) { 1121 PB.registerOptimizerLastEPCallback([&](ModulePassManager &MPM, 1122 OptimizationLevel Level) { 1123 if (CodeGenOpts.hasSanitizeCoverage()) { 1124 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1125 MPM.addPass(ModuleSanitizerCoveragePass( 1126 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1127 CodeGenOpts.SanitizeCoverageIgnorelistFiles)); 1128 } 1129 1130 auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1131 if (LangOpts.Sanitize.has(Mask)) { 1132 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1133 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1134 1135 MPM.addPass( 1136 ModuleMemorySanitizerPass({TrackOrigins, Recover, CompileKernel})); 1137 FunctionPassManager FPM; 1138 FPM.addPass( 1139 MemorySanitizerPass({TrackOrigins, Recover, CompileKernel})); 1140 if (Level != OptimizationLevel::O0) { 1141 // MemorySanitizer inserts complex instrumentation that mostly 1142 // follows the logic of the original code, but operates on 1143 // "shadow" values. It can benefit from re-running some 1144 // general purpose optimization passes. 1145 FPM.addPass(EarlyCSEPass()); 1146 // TODO: Consider add more passes like in 1147 // addGeneralOptsForMemorySanitizer. EarlyCSEPass makes visible 1148 // difference on size. It's not clear if the rest is still 1149 // usefull. InstCombinePass breakes 1150 // compiler-rt/test/msan/select_origin.cpp. 1151 } 1152 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 1153 } 1154 }; 1155 MSanPass(SanitizerKind::Memory, false); 1156 MSanPass(SanitizerKind::KernelMemory, true); 1157 1158 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1159 MPM.addPass(ModuleThreadSanitizerPass()); 1160 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1161 } 1162 1163 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1164 if (LangOpts.Sanitize.has(Mask)) { 1165 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1166 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1167 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1168 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1169 llvm::AsanDtorKind DestructorKind = 1170 CodeGenOpts.getSanitizeAddressDtor(); 1171 llvm::AsanDetectStackUseAfterReturnMode UseAfterReturn = 1172 CodeGenOpts.getSanitizeAddressUseAfterReturn(); 1173 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1174 MPM.addPass(ModuleAddressSanitizerPass( 1175 CompileKernel, Recover, ModuleUseAfterScope, UseOdrIndicator, 1176 DestructorKind)); 1177 MPM.addPass(createModuleToFunctionPassAdaptor(AddressSanitizerPass( 1178 {CompileKernel, Recover, UseAfterScope, UseAfterReturn}))); 1179 } 1180 }; 1181 ASanPass(SanitizerKind::Address, false); 1182 ASanPass(SanitizerKind::KernelAddress, true); 1183 1184 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1185 if (LangOpts.Sanitize.has(Mask)) { 1186 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1187 MPM.addPass(HWAddressSanitizerPass( 1188 {CompileKernel, Recover, 1189 /*DisableOptimization=*/CodeGenOpts.OptimizationLevel == 0})); 1190 } 1191 }; 1192 HWASanPass(SanitizerKind::HWAddress, false); 1193 HWASanPass(SanitizerKind::KernelHWAddress, true); 1194 1195 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 1196 MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles)); 1197 } 1198 }); 1199 } 1200 1201 /// A clean version of `EmitAssembly` that uses the new pass manager. 1202 /// 1203 /// Not all features are currently supported in this system, but where 1204 /// necessary it falls back to the legacy pass manager to at least provide 1205 /// basic functionality. 1206 /// 1207 /// This API is planned to have its functionality finished and then to replace 1208 /// `EmitAssembly` at some point in the future when the default switches. 1209 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 1210 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 1211 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 1212 setCommandLineOpts(CodeGenOpts); 1213 1214 bool RequiresCodeGen = (Action != Backend_EmitNothing && 1215 Action != Backend_EmitBC && 1216 Action != Backend_EmitLL); 1217 CreateTargetMachine(RequiresCodeGen); 1218 1219 if (RequiresCodeGen && !TM) 1220 return; 1221 if (TM) 1222 TheModule->setDataLayout(TM->createDataLayout()); 1223 1224 Optional<PGOOptions> PGOOpt; 1225 1226 if (CodeGenOpts.hasProfileIRInstr()) 1227 // -fprofile-generate. 