1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/StackSafetyAnalysis.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/Bitcode/BitcodeReader.h" 26 #include "llvm/Bitcode/BitcodeWriter.h" 27 #include "llvm/Bitcode/BitcodeWriterPass.h" 28 #include "llvm/CodeGen/RegAllocRegistry.h" 29 #include "llvm/CodeGen/SchedulerRegistry.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/IRPrintingPasses.h" 33 #include "llvm/IR/LegacyPassManager.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/ModuleSummaryIndex.h" 36 #include "llvm/IR/PassManager.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/LTO/LTOBackend.h" 39 #include "llvm/MC/MCAsmInfo.h" 40 #include "llvm/MC/SubtargetFeature.h" 41 #include "llvm/MC/TargetRegistry.h" 42 #include "llvm/Object/OffloadBinary.h" 43 #include "llvm/Passes/PassBuilder.h" 44 #include "llvm/Passes/PassPlugin.h" 45 #include "llvm/Passes/StandardInstrumentations.h" 46 #include "llvm/Support/BuryPointer.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/MemoryBuffer.h" 49 #include "llvm/Support/PrettyStackTrace.h" 50 #include "llvm/Support/TimeProfiler.h" 51 #include "llvm/Support/Timer.h" 52 #include "llvm/Support/ToolOutputFile.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetMachine.h" 55 #include "llvm/Target/TargetOptions.h" 56 #include "llvm/Transforms/Coroutines.h" 57 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 58 #include "llvm/Transforms/Coroutines/CoroEarly.h" 59 #include "llvm/Transforms/Coroutines/CoroElide.h" 60 #include "llvm/Transforms/Coroutines/CoroSplit.h" 61 #include "llvm/Transforms/IPO.h" 62 #include "llvm/Transforms/IPO/AlwaysInliner.h" 63 #include "llvm/Transforms/IPO/LowerTypeTests.h" 64 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 65 #include "llvm/Transforms/InstCombine/InstCombine.h" 66 #include "llvm/Transforms/Instrumentation.h" 67 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 68 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" 69 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 70 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 71 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 72 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 73 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 74 #include "llvm/Transforms/Instrumentation/MemProfiler.h" 75 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 76 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 77 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 78 #include "llvm/Transforms/ObjCARC.h" 79 #include "llvm/Transforms/Scalar.h" 80 #include "llvm/Transforms/Scalar/EarlyCSE.h" 81 #include "llvm/Transforms/Scalar/GVN.h" 82 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" 83 #include "llvm/Transforms/Utils.h" 84 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 85 #include "llvm/Transforms/Utils/Debugify.h" 86 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 87 #include "llvm/Transforms/Utils/ModuleUtils.h" 88 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 89 #include "llvm/Transforms/Utils/SymbolRewriter.h" 90 #include <memory> 91 using namespace clang; 92 using namespace llvm; 93 94 #define HANDLE_EXTENSION(Ext) \ 95 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 96 #include "llvm/Support/Extension.def" 97 98 namespace llvm { 99 extern cl::opt<bool> DebugInfoCorrelate; 100 } 101 102 namespace { 103 104 // Default filename used for profile generation. 105 std::string getDefaultProfileGenName() { 106 return DebugInfoCorrelate ? "default_%p.proflite" : "default_%m.profraw"; 107 } 108 109 class EmitAssemblyHelper { 110 DiagnosticsEngine &Diags; 111 const HeaderSearchOptions &HSOpts; 112 const CodeGenOptions &CodeGenOpts; 113 const clang::TargetOptions &TargetOpts; 114 const LangOptions &LangOpts; 115 Module *TheModule; 116 117 Timer CodeGenerationTime; 118 119 std::unique_ptr<raw_pwrite_stream> OS; 120 121 Triple TargetTriple; 122 123 TargetIRAnalysis getTargetIRAnalysis() const { 124 if (TM) 125 return TM->getTargetIRAnalysis(); 126 127 return TargetIRAnalysis(); 128 } 129 130 /// Generates the TargetMachine. 131 /// Leaves TM unchanged if it is unable to create the target machine. 132 /// Some of our clang tests specify triples which are not built 133 /// into clang. This is okay because these tests check the generated 134 /// IR, and they require DataLayout which depends on the triple. 135 /// In this case, we allow this method to fail and not report an error. 136 /// When MustCreateTM is used, we print an error if we are unable to load 137 /// the requested target. 138 void CreateTargetMachine(bool MustCreateTM); 139 140 /// Add passes necessary to emit assembly or LLVM IR. 141 /// 142 /// \return True on success. 143 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 144 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 145 146 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 147 std::error_code EC; 148 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 149 llvm::sys::fs::OF_None); 150 if (EC) { 151 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 152 F.reset(); 153 } 154 return F; 155 } 156 157 void 158 RunOptimizationPipeline(BackendAction Action, 159 std::unique_ptr<raw_pwrite_stream> &OS, 160 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS); 161 void RunCodegenPipeline(BackendAction Action, 162 std::unique_ptr<raw_pwrite_stream> &OS, 163 std::unique_ptr<llvm::ToolOutputFile> &DwoOS); 164 165 /// Check whether we should emit a module summary for regular LTO. 166 /// The module summary should be emitted by default for regular LTO 167 /// except for ld64 targets. 