1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/StackSafetyAnalysis.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/IRPrintingPasses.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/ModuleSummaryIndex.h" 35 #include "llvm/IR/PassManager.h" 36 #include "llvm/IR/Verifier.h" 37 #include "llvm/LTO/LTOBackend.h" 38 #include "llvm/MC/MCAsmInfo.h" 39 #include "llvm/MC/SubtargetFeature.h" 40 #include "llvm/Passes/PassBuilder.h" 41 #include "llvm/Passes/PassPlugin.h" 42 #include "llvm/Passes/StandardInstrumentations.h" 43 #include "llvm/Support/BuryPointer.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/MemoryBuffer.h" 46 #include "llvm/Support/PrettyStackTrace.h" 47 #include "llvm/Support/TargetRegistry.h" 48 #include "llvm/Support/TimeProfiler.h" 49 #include "llvm/Support/Timer.h" 50 #include "llvm/Support/ToolOutputFile.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Target/TargetMachine.h" 53 #include "llvm/Target/TargetOptions.h" 54 #include "llvm/Transforms/Coroutines.h" 55 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 56 #include "llvm/Transforms/Coroutines/CoroEarly.h" 57 #include "llvm/Transforms/Coroutines/CoroElide.h" 58 #include "llvm/Transforms/Coroutines/CoroSplit.h" 59 #include "llvm/Transforms/IPO.h" 60 #include "llvm/Transforms/IPO/AlwaysInliner.h" 61 #include "llvm/Transforms/IPO/LowerTypeTests.h" 62 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 63 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 64 #include "llvm/Transforms/InstCombine/InstCombine.h" 65 #include "llvm/Transforms/Instrumentation.h" 66 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 67 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 68 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 69 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 70 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 71 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 72 #include "llvm/Transforms/Instrumentation/MemProfiler.h" 73 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 74 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 75 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 76 #include "llvm/Transforms/ObjCARC.h" 77 #include "llvm/Transforms/Scalar.h" 78 #include "llvm/Transforms/Scalar/GVN.h" 79 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" 80 #include "llvm/Transforms/Utils.h" 81 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 82 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 83 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 84 #include "llvm/Transforms/Utils/SymbolRewriter.h" 85 #include "llvm/Transforms/Utils/UniqueInternalLinkageNames.h" 86 #include <memory> 87 using namespace clang; 88 using namespace llvm; 89 90 #define HANDLE_EXTENSION(Ext) \ 91 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 92 #include "llvm/Support/Extension.def" 93 94 namespace { 95 96 // Default filename used for profile generation. 97 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 98 99 class EmitAssemblyHelper { 100 DiagnosticsEngine &Diags; 101 const HeaderSearchOptions &HSOpts; 102 const CodeGenOptions &CodeGenOpts; 103 const clang::TargetOptions &TargetOpts; 104 const LangOptions &LangOpts; 105 Module *TheModule; 106 107 Timer CodeGenerationTime; 108 109 std::unique_ptr<raw_pwrite_stream> OS; 110 111 TargetIRAnalysis getTargetIRAnalysis() const { 112 if (TM) 113 return TM->getTargetIRAnalysis(); 114 115 return TargetIRAnalysis(); 116 } 117 118 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 119 120 /// Generates the TargetMachine. 121 /// Leaves TM unchanged if it is unable to create the target machine. 122 /// Some of our clang tests specify triples which are not built 123 /// into clang. This is okay because these tests check the generated 124 /// IR, and they require DataLayout which depends on the triple. 125 /// In this case, we allow this method to fail and not report an error. 126 /// When MustCreateTM is used, we print an error if we are unable to load 127 /// the requested target. 128 void CreateTargetMachine(bool MustCreateTM); 129 130 /// Add passes necessary to emit assembly or LLVM IR. 131 /// 132 /// \return True on success. 133 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 134 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 135 136 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 137 std::error_code EC; 138 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 139 llvm::sys::fs::OF_None); 140 if (EC) { 141 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 142 F.reset(); 143 } 144 return F; 145 } 146 147 public: 148 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 149 const HeaderSearchOptions &HeaderSearchOpts, 150 const CodeGenOptions &CGOpts, 151 const clang::TargetOptions &TOpts, 152 const LangOptions &LOpts, Module *M) 153 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 154 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 155 CodeGenerationTime("codegen", "Code Generation Time") {} 156 157 ~EmitAssemblyHelper() { 158 if (CodeGenOpts.DisableFree) 159 BuryPointer(std::move(TM)); 160 } 161 162 std::unique_ptr<TargetMachine> TM; 163 164 void EmitAssembly(BackendAction Action, 165 std::unique_ptr<raw_pwrite_stream> OS); 166 167 void EmitAssemblyWithNewPassManager(BackendAction Action, 168 std::unique_ptr<raw_pwrite_stream> OS); 169 }; 170 171 // We need this wrapper to access LangOpts and CGOpts from extension functions 172 // that we add to the PassManagerBuilder. 173 class PassManagerBuilderWrapper : public PassManagerBuilder { 174 public: 175 PassManagerBuilderWrapper(const Triple &TargetTriple, 176 const CodeGenOptions &CGOpts, 177 const LangOptions &LangOpts) 178 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 179 LangOpts(LangOpts) {} 180 const Triple &getTargetTriple() const { return TargetTriple; } 181 const CodeGenOptions &getCGOpts() const { return CGOpts; } 182 const LangOptions &getLangOpts() const { return LangOpts; } 183 184 private: 185 const Triple &TargetTriple; 186 const CodeGenOptions &CGOpts; 187 const LangOptions &LangOpts; 188 }; 189 } 190 191 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 192 if (Builder.OptLevel > 0) 193 PM.add(createObjCARCAPElimPass()); 194 } 195 196 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 197 if (Builder.OptLevel > 0) 198 PM.add(createObjCARCExpandPass()); 199 } 200 201 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 202 if (Builder.OptLevel > 0) 203 PM.add(createObjCARCOptPass()); 204 } 205 206 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 207 legacy::PassManagerBase &PM) { 208 PM.add(createAddDiscriminatorsPass()); 209 } 210 211 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 212 legacy::PassManagerBase &PM) { 213 PM.add(createBoundsCheckingLegacyPass()); 214 } 215 216 static SanitizerCoverageOptions 217 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 218 SanitizerCoverageOptions Opts; 219 Opts.CoverageType = 220 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 221 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 222 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 223 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 224 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 225 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 226 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 227 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 228 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 229 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 230 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 231 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 232 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 233 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 234 return Opts; 235 } 236 237 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 238 legacy::PassManagerBase &PM) { 239 const PassManagerBuilderWrapper &BuilderWrapper = 240 static_cast<const PassManagerBuilderWrapper &>(Builder); 241 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 242 auto Opts = getSancovOptsFromCGOpts(CGOpts); 243 PM.add(createModuleSanitizerCoverageLegacyPassPass( 244 Opts, CGOpts.SanitizeCoverageAllowlistFiles, 245 CGOpts.SanitizeCoverageBlocklistFiles)); 246 } 247 248 // Check if ASan should use GC-friendly instrumentation for globals. 