1228 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1229 ? std::string(DefaultProfileGenName) 1230 : CodeGenOpts.InstrProfileOutput, 1231 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1232 CodeGenOpts.DebugInfoForProfiling); 1233 else if (CodeGenOpts.hasProfileIRUse()) { 1234 // -fprofile-use. 1235 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1236 : PGOOptions::NoCSAction; 1237 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1238 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1239 CSAction, CodeGenOpts.DebugInfoForProfiling); 1240 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1241 // -fprofile-sample-use 1242 PGOOpt = PGOOptions( 1243 CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile, 1244 PGOOptions::SampleUse, PGOOptions::NoCSAction, 1245 CodeGenOpts.DebugInfoForProfiling, CodeGenOpts.PseudoProbeForProfiling); 1246 else if (CodeGenOpts.PseudoProbeForProfiling) 1247 // -fpseudo-probe-for-profiling 1248 PGOOpt = 1249 PGOOptions("", "", "", PGOOptions::NoAction, PGOOptions::NoCSAction, 1250 CodeGenOpts.DebugInfoForProfiling, true); 1251 else if (CodeGenOpts.DebugInfoForProfiling) 1252 // -fdebug-info-for-profiling 1253 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1254 PGOOptions::NoCSAction, true); 1255 1256 // Check to see if we want to generate a CS profile. 1257 if (CodeGenOpts.hasProfileCSIRInstr()) { 1258 assert(!CodeGenOpts.hasProfileCSIRUse() && 1259 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1260 "the same time"); 1261 if (PGOOpt.hasValue()) { 1262 assert(PGOOpt->Action != PGOOptions::IRInstr && 1263 PGOOpt->Action != PGOOptions::SampleUse && 1264 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1265 " pass"); 1266 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1267 ? std::string(DefaultProfileGenName) 1268 : CodeGenOpts.InstrProfileOutput; 1269 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1270 } else 1271 PGOOpt = PGOOptions("", 1272 CodeGenOpts.InstrProfileOutput.empty() 1273 ? std::string(DefaultProfileGenName) 1274 : CodeGenOpts.InstrProfileOutput, 1275 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1276 CodeGenOpts.DebugInfoForProfiling); 1277 } 1278 if (TM) 1279 TM->setPGOOption(PGOOpt); 1280 1281 PipelineTuningOptions PTO; 1282 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1283 // For historical reasons, loop interleaving is set to mirror setting for loop 1284 // unrolling. 1285 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1286 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1287 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1288 PTO.MergeFunctions = CodeGenOpts.MergeFunctions; 1289 // Only enable CGProfilePass when using integrated assembler, since 1290 // non-integrated assemblers don't recognize .cgprofile section. 1291 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 1292 1293 LoopAnalysisManager LAM; 1294 FunctionAnalysisManager FAM; 1295 CGSCCAnalysisManager CGAM; 1296 ModuleAnalysisManager MAM; 1297 1298 bool DebugPassStructure = CodeGenOpts.DebugPass == "Structure"; 1299 PassInstrumentationCallbacks PIC; 1300 PrintPassOptions PrintPassOpts; 1301 PrintPassOpts.Indent = DebugPassStructure; 1302 PrintPassOpts.SkipAnalyses = DebugPassStructure; 1303 StandardInstrumentations SI(CodeGenOpts.DebugPassManager || 1304 DebugPassStructure, 1305 /*VerifyEach*/ false, PrintPassOpts); 1306 SI.registerCallbacks(PIC, &FAM); 1307 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 1308 1309 // Attempt to load pass plugins and register their callbacks with PB. 1310 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1311 auto PassPlugin = PassPlugin::Load(PluginFN); 1312 if (PassPlugin) { 1313 PassPlugin->registerPassBuilderCallbacks(PB); 1314 } else { 1315 Diags.Report(diag::err_fe_unable_to_load_plugin) 1316 << PluginFN << toString(PassPlugin.takeError()); 1317 } 1318 } 1319 #define HANDLE_EXTENSION(Ext) \ 1320 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 1321 #include "llvm/Support/Extension.def" 1322 1323 // Register the AA manager first so that our version is the one used. 1324 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1325 1326 // Register the target library analysis directly and give it a customized 1327 // preset TLI. 1328 Triple TargetTriple(TheModule->getTargetTriple()); 1329 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1330 createTLII(TargetTriple, CodeGenOpts)); 1331 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1332 1333 // Register all the basic analyses with the managers. 