168 /// 169 /// \return True if the module summary should be emitted. 170 bool shouldEmitRegularLTOSummary() const { 171 return CodeGenOpts.PrepareForLTO && !CodeGenOpts.DisableLLVMPasses && 172 TargetTriple.getVendor() != llvm::Triple::Apple; 173 } 174 175 public: 176 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 177 const HeaderSearchOptions &HeaderSearchOpts, 178 const CodeGenOptions &CGOpts, 179 const clang::TargetOptions &TOpts, 180 const LangOptions &LOpts, Module *M) 181 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 182 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 183 CodeGenerationTime("codegen", "Code Generation Time"), 184 TargetTriple(TheModule->getTargetTriple()) {} 185 186 ~EmitAssemblyHelper() { 187 if (CodeGenOpts.DisableFree) 188 BuryPointer(std::move(TM)); 189 } 190 191 std::unique_ptr<TargetMachine> TM; 192 193 // Emit output using the new pass manager for the optimization pipeline. 194 void EmitAssembly(BackendAction Action, 195 std::unique_ptr<raw_pwrite_stream> OS); 196 }; 197 } 198 199 static SanitizerCoverageOptions 200 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 201 SanitizerCoverageOptions Opts; 202 Opts.CoverageType = 203 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 204 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 205 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 206 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 207 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 208 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 209 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 210 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 211 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 212 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 213 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 214 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 215 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 216 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 217 Opts.TraceLoads = CGOpts.SanitizeCoverageTraceLoads; 218 Opts.TraceStores = CGOpts.SanitizeCoverageTraceStores; 219 return Opts; 220 } 221 222 // Check if ASan should use GC-friendly instrumentation for globals. 223 // First of all, there is no point if -fdata-sections is off (expect for MachO, 224 // where this is not a factor). Also, on ELF this feature requires an assembler 225 // extension that only works with -integrated-as at the moment. 226 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 227 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 228 return false; 229 switch (T.getObjectFormat()) { 230 case Triple::MachO: 231 case Triple::COFF: 232 return true; 233 case Triple::ELF: 234 return !CGOpts.DisableIntegratedAS; 235 case Triple::GOFF: 236 llvm::report_fatal_error("ASan not implemented for GOFF"); 237 case Triple::XCOFF: 238 llvm::report_fatal_error("ASan not implemented for XCOFF."); 239 case Triple::Wasm: 240 case Triple::DXContainer: 241 case Triple::UnknownObjectFormat: 242 break; 243 } 244 return false; 245 } 246 247 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 248 const CodeGenOptions &CodeGenOpts) { 249 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 250 251 switch (CodeGenOpts.getVecLib()) { 252 case CodeGenOptions::Accelerate: 253 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 254 break; 255 case CodeGenOptions::LIBMVEC: 256 switch(TargetTriple.getArch()) { 257 default: 258 break; 259 case llvm::Triple::x86_64: 260 TLII->addVectorizableFunctionsFromVecLib 261 (TargetLibraryInfoImpl::LIBMVEC_X86); 262 break; 263 } 264 break; 265 case CodeGenOptions::MASSV: 266 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 267 break; 268 case CodeGenOptions::SVML: 269 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 270 break; 271 case CodeGenOptions::Darwin_libsystem_m: 272 TLII->addVectorizableFunctionsFromVecLib( 273 TargetLibraryInfoImpl::DarwinLibSystemM); 274 break; 275 default: 276 break; 277 } 278 return TLII; 279 } 280 281 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 282 switch (CodeGenOpts.OptimizationLevel) { 283 default: 284 llvm_unreachable("Invalid optimization level!"); 285 case 0: 286 return CodeGenOpt::None; 287 case 1: 288 return CodeGenOpt::Less; 289 case 2: 290 return CodeGenOpt::Default; // O2/Os/Oz 291 case 3: 292 return CodeGenOpt::Aggressive; 293 } 294 } 295 296 static Optional<llvm::CodeModel::Model> 297 getCodeModel(const CodeGenOptions &CodeGenOpts) { 298 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 299 .Case("tiny", llvm::CodeModel::Tiny) 300 .Case("small", llvm::CodeModel::Small) 301 .Case("kernel", llvm::CodeModel::Kernel) 302 .Case("medium", llvm::CodeModel::Medium) 303 .Case("large", llvm::CodeModel::Large) 304 .Case("default", ~1u) 305 .Default(~0u); 306 assert(CodeModel != ~0u && "invalid code model!"); 307 if (CodeModel == ~1u) 308 return None; 309 return static_cast<llvm::CodeModel::Model>(CodeModel); 310 } 311 312 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 313 if (Action == Backend_EmitObj) 314 return CGFT_ObjectFile; 315 else if (Action == Backend_EmitMCNull) 316 return CGFT_Null; 317 else { 318 assert(Action == Backend_EmitAssembly && "Invalid action!"); 319 return