249 // First of all, there is no point if -fdata-sections is off (expect for MachO, 250 // where this is not a factor). Also, on ELF this feature requires an assembler 251 // extension that only works with -integrated-as at the moment. 252 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 253 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 254 return false; 255 switch (T.getObjectFormat()) { 256 case Triple::MachO: 257 case Triple::COFF: 258 return true; 259 case Triple::ELF: 260 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 261 case Triple::GOFF: 262 llvm::report_fatal_error("ASan not implemented for GOFF"); 263 case Triple::XCOFF: 264 llvm::report_fatal_error("ASan not implemented for XCOFF."); 265 case Triple::Wasm: 266 case Triple::UnknownObjectFormat: 267 break; 268 } 269 return false; 270 } 271 272 static void addMemProfilerPasses(const PassManagerBuilder &Builder, 273 legacy::PassManagerBase &PM) { 274 PM.add(createMemProfilerFunctionPass()); 275 PM.add(createModuleMemProfilerLegacyPassPass()); 276 } 277 278 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 279 legacy::PassManagerBase &PM) { 280 const PassManagerBuilderWrapper &BuilderWrapper = 281 static_cast<const PassManagerBuilderWrapper&>(Builder); 282 const Triple &T = BuilderWrapper.getTargetTriple(); 283 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 284 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 285 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 286 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 287 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 288 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 289 UseAfterScope)); 290 PM.add(createModuleAddressSanitizerLegacyPassPass( 291 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator)); 292 } 293 294 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 295 legacy::PassManagerBase &PM) { 296 PM.add(createAddressSanitizerFunctionPass( 297 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 298 PM.add(createModuleAddressSanitizerLegacyPassPass( 299 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 300 /*UseOdrIndicator*/ false)); 301 } 302 303 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 304 legacy::PassManagerBase &PM) { 305 const PassManagerBuilderWrapper &BuilderWrapper = 306 static_cast<const PassManagerBuilderWrapper &>(Builder); 307 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 308 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 309 PM.add( 310 createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover)); 311 } 312 313 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 314 legacy::PassManagerBase &PM) { 315 PM.add(createHWAddressSanitizerLegacyPassPass( 316 /*CompileKernel*/ true, /*Recover*/ true)); 317 } 318 319 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 320 legacy::PassManagerBase &PM, 321 bool CompileKernel) { 322 const PassManagerBuilderWrapper &BuilderWrapper = 323 static_cast<const PassManagerBuilderWrapper&>(Builder); 324 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 325 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 326 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 327 PM.add(createMemorySanitizerLegacyPassPass( 328 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 329 330 // MemorySanitizer inserts complex instrumentation that mostly follows 331 // the logic of the original code, but operates on "shadow" values. 332 // It can benefit from re-running some general purpose optimization passes. 333 if (Builder.OptLevel > 0) { 334 PM.add(createEarlyCSEPass()); 335 PM.add(createReassociatePass()); 336 PM.add(createLICMPass()); 337 PM.add(createGVNPass()); 338 PM.add(createInstructionCombiningPass()); 339 PM.add(createDeadStoreEliminationPass()); 340 } 341 } 342 343 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 344 legacy::PassManagerBase &PM) { 345 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 346 } 347 348 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 349 legacy::PassManagerBase &PM) { 350 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 351 } 352 353 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 354 legacy::PassManagerBase &PM) { 355 PM.add(createThreadSanitizerLegacyPassPass()); 356 } 357 358 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 359 legacy::PassManagerBase &PM) { 360 const PassManagerBuilderWrapper &BuilderWrapper = 361 static_cast<const PassManagerBuilderWrapper&>(Builder); 362 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 363 PM.add( 364 createDataFlowSanitizerLegacyPassPass(LangOpts.SanitizerBlacklistFiles)); 365 } 366 367 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 368 const CodeGenOptions &CodeGenOpts) { 369 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 370 371 switch (CodeGenOpts.getVecLib()) { 372 case CodeGenOptions::Accelerate: 373 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 374 break; 375 case CodeGenOptions::LIBMVEC: 376 switch(TargetTriple.getArch()) { 377 default: 378 break; 379 case llvm::Triple::x86_64: 380 TLII->addVectorizableFunctionsFromVecLib 381 (TargetLibraryInfoImpl::LIBMVEC_X86); 382 break; 383 } 384 break; 385 case CodeGenOptions::MASSV: 386 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 387 break; 388 case CodeGenOptions::SVML: 389 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 390 break; 391 default: 392 break; 393 } 394 return TLII; 395 } 396 397 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 398 legacy::PassManager *MPM) { 399 llvm::SymbolRewriter::RewriteDescriptorList DL; 400 401 llvm::SymbolRewriter::RewriteMapParser MapParser; 402 for (const auto &MapFile : Opts.RewriteMapFiles) 403 MapParser.parse(MapFile, &DL); 404 405 MPM->add(createRewriteSymbolsPass(DL)); 406 } 407 408 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 409 switch (CodeGenOpts.OptimizationLevel) { 410 default: 411 llvm_unreachable("Invalid optimization level!"); 412 case 0: 413 return CodeGenOpt::None; 414 case 1: 415 return CodeGenOpt::Less; 416 case 2: 417 return CodeGenOpt::Default; // O2/Os/Oz 418 case 3: 419 return CodeGenOpt::Aggressive; 420 } 421 } 422 423 static Optional<llvm::CodeModel::Model> 424 getCodeModel(const CodeGenOptions &CodeGenOpts) { 425 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 426 .Case("tiny", llvm::CodeModel::Tiny) 427 .Case("small", llvm::CodeModel::Small) 428 .Case("kernel", llvm::CodeModel::Kernel) 429 .Case("medium", llvm::CodeModel::Medium) 