1334 PB.registerModuleAnalyses(MAM); 1335 PB.registerCGSCCAnalyses(CGAM); 1336 PB.registerFunctionAnalyses(FAM); 1337 PB.registerLoopAnalyses(LAM); 1338 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1339 1340 ModulePassManager MPM; 1341 1342 if (!CodeGenOpts.DisableLLVMPasses) { 1343 // Map our optimization levels into one of the distinct levels used to 1344 // configure the pipeline. 1345 OptimizationLevel Level = mapToLevel(CodeGenOpts); 1346 1347 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1348 bool IsLTO = CodeGenOpts.PrepareForLTO; 1349 1350 if (LangOpts.ObjCAutoRefCount) { 1351 PB.registerPipelineStartEPCallback( 1352 [](ModulePassManager &MPM, OptimizationLevel Level) { 1353 if (Level != OptimizationLevel::O0) 1354 MPM.addPass( 1355 createModuleToFunctionPassAdaptor(ObjCARCExpandPass())); 1356 }); 1357 PB.registerPipelineEarlySimplificationEPCallback( 1358 [](ModulePassManager &MPM, OptimizationLevel Level) { 1359 if (Level != OptimizationLevel::O0) 1360 MPM.addPass(ObjCARCAPElimPass()); 1361 }); 1362 PB.registerScalarOptimizerLateEPCallback( 1363 [](FunctionPassManager &FPM, OptimizationLevel Level) { 1364 if (Level != OptimizationLevel::O0) 1365 FPM.addPass(ObjCARCOptPass()); 1366 }); 1367 } 1368 1369 // If we reached here with a non-empty index file name, then the index 1370 // file was empty and we are not performing ThinLTO backend compilation 1371 // (used in testing in a distributed build environment). 1372 bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty(); 1373 // If so drop any the type test assume sequences inserted for whole program 1374 // vtables so that codegen doesn't complain. 1375 if (IsThinLTOPostLink) 1376 PB.registerPipelineStartEPCallback( 1377 [](ModulePassManager &MPM, OptimizationLevel Level) { 1378 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1379 /*ImportSummary=*/nullptr, 1380 /*DropTypeTests=*/true)); 1381 }); 1382 1383 if (CodeGenOpts.InstrumentFunctions || 1384 CodeGenOpts.InstrumentFunctionEntryBare || 1385 CodeGenOpts.InstrumentFunctionsAfterInlining || 1386 CodeGenOpts.InstrumentForProfiling) { 1387 PB.registerPipelineStartEPCallback( 1388 [](ModulePassManager &MPM, OptimizationLevel Level) { 1389 MPM.addPass(createModuleToFunctionPassAdaptor( 1390 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1391 }); 1392 PB.registerOptimizerLastEPCallback( 1393 [](ModulePassManager &MPM, OptimizationLevel Level) { 1394 MPM.addPass(createModuleToFunctionPassAdaptor( 1395 EntryExitInstrumenterPass(/*PostInlining=*/true))); 1396 }); 1397 } 1398 1399 // Register callbacks to schedule sanitizer passes at the appropriate part 1400 // of the pipeline. 1401 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1402 PB.registerScalarOptimizerLateEPCallback( 1403 [](FunctionPassManager &FPM, OptimizationLevel Level) { 1404 FPM.addPass(BoundsCheckingPass()); 1405 }); 1406 1407 // Don't add sanitizers if we are here from ThinLTO PostLink. That already 1408 // done on PreLink stage. 1409 if (!IsThinLTOPostLink) 1410 addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB); 1411 1412 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) 1413 PB.registerPipelineStartEPCallback( 1414 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 1415 MPM.addPass(GCOVProfilerPass(*Options)); 1416 }); 1417 if (Optional<InstrProfOptions> Options = 1418 getInstrProfOptions(CodeGenOpts, LangOpts)) 1419 PB.registerPipelineStartEPCallback( 1420 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 1421 MPM.addPass(InstrProfiling(*Options, false)); 1422 }); 1423 1424 if (CodeGenOpts.OptimizationLevel == 0) { 1425 MPM = PB.buildO0DefaultPipeline(Level, IsLTO || IsThinLTO); 1426 } else if (IsThinLTO) { 1427 MPM = PB.buildThinLTOPreLinkDefaultPipeline(Level); 1428 } else if (IsLTO) { 1429 MPM = PB.buildLTOPreLinkDefaultPipeline(Level); 1430 } else { 1431 MPM = PB.buildPerModuleDefaultPipeline(Level); 1432 } 1433 1434 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1435 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass())); 1436 MPM.addPass(ModuleMemProfilerPass()); 1437 } 1438 } 1439 1440 // FIXME: We still use the legacy pass manager to do code generation. We 1441 // create that pass manager here and use it as needed below. 1442 legacy::PassManager CodeGenPasses; 1443 bool NeedCodeGen = false; 1444 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1445 1446 // Append any output we need to the pass manager. 