CGFT_AssemblyFile; 320 } 321 } 322 323 static bool actionRequiresCodeGen(BackendAction Action) { 324 return Action != Backend_EmitNothing && Action != Backend_EmitBC && 325 Action != Backend_EmitLL; 326 } 327 328 static bool initTargetOptions(DiagnosticsEngine &Diags, 329 llvm::TargetOptions &Options, 330 const CodeGenOptions &CodeGenOpts, 331 const clang::TargetOptions &TargetOpts, 332 const LangOptions &LangOpts, 333 const HeaderSearchOptions &HSOpts) { 334 switch (LangOpts.getThreadModel()) { 335 case LangOptions::ThreadModelKind::POSIX: 336 Options.ThreadModel = llvm::ThreadModel::POSIX; 337 break; 338 case LangOptions::ThreadModelKind::Single: 339 Options.ThreadModel = llvm::ThreadModel::Single; 340 break; 341 } 342 343 // Set float ABI type. 344 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 345 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 346 "Invalid Floating Point ABI!"); 347 Options.FloatABIType = 348 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 349 .Case("soft", llvm::FloatABI::Soft) 350 .Case("softfp", llvm::FloatABI::Soft) 351 .Case("hard", llvm::FloatABI::Hard) 352 .Default(llvm::FloatABI::Default); 353 354 // Set FP fusion mode. 355 switch (LangOpts.getDefaultFPContractMode()) { 356 case LangOptions::FPM_Off: 357 // Preserve any contraction performed by the front-end. (Strict performs 358 // splitting of the muladd intrinsic in the backend.) 359 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 360 break; 361 case LangOptions::FPM_On: 362 case LangOptions::FPM_FastHonorPragmas: 363 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 364 break; 365 case LangOptions::FPM_Fast: 366 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 367 break; 368 } 369 370 Options.BinutilsVersion = 371 llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion); 372 Options.UseInitArray = CodeGenOpts.UseInitArray; 373 Options.LowerGlobalDtorsViaCxaAtExit = 374 CodeGenOpts.RegisterGlobalDtorsWithAtExit; 375 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 376 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 377 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 378 379 // Set EABI version. 380 Options.EABIVersion = TargetOpts.EABIVersion; 381 382 if (LangOpts.hasSjLjExceptions()) 383 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 384 if (LangOpts.hasSEHExceptions()) 385 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 386 if (LangOpts.hasDWARFExceptions()) 387 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 388 if (LangOpts.hasWasmExceptions()) 389 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 390 391 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 392 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 393 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 394 Options.UnsafeFPMath = LangOpts.UnsafeFPMath; 395 Options.ApproxFuncFPMath = LangOpts.ApproxFunc; 396 397 Options.BBSections = 398 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 399 .Case("all", llvm::BasicBlockSection::All) 400 .Case("labels", llvm::BasicBlockSection::Labels) 401 .StartsWith("list=", llvm::BasicBlockSection::List) 402 .Case("none", llvm::BasicBlockSection::None) 403 .Default(llvm::BasicBlockSection::None); 404 405 if (Options.BBSections == llvm::BasicBlockSection::List) { 406 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 407 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 408 if (!MBOrErr) { 409 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 410 << MBOrErr.getError().message(); 411 return false; 412 } 413 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 414 } 415 416 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions; 417 Options.FunctionSections = CodeGenOpts.FunctionSections; 418 Options.DataSections = CodeGenOpts.DataSections; 419 Options.IgnoreXCOFFVisibility = LangOpts.IgnoreXCOFFVisibility; 420 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 421 Options.UniqueBasicBlockSectionNames = 422 CodeGenOpts.UniqueBasicBlockSectionNames; 423 Options.TLSSize = CodeGenOpts.TLSSize; 424 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 425 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 426 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 427 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 428 Options.StackUsageOutput = CodeGenOpts.StackUsageOutput; 429 Options.EmitAddrsig = CodeGenOpts.Addrsig; 430 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 431 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 432 Options.EnableAIXExtendedAltivecABI = CodeGenOpts.EnableAIXExtendedAltivecABI; 433 Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex; 434 Options.LoopAlignment = CodeGenOpts.LoopAlignment; 435 Options.DebugStrictDwarf = CodeGenOpts.DebugStrictDwarf; 436 Options.ObjectFilenameForDebug = CodeGenOpts.ObjectFilenameForDebug; 437 Options.Hotpatch = CodeGenOpts.HotPatch; 438 Options.JMCInstrument = CodeGenOpts.JMCInstrument; 439 440 switch (CodeGenOpts.getSwiftAsyncFramePointer()) { 441 case CodeGenOptions::SwiftAsyncFramePointerKind::Auto: 442 Options.SwiftAsyncFramePointer = 443 SwiftAsyncFramePointerMode::DeploymentBased; 444 break; 445 446 case CodeGenOptions::SwiftAsyncFramePointerKind::Always: 447 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Always; 448 break; 449 450 case CodeGenOptions::SwiftAsyncFramePointerKind::Never: 451 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Never; 452 break; 