430 .Case("large", llvm::CodeModel::Large) 431 .Case("default", ~1u) 432 .Default(~0u); 433 assert(CodeModel != ~0u && "invalid code model!"); 434 if (CodeModel == ~1u) 435 return None; 436 return static_cast<llvm::CodeModel::Model>(CodeModel); 437 } 438 439 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 440 if (Action == Backend_EmitObj) 441 return CGFT_ObjectFile; 442 else if (Action == Backend_EmitMCNull) 443 return CGFT_Null; 444 else { 445 assert(Action == Backend_EmitAssembly && "Invalid action!"); 446 return CGFT_AssemblyFile; 447 } 448 } 449 450 static bool initTargetOptions(DiagnosticsEngine &Diags, 451 llvm::TargetOptions &Options, 452 const CodeGenOptions &CodeGenOpts, 453 const clang::TargetOptions &TargetOpts, 454 const LangOptions &LangOpts, 455 const HeaderSearchOptions &HSOpts) { 456 switch (LangOpts.getThreadModel()) { 457 case LangOptions::ThreadModelKind::POSIX: 458 Options.ThreadModel = llvm::ThreadModel::POSIX; 459 break; 460 case LangOptions::ThreadModelKind::Single: 461 Options.ThreadModel = llvm::ThreadModel::Single; 462 break; 463 } 464 465 // Set float ABI type. 466 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 467 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 468 "Invalid Floating Point ABI!"); 469 Options.FloatABIType = 470 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 471 .Case("soft", llvm::FloatABI::Soft) 472 .Case("softfp", llvm::FloatABI::Soft) 473 .Case("hard", llvm::FloatABI::Hard) 474 .Default(llvm::FloatABI::Default); 475 476 // Set FP fusion mode. 477 switch (LangOpts.getDefaultFPContractMode()) { 478 case LangOptions::FPM_Off: 479 // Preserve any contraction performed by the front-end. (Strict performs 480 // splitting of the muladd intrinsic in the backend.) 481 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 482 break; 483 case LangOptions::FPM_On: 484 case LangOptions::FPM_FastHonorPragmas: 485 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 486 break; 487 case LangOptions::FPM_Fast: 488 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 489 break; 490 } 491 492 Options.UseInitArray = CodeGenOpts.UseInitArray; 493 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 494 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 495 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 496 497 // Set EABI version. 498 Options.EABIVersion = TargetOpts.EABIVersion; 499 500 if (LangOpts.SjLjExceptions) 501 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 502 if (LangOpts.SEHExceptions) 503 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 504 if (LangOpts.DWARFExceptions) 505 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 506 if (LangOpts.WasmExceptions) 507 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 508 509 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 510 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 511 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 512 Options.UnsafeFPMath = LangOpts.UnsafeFPMath; 513 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 514 515 Options.BBSections = 516 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 517 .Case("all", llvm::BasicBlockSection::All) 518 .Case("labels", llvm::BasicBlockSection::Labels) 519 .StartsWith("list=", llvm::BasicBlockSection::List) 520 .Case("none", llvm::BasicBlockSection::None) 521 .Default(llvm::BasicBlockSection::None); 522 523 if (Options.BBSections == llvm::BasicBlockSection::List) { 524 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 525 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 526 if (!MBOrErr) { 527 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 528 << MBOrErr.getError().message(); 529 return false; 530 } 531 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 532 } 533 534 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions; 535 Options.FunctionSections = CodeGenOpts.FunctionSections; 536 Options.DataSections = CodeGenOpts.DataSections; 537 Options.IgnoreXCOFFVisibility = CodeGenOpts.IgnoreXCOFFVisibility; 538 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 539 Options.UniqueBasicBlockSectionNames = 540 CodeGenOpts.UniqueBasicBlockSectionNames; 541 Options.StackProtectorGuard = 542 llvm::StringSwitch<llvm::StackProtectorGuards>(CodeGenOpts 543 .StackProtectorGuard) 544 .Case("tls", llvm::StackProtectorGuards::TLS) 545 .Case("global", llvm::StackProtectorGuards::Global) 546 .Default(llvm::StackProtectorGuards::None); 547 Options.StackProtectorGuardOffset = CodeGenOpts.StackProtectorGuardOffset; 548 Options.StackProtectorGuardReg = CodeGenOpts.StackProtectorGuardReg; 549 Options.TLSSize = CodeGenOpts.TLSSize; 550 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 551 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 552 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 553 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 554 Options.EmitAddrsig = CodeGenOpts.Addrsig; 555 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 556 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 557 Options.EnableAIXExtendedAltivecABI = CodeGenOpts.EnableAIXExtendedAltivecABI; 558 Options.PseudoProbeForProfiling = CodeGenOpts.PseudoProbeForProfiling; 559 Options.ValueTrackingVariableLocations = 560 CodeGenOpts.ValueTrackingVariableLocations; 561 Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex; 562 563 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 564 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 565 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 566 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 567 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 568 Options.MCOptions.MCIncrementalLinkerCompatible = 569 CodeGenOpts.IncrementalLinkerCompatible; 570 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 571 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 572 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 573 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 574 Options.MCOptions.ABIName = TargetOpts.ABI; 575 for (const auto &Entry : HSOpts.UserEntries) 576 if (!Entry.IsFramework && 577 (Entry.Group == frontend::IncludeDirGroup::Quoted || 578 Entry.Group == frontend::IncludeDirGroup::Angled || 579 Entry.Group == frontend::IncludeDirGroup::System)) 580 Options.MCOptions.IASSearchPaths.push_back( 581 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 582 Options.MCOptions.Argv0 = CodeGenOpts.Argv0; 583 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; 584 585 return true; 586 } 587 588 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts, 589 const LangOptions &LangOpts) { 590 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 591 return None; 592 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 593 // LLVM's -default-gcov-version flag is set to something invalid. 594 GCOVOptions Options; 595 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 596 Options.EmitData = CodeGenOpts.EmitGcovArcs; 597 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 598 Options.NoRedZone = CodeGenOpts.DisableRedZone; 599 Options.Filter = CodeGenOpts.ProfileFilterFiles; 600 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 601 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 602 return Options; 603 } 604 605 static Optional<InstrProfOptions> 606 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 607 const LangOptions &LangOpts) { 608 if (!CodeGenOpts.hasProfileClangInstr()) 609 return None; 610 InstrProfOptions Options; 611 Options.NoRedZone = CodeGenOpts.DisableRedZone; 612 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 613 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 614 return Options; 615 } 616 617 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 618 legacy::FunctionPassManager &FPM) { 619 // Handle disabling of all LLVM passes, where we want to preserve the 620 // internal module before any optimization. 