1447 switch (Action) { 1448 case Backend_EmitNothing: 1449 break; 1450 1451 case Backend_EmitBC: 1452 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1453 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1454 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1455 if (!ThinLinkOS) 1456 return; 1457 } 1458 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1459 CodeGenOpts.EnableSplitLTOUnit); 1460 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1461 : nullptr)); 1462 } else { 1463 // Emit a module summary by default for Regular LTO except for ld64 1464 // targets 1465 bool EmitLTOSummary = 1466 (CodeGenOpts.PrepareForLTO && 1467 !CodeGenOpts.DisableLLVMPasses && 1468 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1469 llvm::Triple::Apple); 1470 if (EmitLTOSummary) { 1471 if (!TheModule->getModuleFlag("ThinLTO")) 1472 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1473 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1474 uint32_t(1)); 1475 } 1476 MPM.addPass( 1477 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1478 } 1479 break; 1480 1481 case Backend_EmitLL: 1482 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1483 break; 1484 1485 case Backend_EmitAssembly: 1486 case Backend_EmitMCNull: 1487 case Backend_EmitObj: 1488 NeedCodeGen = true; 1489 CodeGenPasses.add( 1490 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1491 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1492 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1493 if (!DwoOS) 1494 return; 1495 } 1496 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1497 DwoOS ? &DwoOS->os() : nullptr)) 1498 // FIXME: Should we handle this error differently? 1499 return; 1500 break; 1501 } 1502 1503 // Before executing passes, print the final values of the LLVM options. 1504 cl::PrintOptionValues(); 1505 1506 // Now that we have all of the passes ready, run them. 1507 { 1508 PrettyStackTraceString CrashInfo("Optimizer"); 1509 MPM.run(*TheModule, MAM); 1510 } 1511 1512 // Now if needed, run the legacy PM for codegen. 1513 if (NeedCodeGen) { 1514 PrettyStackTraceString CrashInfo("Code generation"); 1515 CodeGenPasses.run(*TheModule); 1516 } 1517 1518 if (ThinLinkOS) 1519 ThinLinkOS->keep(); 1520 if (DwoOS) 1521 DwoOS->keep(); 1522 } 1523 1524 static void runThinLTOBackend( 1525 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M, 1526 const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, 1527 const clang::TargetOptions &TOpts, const LangOptions &LOpts, 1528 std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile, 1529 std::string ProfileRemapping, BackendAction Action) { 1530 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1531 ModuleToDefinedGVSummaries; 1532 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1533 1534 setCommandLineOpts(CGOpts); 1535 1536 // We can simply import the values mentioned in the combined index, since 1537 // we should only invoke this using the individual indexes written out 1538 // via a WriteIndexesThinBackend. 1539 FunctionImporter::ImportMapTy ImportList; 1540 if (!lto::initImportList(*M, *CombinedIndex, ImportList)) 1541 return; 1542 1543 auto AddStream = [&](size_t Task) { 1544 return std::make_unique<lto::NativeObjectStream>(std::move(OS)); 1545 }; 1546 lto::Config Conf; 1547 if (CGOpts.SaveTempsFilePrefix != "") { 1548 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1549 /* UseInputModulePath */ false)) { 1550 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1551 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1552 << '\n'; 1553 }); 1554 } 1555 } 1556 Conf.CPU = TOpts.CPU; 1557 Conf.CodeModel = getCodeModel(CGOpts); 1558 Conf.MAttrs = TOpts.Features; 1559 Conf.RelocModel = CGOpts.RelocationModel; 1560 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1561 Conf.OptLevel = CGOpts.OptimizationLevel; 1562 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1563 Conf.SampleProfile = std::move(SampleProfile); 1564 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1565 // For historical reasons, loop interleaving is set to mirror setting for loop 1566 // unrolling. 1567 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1568 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1569 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1570 // Only enable CGProfilePass when using integrated assembler, since 1571 // non-integrated assemblers don't recognize .cgprofile section. 1572 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1573 1574 // Context sensitive profile. 