453 } 454 455 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 456 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 457 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 458 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 459 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 460 Options.MCOptions.MCIncrementalLinkerCompatible = 461 CodeGenOpts.IncrementalLinkerCompatible; 462 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 463 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 464 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 465 Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64; 466 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 467 Options.MCOptions.ABIName = TargetOpts.ABI; 468 for (const auto &Entry : HSOpts.UserEntries) 469 if (!Entry.IsFramework && 470 (Entry.Group == frontend::IncludeDirGroup::Quoted || 471 Entry.Group == frontend::IncludeDirGroup::Angled || 472 Entry.Group == frontend::IncludeDirGroup::System)) 473 Options.MCOptions.IASSearchPaths.push_back( 474 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 475 Options.MCOptions.Argv0 = CodeGenOpts.Argv0; 476 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; 477 478 return true; 479 } 480 481 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts, 482 const LangOptions &LangOpts) { 483 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 484 return None; 485 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 486 // LLVM's -default-gcov-version flag is set to something invalid. 487 GCOVOptions Options; 488 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 489 Options.EmitData = CodeGenOpts.EmitGcovArcs; 490 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 491 Options.NoRedZone = CodeGenOpts.DisableRedZone; 492 Options.Filter = CodeGenOpts.ProfileFilterFiles; 493 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 494 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 495 return Options; 496 } 497 498 static Optional<InstrProfOptions> 499 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 500 const LangOptions &LangOpts) { 501 if (!CodeGenOpts.hasProfileClangInstr()) 502 return None; 503 InstrProfOptions Options; 504 Options.NoRedZone = CodeGenOpts.DisableRedZone; 505 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 506 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 507 return Options; 508 } 509 510 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 511 SmallVector<const char *, 16> BackendArgs; 512 BackendArgs.push_back("clang"); // Fake program name. 513 if (!CodeGenOpts.DebugPass.empty()) { 514 BackendArgs.push_back("-debug-pass"); 515 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 516 } 517 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 518 BackendArgs.push_back("-limit-float-precision"); 519 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 520 } 521 // Check for the default "clang" invocation that won't set any cl::opt values. 522 // Skip trying to parse the command line invocation to avoid the issues 523 // described below. 524 if (BackendArgs.size() == 1) 525 return; 526 BackendArgs.push_back(nullptr); 527 // FIXME: The command line parser below is not thread-safe and shares a global 528 // state, so this call might crash or overwrite the options of another Clang 529 // instance in the same process. 530 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 531 BackendArgs.data()); 532 } 533 534 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 535 // Create the TargetMachine for generating code. 536 std::string Error; 537 std::string Triple = TheModule->getTargetTriple(); 538 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 539 if (!TheTarget) { 540 if (MustCreateTM) 541 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 542 return; 543 } 544 545 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 546 std::string FeaturesStr = 547 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 548 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 549 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 550 551 llvm::TargetOptions Options; 552 if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, 553 HSOpts)) 554 return; 555 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 556 Options, RM, CM, OptLevel)); 557 } 558 559 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 560 BackendAction Action, 561 raw_pwrite_stream &OS, 562 raw_pwrite_stream *DwoOS) { 563 // Add LibraryInfo. 564 std::unique_ptr<TargetLibraryInfoImpl> TLII( 565 createTLII(TargetTriple, CodeGenOpts)); 566 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 567 568 // Normal mode, emit a .s or .o file by running the code generator. Note, 569 // this also adds codegenerator level optimization passes. 570 CodeGenFileType CGFT = getCodeGenFileType(Action); 571 572 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 573 // "codegen" passes so that it isn't run multiple times when there is 574 // inlining happening. 