621 if (CodeGenOpts.DisableLLVMPasses) 622 return; 623 624 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 625 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 626 // are inserted before PMBuilder ones - they'd get the default-constructed 627 // TLI with an unknown target otherwise. 628 Triple TargetTriple(TheModule->getTargetTriple()); 629 std::unique_ptr<TargetLibraryInfoImpl> TLII( 630 createTLII(TargetTriple, CodeGenOpts)); 631 632 // If we reached here with a non-empty index file name, then the index file 633 // was empty and we are not performing ThinLTO backend compilation (used in 634 // testing in a distributed build environment). Drop any the type test 635 // assume sequences inserted for whole program vtables so that codegen doesn't 636 // complain. 637 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 638 MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr, 639 /*ImportSummary=*/nullptr, 640 /*DropTypeTests=*/true)); 641 642 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 643 644 // At O0 and O1 we only run the always inliner which is more efficient. At 645 // higher optimization levels we run the normal inliner. 646 if (CodeGenOpts.OptimizationLevel <= 1) { 647 bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 && 648 !CodeGenOpts.DisableLifetimeMarkers) || 649 LangOpts.Coroutines); 650 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 651 } else { 652 // We do not want to inline hot callsites for SamplePGO module-summary build 653 // because profile annotation will happen again in ThinLTO backend, and we 654 // want the IR of the hot path to match the profile. 655 PMBuilder.Inliner = createFunctionInliningPass( 656 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 657 (!CodeGenOpts.SampleProfileFile.empty() && 658 CodeGenOpts.PrepareForThinLTO)); 659 } 660 661 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 662 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 663 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 664 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 665 // Only enable CGProfilePass when using integrated assembler, since 666 // non-integrated assemblers don't recognize .cgprofile section. 667 PMBuilder.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 668 669 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 670 // Loop interleaving in the loop vectorizer has historically been set to be 671 // enabled when loop unrolling is enabled. 672 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 673 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 674 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 675 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 676 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 677 678 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 679 680 if (TM) 681 TM->adjustPassManager(PMBuilder); 682 683 if (CodeGenOpts.DebugInfoForProfiling || 684 !CodeGenOpts.SampleProfileFile.empty()) 685 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 686 addAddDiscriminatorsPass); 687 688 // In ObjC ARC mode, add the main ARC optimization passes. 689 if (LangOpts.ObjCAutoRefCount) { 690 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 691 addObjCARCExpandPass); 692 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 693 addObjCARCAPElimPass); 694 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 695 addObjCARCOptPass); 696 } 697 698 if (LangOpts.Coroutines) 699 addCoroutinePassesToExtensionPoints(PMBuilder); 700 701 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 702 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 703 addMemProfilerPasses); 704 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 705 addMemProfilerPasses); 706 } 707 708 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 709 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 710 addBoundsCheckingPass); 711 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 712 addBoundsCheckingPass); 713 } 714 715 if (CodeGenOpts.SanitizeCoverageType || 716 CodeGenOpts.SanitizeCoverageIndirectCalls || 717 CodeGenOpts.SanitizeCoverageTraceCmp) { 718 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 719 addSanitizerCoveragePass); 720 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 721 addSanitizerCoveragePass); 722 } 723 724 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 725 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 726 addAddressSanitizerPasses); 727 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 728 addAddressSanitizerPasses); 729 } 730 731 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 732 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 733 addKernelAddressSanitizerPasses); 734 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 735 addKernelAddressSanitizerPasses); 736 } 737 738 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 739 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 740 addHWAddressSanitizerPasses); 741 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 742 addHWAddressSanitizerPasses); 743 } 744 745 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 746 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 747 addKernelHWAddressSanitizerPasses); 748 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 749 addKernelHWAddressSanitizerPasses); 750 } 751 752 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 753 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 754 addMemorySanitizerPass); 755 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 756 addMemorySanitizerPass); 757 } 758 759 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 760 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 761 addKernelMemorySanitizerPass); 762 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 763 addKernelMemorySanitizerPass); 764 } 765 766 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 767 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 768 addThreadSanitizerPass); 769 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 770 addThreadSanitizerPass); 771 } 772 773 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 774 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 775 addDataFlowSanitizerPass); 776 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 777 addDataFlowSanitizerPass); 778 } 779 780 // Set up the per-function pass manager. 781 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 782 if (CodeGenOpts.VerifyModule) 783 FPM.add(createVerifierPass()); 784 785 // Set up the per-module pass manager. 786 if (!CodeGenOpts.RewriteMapFiles.empty()) 787 addSymbolRewriterPass(CodeGenOpts, &MPM); 788 789 // Add UniqueInternalLinkageNames Pass which renames internal linkage symbols 790 // with unique names. 