1575 if (CGOpts.hasProfileCSIRInstr()) { 1576 Conf.RunCSIRInstr = true; 1577 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1578 } else if (CGOpts.hasProfileCSIRUse()) { 1579 Conf.RunCSIRInstr = false; 1580 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1581 } 1582 1583 Conf.ProfileRemapping = std::move(ProfileRemapping); 1584 Conf.UseNewPM = !CGOpts.LegacyPassManager; 1585 Conf.DebugPassManager = CGOpts.DebugPassManager; 1586 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1587 Conf.RemarksFilename = CGOpts.OptRecordFile; 1588 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1589 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1590 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1591 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1592 switch (Action) { 1593 case Backend_EmitNothing: 1594 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1595 return false; 1596 }; 1597 break; 1598 case Backend_EmitLL: 1599 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1600 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1601 return false; 1602 }; 1603 break; 1604 case Backend_EmitBC: 1605 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1606 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1607 return false; 1608 }; 1609 break; 1610 default: 1611 Conf.CGFileType = getCodeGenFileType(Action); 1612 break; 1613 } 1614 if (Error E = 1615 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1616 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], 1617 /* ModuleMap */ nullptr, CGOpts.CmdArgs)) { 1618 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1619 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1620 }); 1621 } 1622 } 1623 1624 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1625 const HeaderSearchOptions &HeaderOpts, 1626 const CodeGenOptions &CGOpts, 1627 const clang::TargetOptions &TOpts, 1628 const LangOptions &LOpts, 1629 StringRef TDesc, Module *M, 1630 BackendAction Action, 1631 std::unique_ptr<raw_pwrite_stream> OS) { 1632 1633 llvm::TimeTraceScope TimeScope("Backend"); 1634 1635 std::unique_ptr<llvm::Module> EmptyModule; 1636 if (!CGOpts.ThinLTOIndexFile.empty()) { 1637 // If we are performing a ThinLTO importing compile, load the function index 1638 // into memory and pass it into runThinLTOBackend, which will run the 1639 // function importer and invoke LTO passes. 1640 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1641 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1642 /*IgnoreEmptyThinLTOIndexFile*/true); 1643 if (!IndexOrErr) { 1644 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1645 "Error loading index file '" + 1646 CGOpts.ThinLTOIndexFile + "': "); 1647 return; 1648 } 1649 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1650 // A null CombinedIndex means we should skip ThinLTO compilation 1651 // (LLVM will optionally ignore empty index files, returning null instead 1652 // of an error). 1653 if (CombinedIndex) { 1654 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1655 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, 1656 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, 1657 CGOpts.ProfileRemappingFile, Action); 1658 return; 1659 } 1660 // Distributed indexing detected that nothing from the module is needed 1661 // for the final linking. So we can skip the compilation. We sill need to 1662 // output an empty object file to make sure that a linker does not fail 1663 // trying to read it. Also for some features, like CFI, we must skip 1664 // the compilation as CombinedIndex does not contain all required 1665 // information. 1666 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1667 EmptyModule->setTargetTriple(M->getTargetTriple()); 1668 M = EmptyModule.get(); 1669 } 1670 } 1671 1672 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1673 1674 if (!CGOpts.LegacyPassManager) 1675 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1676 else 1677 AsmHelper.EmitAssembly(Action, std::move(OS)); 1678 1679 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1680 // DataLayout. 1681 if (AsmHelper.TM) { 1682 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1683 if (DLDesc != TDesc) { 1684 unsigned DiagID = Diags.getCustomDiagID( 1685 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1686 "expected target description '%1'"); 1687 Diags.Report(DiagID) << DLDesc << TDesc; 1688 } 1689 } 1690 } 1691 1692 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1693 // __LLVM,__bitcode section. 1694 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1695 llvm::MemoryBufferRef Buf) { 1696 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1697 return; 1698 llvm::EmbedBitcodeInModule( 1699 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1700 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1701 CGOpts.CmdArgs); 1702 } 1703