575 if (CodeGenOpts.OptimizationLevel > 0) 576 CodeGenPasses.add(createObjCARCContractPass()); 577 578 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 579 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 580 Diags.Report(diag::err_fe_unable_to_interface_with_target); 581 return false; 582 } 583 584 return true; 585 } 586 587 static OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 588 switch (Opts.OptimizationLevel) { 589 default: 590 llvm_unreachable("Invalid optimization level!"); 591 592 case 0: 593 return OptimizationLevel::O0; 594 595 case 1: 596 return OptimizationLevel::O1; 597 598 case 2: 599 switch (Opts.OptimizeSize) { 600 default: 601 llvm_unreachable("Invalid optimization level for size!"); 602 603 case 0: 604 return OptimizationLevel::O2; 605 606 case 1: 607 return OptimizationLevel::Os; 608 609 case 2: 610 return OptimizationLevel::Oz; 611 } 612 613 case 3: 614 return OptimizationLevel::O3; 615 } 616 } 617 618 static void addSanitizers(const Triple &TargetTriple, 619 const CodeGenOptions &CodeGenOpts, 620 const LangOptions &LangOpts, PassBuilder &PB) { 621 PB.registerOptimizerLastEPCallback([&](ModulePassManager &MPM, 622 OptimizationLevel Level) { 623 if (CodeGenOpts.hasSanitizeCoverage()) { 624 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 625 MPM.addPass(ModuleSanitizerCoveragePass( 626 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 627 CodeGenOpts.SanitizeCoverageIgnorelistFiles)); 628 } 629 630 auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) { 631 if (LangOpts.Sanitize.has(Mask)) { 632 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 633 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 634 635 MemorySanitizerOptions options(TrackOrigins, Recover, CompileKernel, 636 CodeGenOpts.SanitizeMemoryParamRetval); 637 MPM.addPass(ModuleMemorySanitizerPass(options)); 638 FunctionPassManager FPM; 639 FPM.addPass(MemorySanitizerPass(options)); 640 if (Level != OptimizationLevel::O0) { 641 // MemorySanitizer inserts complex instrumentation that mostly 642 // follows the logic of the original code, but operates on 643 // "shadow" values. It can benefit from re-running some 644 // general purpose optimization passes. 645 FPM.addPass(EarlyCSEPass()); 646 // TODO: Consider add more passes like in 647 // addGeneralOptsForMemorySanitizer. EarlyCSEPass makes visible 648 // difference on size. It's not clear if the rest is still 649 // usefull. InstCombinePass breakes 650 // compiler-rt/test/msan/select_origin.cpp. 651 } 652 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 653 } 654 }; 655 MSanPass(SanitizerKind::Memory, false); 656 MSanPass(SanitizerKind::KernelMemory, true); 657 658 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 659 MPM.addPass(ModuleThreadSanitizerPass()); 660 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 661 } 662 663 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 664 if (LangOpts.Sanitize.has(Mask)) { 665 bool UseGlobalGC = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 666 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 667 llvm::AsanDtorKind DestructorKind = 668 CodeGenOpts.getSanitizeAddressDtor(); 669 AddressSanitizerOptions Opts; 670 Opts.CompileKernel = CompileKernel; 671 Opts.Recover = CodeGenOpts.SanitizeRecover.has(Mask); 672 Opts.UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 673 Opts.UseAfterReturn = CodeGenOpts.getSanitizeAddressUseAfterReturn(); 674 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 675 MPM.addPass(ModuleAddressSanitizerPass( 676 Opts, UseGlobalGC, UseOdrIndicator, DestructorKind)); 677 } 678 }; 679 ASanPass(SanitizerKind::Address, false); 680 ASanPass(SanitizerKind::KernelAddress, true); 681 682 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 683 if (LangOpts.Sanitize.has(Mask)) { 684 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 685 MPM.addPass(HWAddressSanitizerPass( 686 {CompileKernel, Recover, 687 /*DisableOptimization=*/CodeGenOpts.OptimizationLevel == 0})); 688 } 689 }; 690 HWASanPass(SanitizerKind::HWAddress, false); 691 HWASanPass(SanitizerKind::KernelHWAddress, true); 692 693 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 694 MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles)); 695 } 696 }); 697 } 698 699 void EmitAssemblyHelper::RunOptimizationPipeline( 700 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 701 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS) { 702 Optional<PGOOptions> PGOOpt; 703 704 if (CodeGenOpts.hasProfileIRInstr()) 705 // -fprofile-generate. 706 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 707 ? getDefaultProfileGenName() 708 : CodeGenOpts.InstrProfileOutput, 709 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 710 CodeGenOpts.DebugInfoForProfiling); 711 else if (CodeGenOpts.hasProfileIRUse()) { 712 // -fprofile-use. 713 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 714 : PGOOptions::NoCSAction; 715 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 716 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 717 CSAction, CodeGenOpts.DebugInfoForProfiling); 718 } else if (!CodeGenOpts.SampleProfileFile.empty()) 719 // -fprofile-sample-use 720 PGOOpt = PGOOptions( 721 CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile, 722 PGOOptions::SampleUse, PGOOptions::NoCSAction, 723 CodeGenOpts.DebugInfoForProfiling, CodeGenOpts.PseudoProbeForProfiling); 724 else if (CodeGenOpts.PseudoProbeForProfiling) 725 // -fpseudo-probe-for-profiling 726 PGOOpt = 727 PGOOptions("", "", "", PGOOptions::NoAction, PGOOptions::NoCSAction, 728 CodeGenOpts.DebugInfoForProfiling, true); 729 else if (CodeGenOpts.DebugInfoForProfiling) 730 // -fdebug-info-for-profiling 731 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 732 PGOOptions::NoCSAction, true); 733 734 // Check to see if we want to generate a CS profile. 