791 if (CodeGenOpts.UniqueInternalLinkageNames) { 792 MPM.add(createUniqueInternalLinkageNamesPass()); 793 } 794 795 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) { 796 MPM.add(createGCOVProfilerPass(*Options)); 797 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 798 MPM.add(createStripSymbolsPass(true)); 799 } 800 801 if (Optional<InstrProfOptions> Options = 802 getInstrProfOptions(CodeGenOpts, LangOpts)) 803 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 804 805 bool hasIRInstr = false; 806 if (CodeGenOpts.hasProfileIRInstr()) { 807 PMBuilder.EnablePGOInstrGen = true; 808 hasIRInstr = true; 809 } 810 if (CodeGenOpts.hasProfileCSIRInstr()) { 811 assert(!CodeGenOpts.hasProfileCSIRUse() && 812 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 813 "same time"); 814 assert(!hasIRInstr && 815 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 816 "same time"); 817 PMBuilder.EnablePGOCSInstrGen = true; 818 hasIRInstr = true; 819 } 820 if (hasIRInstr) { 821 if (!CodeGenOpts.InstrProfileOutput.empty()) 822 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 823 else 824 PMBuilder.PGOInstrGen = std::string(DefaultProfileGenName); 825 } 826 if (CodeGenOpts.hasProfileIRUse()) { 827 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 828 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 829 } 830 831 if (!CodeGenOpts.SampleProfileFile.empty()) 832 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 833 834 PMBuilder.populateFunctionPassManager(FPM); 835 PMBuilder.populateModulePassManager(MPM); 836 } 837 838 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 839 SmallVector<const char *, 16> BackendArgs; 840 BackendArgs.push_back("clang"); // Fake program name. 841 if (!CodeGenOpts.DebugPass.empty()) { 842 BackendArgs.push_back("-debug-pass"); 843 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 844 } 845 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 846 BackendArgs.push_back("-limit-float-precision"); 847 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 848 } 849 BackendArgs.push_back(nullptr); 850 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 851 BackendArgs.data()); 852 } 853 854 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 855 // Create the TargetMachine for generating code. 856 std::string Error; 857 std::string Triple = TheModule->getTargetTriple(); 858 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 859 if (!TheTarget) { 860 if (MustCreateTM) 861 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 862 return; 863 } 864 865 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 866 std::string FeaturesStr = 867 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 868 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 869 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 870 871 llvm::TargetOptions Options; 872 if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, 873 HSOpts)) 874 return; 875 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 876 Options, RM, CM, OptLevel)); 877 } 878 879 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 880 BackendAction Action, 881 raw_pwrite_stream &OS, 882 raw_pwrite_stream *DwoOS) { 883 // Add LibraryInfo. 884 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 885 std::unique_ptr<TargetLibraryInfoImpl> TLII( 886 createTLII(TargetTriple, CodeGenOpts)); 887 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 888 889 // Normal mode, emit a .s or .o file by running the code generator. Note, 890 // this also adds codegenerator level optimization passes. 891 CodeGenFileType CGFT = getCodeGenFileType(Action); 892 893 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 894 // "codegen" passes so that it isn't run multiple times when there is 895 // inlining happening. 896 if (CodeGenOpts.OptimizationLevel > 0) 897 CodeGenPasses.add(createObjCARCContractPass()); 898 899 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 900 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 901 Diags.Report(diag::err_fe_unable_to_interface_with_target); 902 return false; 903 } 904 905 return true; 906 } 907 908 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 909 std::unique_ptr<raw_pwrite_stream> OS) { 910 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 911 912 setCommandLineOpts(CodeGenOpts); 913 914 bool UsesCodeGen = (Action != Backend_EmitNothing && 915 Action != Backend_EmitBC && 916 Action != Backend_EmitLL); 917 CreateTargetMachine(UsesCodeGen); 918 919 if (UsesCodeGen && !TM) 920 return; 921 if (TM) 922 TheModule->setDataLayout(TM->createDataLayout()); 923 924 legacy::PassManager PerModulePasses; 925 PerModulePasses.add( 926 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 927 928 legacy::FunctionPassManager PerFunctionPasses(TheModule); 929 PerFunctionPasses.add( 930 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 931 932 CreatePasses(PerModulePasses, PerFunctionPasses); 933 934 legacy::PassManager CodeGenPasses; 935 CodeGenPasses.add( 936 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 937 938 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 939 940 switch (Action) { 941 case Backend_EmitNothing: 942 break; 943 944 case Backend_EmitBC: 945 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 946 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 947 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 948 if (!ThinLinkOS) 949 return; 950 } 951 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 952 CodeGenOpts.EnableSplitLTOUnit); 953 PerModulePasses.add(createWriteThinLTOBitcodePass( 954 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 955 } else { 956 // Emit a module summary by default for Regular LTO except for ld64 957 // targets 958 bool EmitLTOSummary = 959 (CodeGenOpts.PrepareForLTO && 960 !CodeGenOpts.DisableLLVMPasses && 961 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 962 llvm::Triple::Apple); 963 if (EmitLTOSummary) { 964 if (!TheModule->getModuleFlag("ThinLTO")) 965 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 966 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 967 uint32_t(1)); 968 } 969 970 PerModulePasses.add(createBitcodeWriterPass( 971 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 972 } 973 break; 974 975 case Backend_EmitLL: 976 PerModulePasses.add( 977 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 978 break; 979 980 default: 981 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 982 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 983 if (!DwoOS) 984 return; 985 } 986 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 987 DwoOS ? &DwoOS->os() : nullptr)) 988 return; 989 } 990 991 // Before executing passes, print the final values of the LLVM options. 992 cl::PrintOptionValues(); 993 994 // Run passes. For now we do all passes at once, but eventually we 995 // would like to have the option of streaming code generation. 