735 if (CodeGenOpts.hasProfileCSIRInstr()) { 736 assert(!CodeGenOpts.hasProfileCSIRUse() && 737 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 738 "the same time"); 739 if (PGOOpt.hasValue()) { 740 assert(PGOOpt->Action != PGOOptions::IRInstr && 741 PGOOpt->Action != PGOOptions::SampleUse && 742 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 743 " pass"); 744 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 745 ? getDefaultProfileGenName() 746 : CodeGenOpts.InstrProfileOutput; 747 PGOOpt->CSAction = PGOOptions::CSIRInstr; 748 } else 749 PGOOpt = PGOOptions("", 750 CodeGenOpts.InstrProfileOutput.empty() 751 ? getDefaultProfileGenName() 752 : CodeGenOpts.InstrProfileOutput, 753 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 754 CodeGenOpts.DebugInfoForProfiling); 755 } 756 if (TM) 757 TM->setPGOOption(PGOOpt); 758 759 PipelineTuningOptions PTO; 760 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 761 // For historical reasons, loop interleaving is set to mirror setting for loop 762 // unrolling. 763 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 764 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 765 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 766 PTO.MergeFunctions = CodeGenOpts.MergeFunctions; 767 // Only enable CGProfilePass when using integrated assembler, since 768 // non-integrated assemblers don't recognize .cgprofile section. 769 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 770 771 LoopAnalysisManager LAM; 772 FunctionAnalysisManager FAM; 773 CGSCCAnalysisManager CGAM; 774 ModuleAnalysisManager MAM; 775 776 bool DebugPassStructure = CodeGenOpts.DebugPass == "Structure"; 777 PassInstrumentationCallbacks PIC; 778 PrintPassOptions PrintPassOpts; 779 PrintPassOpts.Indent = DebugPassStructure; 780 PrintPassOpts.SkipAnalyses = DebugPassStructure; 781 StandardInstrumentations SI(CodeGenOpts.DebugPassManager || 782 DebugPassStructure, 783 /*VerifyEach*/ false, PrintPassOpts); 784 SI.registerCallbacks(PIC, &FAM); 785 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 786 787 // Attempt to load pass plugins and register their callbacks with PB. 788 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 789 auto PassPlugin = PassPlugin::Load(PluginFN); 790 if (PassPlugin) { 791 PassPlugin->registerPassBuilderCallbacks(PB); 792 } else { 793 Diags.Report(diag::err_fe_unable_to_load_plugin) 794 << PluginFN << toString(PassPlugin.takeError()); 795 } 796 } 797 #define HANDLE_EXTENSION(Ext) \ 798 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 799 #include "llvm/Support/Extension.def" 800 801 // Register the target library analysis directly and give it a customized 802 // preset TLI. 803 std::unique_ptr<TargetLibraryInfoImpl> TLII( 804 createTLII(TargetTriple, CodeGenOpts)); 805 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 806 807 // Register all the basic analyses with the managers. 808 PB.registerModuleAnalyses(MAM); 809 PB.registerCGSCCAnalyses(CGAM); 810 PB.registerFunctionAnalyses(FAM); 811 PB.registerLoopAnalyses(LAM); 812 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 813 814 ModulePassManager MPM; 815 816 if (!CodeGenOpts.DisableLLVMPasses) { 817 // Map our optimization levels into one of the distinct levels used to 818 // configure the pipeline. 819 OptimizationLevel Level = mapToLevel(CodeGenOpts); 820 821 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 822 bool IsLTO = CodeGenOpts.PrepareForLTO; 823 824 if (LangOpts.ObjCAutoRefCount) { 825 PB.registerPipelineStartEPCallback( 826 [](ModulePassManager &MPM, OptimizationLevel Level) { 827 if (Level != OptimizationLevel::O0) 828 MPM.addPass( 829 createModuleToFunctionPassAdaptor(ObjCARCExpandPass())); 830 }); 831 PB.registerPipelineEarlySimplificationEPCallback( 832 [](ModulePassManager &MPM, OptimizationLevel Level) { 833 if (Level != OptimizationLevel::O0) 834 MPM.addPass(ObjCARCAPElimPass()); 835 }); 836 PB.registerScalarOptimizerLateEPCallback( 837 [](FunctionPassManager &FPM, OptimizationLevel Level) { 838 if (Level != OptimizationLevel::O0) 839 FPM.addPass(ObjCARCOptPass()); 840 }); 841 } 842 843 // If we reached here with a non-empty index file name, then the index 844 // file was empty and we are not performing ThinLTO backend compilation 845 // (used in testing in a distributed build environment). 846 bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty(); 847 // If so drop any the type test assume sequences inserted for whole program 848 // vtables so that codegen doesn't complain. 849 if (IsThinLTOPostLink) 850 PB.registerPipelineStartEPCallback( 851 [](ModulePassManager &MPM, OptimizationLevel Level) { 852 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 853 /*ImportSummary=*/nullptr, 854 /*DropTypeTests=*/true)); 855 }); 856 857 if (CodeGenOpts.InstrumentFunctions || 858 CodeGenOpts.InstrumentFunctionEntryBare || 859 CodeGenOpts.InstrumentFunctionsAfterInlining || 860 CodeGenOpts.InstrumentForProfiling) { 861 PB.registerPipelineStartEPCallback( 862 [](ModulePassManager &MPM, OptimizationLevel Level) { 863 MPM.addPass(createModuleToFunctionPassAdaptor( 864 EntryExitInstrumenterPass(/*PostInlining=*/false))); 865 }); 866 PB.registerOptimizerLastEPCallback( 867 [](ModulePassManager &MPM, OptimizationLevel Level) { 868 MPM.addPass(createModuleToFunctionPassAdaptor( 869 EntryExitInstrumenterPass(/*PostInlining=*/true))); 870 }); 871 } 872 873 // Register callbacks to schedule sanitizer passes at the appropriate part 874 // of the pipeline. 