996 997 { 998 PrettyStackTraceString CrashInfo("Per-function optimization"); 999 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 1000 1001 PerFunctionPasses.doInitialization(); 1002 for (Function &F : *TheModule) 1003 if (!F.isDeclaration()) 1004 PerFunctionPasses.run(F); 1005 PerFunctionPasses.doFinalization(); 1006 } 1007 1008 { 1009 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 1010 llvm::TimeTraceScope TimeScope("PerModulePasses"); 1011 PerModulePasses.run(*TheModule); 1012 } 1013 1014 { 1015 PrettyStackTraceString CrashInfo("Code generation"); 1016 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1017 CodeGenPasses.run(*TheModule); 1018 } 1019 1020 if (ThinLinkOS) 1021 ThinLinkOS->keep(); 1022 if (DwoOS) 1023 DwoOS->keep(); 1024 } 1025 1026 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 1027 switch (Opts.OptimizationLevel) { 1028 default: 1029 llvm_unreachable("Invalid optimization level!"); 1030 1031 case 0: 1032 return PassBuilder::OptimizationLevel::O0; 1033 1034 case 1: 1035 return PassBuilder::OptimizationLevel::O1; 1036 1037 case 2: 1038 switch (Opts.OptimizeSize) { 1039 default: 1040 llvm_unreachable("Invalid optimization level for size!"); 1041 1042 case 0: 1043 return PassBuilder::OptimizationLevel::O2; 1044 1045 case 1: 1046 return PassBuilder::OptimizationLevel::Os; 1047 1048 case 2: 1049 return PassBuilder::OptimizationLevel::Oz; 1050 } 1051 1052 case 3: 1053 return PassBuilder::OptimizationLevel::O3; 1054 } 1055 } 1056 1057 /// A clean version of `EmitAssembly` that uses the new pass manager. 1058 /// 1059 /// Not all features are currently supported in this system, but where 1060 /// necessary it falls back to the legacy pass manager to at least provide 1061 /// basic functionality. 1062 /// 1063 /// This API is planned to have its functionality finished and then to replace 1064 /// `EmitAssembly` at some point in the future when the default switches. 1065 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 1066 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 1067 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 1068 setCommandLineOpts(CodeGenOpts); 1069 1070 bool RequiresCodeGen = (Action != Backend_EmitNothing && 1071 Action != Backend_EmitBC && 1072 Action != Backend_EmitLL); 1073 CreateTargetMachine(RequiresCodeGen); 1074 1075 if (RequiresCodeGen && !TM) 1076 return; 1077 if (TM) 1078 TheModule->setDataLayout(TM->createDataLayout()); 1079 1080 Optional<PGOOptions> PGOOpt; 1081 1082 if (CodeGenOpts.hasProfileIRInstr()) 1083 // -fprofile-generate. 1084 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1085 ? std::string(DefaultProfileGenName) 1086 : CodeGenOpts.InstrProfileOutput, 1087 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1088 CodeGenOpts.DebugInfoForProfiling); 1089 else if (CodeGenOpts.hasProfileIRUse()) { 1090 // -fprofile-use. 1091 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1092 : PGOOptions::NoCSAction; 1093 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1094 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1095 CSAction, CodeGenOpts.DebugInfoForProfiling); 1096 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1097 // -fprofile-sample-use 1098 PGOOpt = PGOOptions( 1099 CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile, 1100 PGOOptions::SampleUse, PGOOptions::NoCSAction, 1101 CodeGenOpts.DebugInfoForProfiling, CodeGenOpts.PseudoProbeForProfiling); 1102 else if (CodeGenOpts.PseudoProbeForProfiling) 1103 // -fpseudo-probe-for-profiling 1104 PGOOpt = 1105 PGOOptions("", "", "", PGOOptions::NoAction, PGOOptions::NoCSAction, 1106 CodeGenOpts.DebugInfoForProfiling, true); 1107 else if (CodeGenOpts.DebugInfoForProfiling) 1108 // -fdebug-info-for-profiling 1109 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1110 PGOOptions::NoCSAction, true); 1111 1112 // Check to see if we want to generate a CS profile. 1113 if (CodeGenOpts.hasProfileCSIRInstr()) { 1114 assert(!CodeGenOpts.hasProfileCSIRUse() && 1115 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1116 "the same time"); 1117 if (PGOOpt.hasValue()) { 1118 assert(PGOOpt->Action != PGOOptions::IRInstr && 1119 PGOOpt->Action != PGOOptions::SampleUse && 1120 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1121 " pass"); 1122 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1123 ? std::string(DefaultProfileGenName) 1124 : CodeGenOpts.InstrProfileOutput; 1125 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1126 } else 1127 PGOOpt = PGOOptions("", 1128 CodeGenOpts.InstrProfileOutput.empty() 1129 ? std::string(DefaultProfileGenName) 1130 : CodeGenOpts.InstrProfileOutput, 1131 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1132 CodeGenOpts.DebugInfoForProfiling); 1133 } 1134 1135 PipelineTuningOptions PTO; 1136 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1137 // For historical reasons, loop interleaving is set to mirror setting for loop 1138 // unrolling. 1139 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1140 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1141 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1142 // Only enable CGProfilePass when using integrated assembler, since 1143 // non-integrated assemblers don't recognize .cgprofile section. 1144 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 1145 PTO.Coroutines = LangOpts.Coroutines; 1146 1147 PassInstrumentationCallbacks PIC; 1148 StandardInstrumentations SI(CodeGenOpts.DebugPassManager); 1149 SI.registerCallbacks(PIC); 1150 PassBuilder PB(CodeGenOpts.DebugPassManager, TM.get(), PTO, PGOOpt, &PIC); 1151 1152 // Attempt to load pass plugins and register their callbacks with PB. 1153 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1154 auto PassPlugin = PassPlugin::Load(PluginFN); 1155 if (PassPlugin) { 1156 PassPlugin->registerPassBuilderCallbacks(PB); 1157 } else { 1158 Diags.Report(diag::err_fe_unable_to_load_plugin) 1159 << PluginFN << toString(PassPlugin.takeError()); 1160 } 1161 } 1162 #define HANDLE_EXTENSION(Ext) \ 1163 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 1164 #include "llvm/Support/Extension.def" 1165 1166 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 1167 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 1168 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 1169 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 1170 1171 // Register the AA manager first so that our version is the one used. 1172 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1173 1174 // Register the target library analysis directly and give it a customized 1175 // preset TLI. 1176 Triple TargetTriple(TheModule->getTargetTriple()); 1177 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1178 createTLII(TargetTriple, CodeGenOpts)); 1179 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1180 1181 // Register all the basic analyses with the managers. 1182 PB.registerModuleAnalyses(MAM); 1183 PB.registerCGSCCAnalyses(CGAM); 1184 PB.registerFunctionAnalyses(FAM); 1185 PB.registerLoopAnalyses(LAM); 1186 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1187 1188 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 1189 1190 if (!CodeGenOpts.DisableLLVMPasses) { 1191 // Map our optimization levels into one of the distinct levels used to 1192 // configure the pipeline. 1193 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1194 1195 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1196 bool IsLTO = CodeGenOpts.PrepareForLTO; 1197 1198 // If we reached here with a non-empty index file name, then the index 1199 // file was empty and we are not performing ThinLTO backend compilation 1200 // (used in testing in a distributed build environment). Drop any the type 1201 // test assume sequences inserted for whole program vtables so that 1202 // codegen doesn't complain. 