875 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 876 PB.registerScalarOptimizerLateEPCallback( 877 [](FunctionPassManager &FPM, OptimizationLevel Level) { 878 FPM.addPass(BoundsCheckingPass()); 879 }); 880 881 // Don't add sanitizers if we are here from ThinLTO PostLink. That already 882 // done on PreLink stage. 883 if (!IsThinLTOPostLink) 884 addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB); 885 886 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) 887 PB.registerPipelineStartEPCallback( 888 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 889 MPM.addPass(GCOVProfilerPass(*Options)); 890 }); 891 if (Optional<InstrProfOptions> Options = 892 getInstrProfOptions(CodeGenOpts, LangOpts)) 893 PB.registerPipelineStartEPCallback( 894 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 895 MPM.addPass(InstrProfiling(*Options, false)); 896 }); 897 898 if (CodeGenOpts.OptimizationLevel == 0) { 899 MPM = PB.buildO0DefaultPipeline(Level, IsLTO || IsThinLTO); 900 } else if (IsThinLTO) { 901 MPM = PB.buildThinLTOPreLinkDefaultPipeline(Level); 902 } else if (IsLTO) { 903 MPM = PB.buildLTOPreLinkDefaultPipeline(Level); 904 } else { 905 MPM = PB.buildPerModuleDefaultPipeline(Level); 906 } 907 908 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 909 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass())); 910 MPM.addPass(ModuleMemProfilerPass()); 911 } 912 } 913 914 // Add a verifier pass if requested. We don't have to do this if the action 915 // requires code generation because there will already be a verifier pass in 916 // the code-generation pipeline. 917 if (!actionRequiresCodeGen(Action) && CodeGenOpts.VerifyModule) 918 MPM.addPass(VerifierPass()); 919 920 switch (Action) { 921 case Backend_EmitBC: 922 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 923 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 924 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 925 if (!ThinLinkOS) 926 return; 927 } 928 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 929 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 930 CodeGenOpts.EnableSplitLTOUnit); 931 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 932 : nullptr)); 933 } else { 934 // Emit a module summary by default for Regular LTO except for ld64 935 // targets 936 bool EmitLTOSummary = shouldEmitRegularLTOSummary(); 937 if (EmitLTOSummary) { 938 if (!TheModule->getModuleFlag("ThinLTO")) 939 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 940 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 941 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 942 uint32_t(1)); 943 } 944 MPM.addPass( 945 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 946 } 947 break; 948 949 case Backend_EmitLL: 950 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 951 break; 952 953 default: 954 break; 955 } 956 957 // Now that we have all of the passes ready, run them. 958 { 959 PrettyStackTraceString CrashInfo("Optimizer"); 960 llvm::TimeTraceScope TimeScope("Optimizer"); 961 MPM.run(*TheModule, MAM); 962 } 963 } 964 965 void EmitAssemblyHelper::RunCodegenPipeline( 966 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 967 std::unique_ptr<llvm::ToolOutputFile> &DwoOS) { 968 // We still use the legacy PM to run the codegen pipeline since the new PM 969 // does not work with the codegen pipeline. 970 // FIXME: make the new PM work with the codegen pipeline. 971 legacy::PassManager CodeGenPasses; 972 973 // Append any output we need to the pass manager. 974 switch (Action) { 975 case Backend_EmitAssembly: 976 case Backend_EmitMCNull: 977 case Backend_EmitObj: 978 CodeGenPasses.add( 979 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 980 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 981 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 982 if (!DwoOS) 983 return; 984 } 985 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 986 DwoOS ? &DwoOS->os() : nullptr)) 987 // FIXME: Should we handle this error differently? 988 return; 989 break; 990 default: 991 return; 992 } 993 994 { 995 PrettyStackTraceString CrashInfo("Code generation"); 996 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 997 CodeGenPasses.run(*TheModule); 998 } 999 } 1000 1001 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 1002 std::unique_ptr<raw_pwrite_stream> OS) { 1003 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 1004 setCommandLineOpts(CodeGenOpts); 1005 1006 bool RequiresCodeGen = actionRequiresCodeGen(Action); 1007 CreateTargetMachine(RequiresCodeGen); 1008 1009 if (RequiresCodeGen && !TM) 1010 return; 1011 if (TM) 1012 TheModule->setDataLayout(TM->createDataLayout()); 1013 1014 // Before executing passes, print the final values of the LLVM options. 1015 cl::PrintOptionValues(); 1016 1017 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1018 RunOptimizationPipeline(Action, OS, ThinLinkOS); 1019 RunCodegenPipeline(Action, OS, DwoOS); 1020 1021 if (ThinLinkOS) 1022 ThinLinkOS->keep(); 1023 if (DwoOS) 1024 DwoOS->keep(); 1025 } 1026 1027 static void runThinLTOBackend( 1028 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M, 1029 const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, 1030 const clang::TargetOptions &TOpts, const LangOptions &LOpts, 1031 std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile, 1032 std::string ProfileRemapping, BackendAction Action) { 1033 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1034 ModuleToDefinedGVSummaries; 1035 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1036 1037 setCommandLineOpts(CGOpts); 1038 1039 // We can simply import the values mentioned in the combined index, since 1040 // we should only invoke this using the individual indexes written out 1041 // via a WriteIndexesThinBackend. 