1203 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 1204 PB.registerPipelineStartEPCallback( 1205 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1206 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1207 /*ImportSummary=*/nullptr, 1208 /*DropTypeTests=*/true)); 1209 }); 1210 1211 if (Level != PassBuilder::OptimizationLevel::O0) { 1212 PB.registerPipelineStartEPCallback( 1213 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1214 MPM.addPass(createModuleToFunctionPassAdaptor( 1215 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1216 }); 1217 } 1218 1219 // Register callbacks to schedule sanitizer passes at the appropriate part 1220 // of the pipeline. 1221 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1222 PB.registerScalarOptimizerLateEPCallback( 1223 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1224 FPM.addPass(BoundsCheckingPass()); 1225 }); 1226 1227 if (CodeGenOpts.SanitizeCoverageType || 1228 CodeGenOpts.SanitizeCoverageIndirectCalls || 1229 CodeGenOpts.SanitizeCoverageTraceCmp) { 1230 PB.registerOptimizerLastEPCallback( 1231 [this](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1232 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1233 MPM.addPass(ModuleSanitizerCoveragePass( 1234 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1235 CodeGenOpts.SanitizeCoverageBlocklistFiles)); 1236 }); 1237 } 1238 1239 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 1240 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1241 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Memory); 1242 PB.registerOptimizerLastEPCallback( 1243 [TrackOrigins, Recover](ModulePassManager &MPM, 1244 PassBuilder::OptimizationLevel Level) { 1245 MPM.addPass(MemorySanitizerPass({TrackOrigins, Recover, false})); 1246 MPM.addPass(createModuleToFunctionPassAdaptor( 1247 MemorySanitizerPass({TrackOrigins, Recover, false}))); 1248 }); 1249 } 1250 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1251 PB.registerOptimizerLastEPCallback( 1252 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1253 MPM.addPass(ThreadSanitizerPass()); 1254 MPM.addPass( 1255 createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1256 }); 1257 } 1258 1259 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1260 if (LangOpts.Sanitize.has(Mask)) { 1261 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1262 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1263 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1264 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1265 PB.registerOptimizerLastEPCallback( 1266 [CompileKernel, Recover, UseAfterScope, ModuleUseAfterScope, 1267 UseOdrIndicator](ModulePassManager &MPM, 1268 PassBuilder::OptimizationLevel Level) { 1269 MPM.addPass( 1270 RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1271 MPM.addPass(ModuleAddressSanitizerPass(CompileKernel, Recover, 1272 ModuleUseAfterScope, 1273 UseOdrIndicator)); 1274 MPM.addPass(createModuleToFunctionPassAdaptor( 1275 AddressSanitizerPass(CompileKernel, Recover, UseAfterScope))); 1276 }); 1277 } 1278 }; 1279 ASanPass(SanitizerKind::Address, false); 1280 ASanPass(SanitizerKind::KernelAddress, true); 1281 1282 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1283 if (LangOpts.Sanitize.has(Mask)) { 1284 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1285 PB.registerOptimizerLastEPCallback( 1286 [CompileKernel, Recover](ModulePassManager &MPM, 1287 PassBuilder::OptimizationLevel Level) { 1288 MPM.addPass(HWAddressSanitizerPass(CompileKernel, Recover)); 1289 }); 1290 } 1291 }; 1292 HWASanPass(SanitizerKind::HWAddress, false); 1293 HWASanPass(SanitizerKind::KernelHWAddress, true); 1294 1295 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 1296 PB.registerOptimizerLastEPCallback( 1297 [this](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1298 MPM.addPass( 1299 DataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 1300 }); 1301 } 1302 1303 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) 1304 PB.registerPipelineStartEPCallback( 1305 [Options](ModulePassManager &MPM, 1306 PassBuilder::OptimizationLevel Level) { 1307 MPM.addPass(GCOVProfilerPass(*Options)); 1308 }); 1309 if (Optional<InstrProfOptions> Options = 1310 getInstrProfOptions(CodeGenOpts, LangOpts)) 1311 PB.registerPipelineStartEPCallback( 1312 [Options](ModulePassManager &MPM, 1313 PassBuilder::OptimizationLevel Level) { 1314 MPM.addPass(InstrProfiling(*Options, false)); 1315 }); 1316 1317 if (CodeGenOpts.OptimizationLevel == 0) { 1318 MPM = PB.buildO0DefaultPipeline(Level, IsLTO || IsThinLTO); 1319 } else if (IsThinLTO) { 1320 MPM = PB.buildThinLTOPreLinkDefaultPipeline(Level); 1321 } else if (IsLTO) { 1322 MPM = PB.buildLTOPreLinkDefaultPipeline(Level); 1323 } else { 1324 MPM = PB.buildPerModuleDefaultPipeline(Level); 1325 } 1326 1327 // Add UniqueInternalLinkageNames Pass which renames internal linkage 1328 // symbols with unique names. 1329 if (CodeGenOpts.UniqueInternalLinkageNames) 1330 MPM.addPass(UniqueInternalLinkageNamesPass()); 1331 1332 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1333 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass())); 1334 MPM.addPass(ModuleMemProfilerPass()); 1335 } 1336 } 1337 1338 // FIXME: We still use the legacy pass manager to do code generation. We 1339 // create that pass manager here and use it as needed below. 1340 legacy::PassManager CodeGenPasses; 1341 bool NeedCodeGen = false; 1342 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1343 1344 // Append any output we need to the pass manager. 1345 switch (Action) { 1346 case Backend_EmitNothing: 1347 break; 1348 1349 case Backend_EmitBC: 1350 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1351 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1352 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1353 if (!ThinLinkOS) 1354 return; 1355 } 1356 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1357 CodeGenOpts.EnableSplitLTOUnit); 1358 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1359 : nullptr)); 1360 } else { 1361 // Emit a module summary by default for Regular LTO except for ld64 1362 // targets 1363 bool EmitLTOSummary = 1364 (CodeGenOpts.PrepareForLTO && 1365 !CodeGenOpts.DisableLLVMPasses && 1366 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1367 llvm::Triple::Apple); 1368 if (EmitLTOSummary) { 1369 if (!TheModule->getModuleFlag("ThinLTO")) 1370 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1371 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1372 uint32_t(1)); 1373 } 1374 MPM.addPass( 1375 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1376 } 1377 break; 1378 1379 case Backend_EmitLL: 1380 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1381 break; 1382 1383 case Backend_EmitAssembly: 1384 case Backend_EmitMCNull: 1385 case Backend_EmitObj: 1386 NeedCodeGen = true; 1387 CodeGenPasses.add( 1388 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1389 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1390 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1391 if (!DwoOS) 1392 return; 1393 } 1394 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1395 DwoOS ? &DwoOS->os() : nullptr)) 1396 // FIXME: Should we handle this error differently? 1397 return; 1398 break; 1399 } 1400 1401 // Before executing passes, print the final values of the LLVM options. 1402 cl::PrintOptionValues(); 1403 1404 // Now that we have all of the passes ready, run them. 1405 { 1406 PrettyStackTraceString CrashInfo("Optimizer"); 1407 MPM.run(*TheModule, MAM); 1408 } 1409 1410 // Now if needed, run the legacy PM for codegen. 1411 if (NeedCodeGen) { 1412 PrettyStackTraceString CrashInfo("Code generation"); 1413 CodeGenPasses.run(*TheModule); 1414 } 1415 1416 if (ThinLinkOS) 1417 ThinLinkOS->keep(); 1418 if (DwoOS) 1419 DwoOS->keep(); 1420 } 1421 1422 static void runThinLTOBackend( 1423 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M, 1424 const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, 1425 const clang::TargetOptions &TOpts, const LangOptions &LOpts, 1426 std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile, 1427 std::string ProfileRemapping, BackendAction Action) { 1428 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1429 ModuleToDefinedGVSummaries; 1430 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1431 1432 setCommandLineOpts(CGOpts); 1433 1434 // We can simply import the values mentioned in the combined index, since 1435 // we should only invoke this using the individual indexes written out 1436 // via a WriteIndexesThinBackend. 1437 FunctionImporter::ImportMapTy ImportList; 1438 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1439 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1440 if (!lto::loadReferencedModules(*M, *CombinedIndex, ImportList, ModuleMap, 1441 OwnedImports)) 1442 return; 1443 1444 auto AddStream = [&](size_t Task) { 1445 return std::make_unique<lto::NativeObjectStream>(std::move(OS)); 1446 }; 1447 lto::Config Conf; 1448 if (CGOpts.SaveTempsFilePrefix != "") { 1449 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1450 /* UseInputModulePath */ false)) { 1451 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1452 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1453 << '\n'; 1454 }); 1455 } 1456 } 1457 Conf.CPU = TOpts.CPU; 1458 Conf.CodeModel = getCodeModel(CGOpts); 1459 Conf.MAttrs = TOpts.Features; 1460 Conf.RelocModel = CGOpts.RelocationModel; 1461 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1462 Conf.OptLevel = CGOpts.OptimizationLevel; 1463 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1464 Conf.SampleProfile = std::move(SampleProfile); 1465 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1466 // For historical reasons, loop interleaving is set to mirror setting for loop 1467 // unrolling. 1468 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1469 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1470 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1471 // Only enable CGProfilePass when using integrated assembler, since 1472 // non-integrated assemblers don't recognize .cgprofile section. 1473 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1474 1475 // Context sensitive profile. 1476 if (CGOpts.hasProfileCSIRInstr()) { 1477 Conf.RunCSIRInstr = true; 1478 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1479 } else if (CGOpts.hasProfileCSIRUse()) { 1480 Conf.RunCSIRInstr = false; 1481 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1482 } 1483 1484 Conf.ProfileRemapping = std::move(ProfileRemapping); 1485 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1486 Conf.DebugPassManager = CGOpts.DebugPassManager; 1487 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1488 Conf.RemarksFilename = CGOpts.OptRecordFile; 1489 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1490 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1491 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1492 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1493 switch (Action) { 1494 case Backend_EmitNothing: 1495 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1496 return false; 1497 }; 1498 break; 1499 case Backend_EmitLL: 1500 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1501 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1502 return false; 1503 }; 1504 break; 1505 case Backend_EmitBC: 1506 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1507 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1508 return false; 1509 }; 1510 break; 1511 default: 1512 Conf.CGFileType = getCodeGenFileType(Action); 1513 break; 1514 } 1515 if (Error E = 1516 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1517 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], 1518 ModuleMap, CGOpts.CmdArgs)) { 1519 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1520 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1521 }); 1522 } 1523 } 1524 1525 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1526 const HeaderSearchOptions &HeaderOpts, 1527 const CodeGenOptions &CGOpts, 1528 const clang::TargetOptions &TOpts, 1529 const LangOptions &LOpts, 1530 const llvm::DataLayout &TDesc, Module *M, 1531 BackendAction Action, 1532 std::unique_ptr<raw_pwrite_stream> OS) { 1533 1534 llvm::TimeTraceScope TimeScope("Backend"); 1535 1536 std::unique_ptr<llvm::Module> EmptyModule; 1537 if (!CGOpts.ThinLTOIndexFile.empty()) { 1538 // If we are performing a ThinLTO importing compile, load the function index 1539 // into memory and pass it into runThinLTOBackend, which will run the 1540 // function importer and invoke LTO passes. 1541 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1542 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1543 /*IgnoreEmptyThinLTOIndexFile*/true); 1544 if (!IndexOrErr) { 1545 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1546 "Error loading index file '" + 1547 CGOpts.ThinLTOIndexFile + "': "); 1548 return; 1549 } 1550 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1551 // A null CombinedIndex means we should skip ThinLTO compilation 1552 // (LLVM will optionally ignore empty index files, returning null instead 1553 // of an error). 1554 if (CombinedIndex) { 1555 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1556 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, 1557 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, 1558 CGOpts.ProfileRemappingFile, Action); 1559 return; 1560 } 1561 // Distributed indexing detected that nothing from the module is needed 1562 // for the final linking. So we can skip the compilation. We sill need to 1563 // output an empty object file to make sure that a linker does not fail 1564 // trying to read it. Also for some features, like CFI, we must skip 1565 // the compilation as CombinedIndex does not contain all required 1566 // information. 1567 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1568 EmptyModule->setTargetTriple(M->getTargetTriple()); 1569 M = EmptyModule.get(); 1570 } 1571 } 1572 1573 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1574 1575 if (CGOpts.ExperimentalNewPassManager) 1576 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1577 else 1578 AsmHelper.EmitAssembly(Action, std::move(OS)); 1579 1580 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1581 // DataLayout. 1582 if (AsmHelper.TM) { 1583 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1584 if (DLDesc != TDesc.getStringRepresentation()) { 1585 unsigned DiagID = Diags.getCustomDiagID( 1586 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1587 "expected target description '%1'"); 1588 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1589 } 1590 } 1591 } 1592 1593 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1594 // __LLVM,__bitcode section. 1595 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1596 llvm::MemoryBufferRef Buf) { 1597 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1598 return; 1599 llvm::EmbedBitcodeInModule( 1600 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1601 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1602 CGOpts.CmdArgs); 1603 } 1604