1042 FunctionImporter::ImportMapTy ImportList; 1043 if (!lto::initImportList(*M, *CombinedIndex, ImportList)) 1044 return; 1045 1046 auto AddStream = [&](size_t Task) { 1047 return std::make_unique<CachedFileStream>(std::move(OS), 1048 CGOpts.ObjectFilenameForDebug); 1049 }; 1050 lto::Config Conf; 1051 if (CGOpts.SaveTempsFilePrefix != "") { 1052 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1053 /* UseInputModulePath */ false)) { 1054 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1055 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1056 << '\n'; 1057 }); 1058 } 1059 } 1060 Conf.CPU = TOpts.CPU; 1061 Conf.CodeModel = getCodeModel(CGOpts); 1062 Conf.MAttrs = TOpts.Features; 1063 Conf.RelocModel = CGOpts.RelocationModel; 1064 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1065 Conf.OptLevel = CGOpts.OptimizationLevel; 1066 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1067 Conf.SampleProfile = std::move(SampleProfile); 1068 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1069 // For historical reasons, loop interleaving is set to mirror setting for loop 1070 // unrolling. 1071 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1072 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1073 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1074 // Only enable CGProfilePass when using integrated assembler, since 1075 // non-integrated assemblers don't recognize .cgprofile section. 1076 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1077 1078 // Context sensitive profile. 1079 if (CGOpts.hasProfileCSIRInstr()) { 1080 Conf.RunCSIRInstr = true; 1081 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1082 } else if (CGOpts.hasProfileCSIRUse()) { 1083 Conf.RunCSIRInstr = false; 1084 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1085 } 1086 1087 Conf.ProfileRemapping = std::move(ProfileRemapping); 1088 Conf.DebugPassManager = CGOpts.DebugPassManager; 1089 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1090 Conf.RemarksFilename = CGOpts.OptRecordFile; 1091 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1092 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1093 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1094 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1095 switch (Action) { 1096 case Backend_EmitNothing: 1097 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1098 return false; 1099 }; 1100 break; 1101 case Backend_EmitLL: 1102 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1103 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1104 return false; 1105 }; 1106 break; 1107 case Backend_EmitBC: 1108 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1109 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1110 return false; 1111 }; 1112 break; 1113 default: 1114 Conf.CGFileType = getCodeGenFileType(Action); 1115 break; 1116 } 1117 if (Error E = 1118 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1119 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], 1120 /* ModuleMap */ nullptr, CGOpts.CmdArgs)) { 1121 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1122 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1123 }); 1124 } 1125 } 1126 1127 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1128 const HeaderSearchOptions &HeaderOpts, 1129 const CodeGenOptions &CGOpts, 1130 const clang::TargetOptions &TOpts, 1131 const LangOptions &LOpts, 1132 StringRef TDesc, Module *M, 1133 BackendAction Action, 1134 std::unique_ptr<raw_pwrite_stream> OS) { 1135 1136 llvm::TimeTraceScope TimeScope("Backend"); 1137 1138 std::unique_ptr<llvm::Module> EmptyModule; 1139 if (!CGOpts.ThinLTOIndexFile.empty()) { 1140 // If we are performing a ThinLTO importing compile, load the function index 1141 // into memory and pass it into runThinLTOBackend, which will run the 1142 // function importer and invoke LTO passes. 1143 std::unique_ptr<ModuleSummaryIndex> CombinedIndex; 1144 if (Error E = llvm::getModuleSummaryIndexForFile( 1145 CGOpts.ThinLTOIndexFile, 1146 /*IgnoreEmptyThinLTOIndexFile*/ true) 1147 .moveInto(CombinedIndex)) { 1148 logAllUnhandledErrors(std::move(E), errs(), 1149 "Error loading index file '" + 1150 CGOpts.ThinLTOIndexFile + "': "); 1151 return; 1152 } 1153 1154 // A null CombinedIndex means we should skip ThinLTO compilation 1155 // (LLVM will optionally ignore empty index files, returning null instead 1156 // of an error). 1157 if (CombinedIndex) { 1158 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1159 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, 1160 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, 1161 CGOpts.ProfileRemappingFile, Action); 1162 return; 1163 } 1164 // Distributed indexing detected that nothing from the module is needed 1165 // for the final linking. So we can skip the compilation. We sill need to 1166 // output an empty object file to make sure that a linker does not fail 1167 // trying to read it. Also for some features, like CFI, we must skip 1168 // the compilation as CombinedIndex does not contain all required 1169 // information. 1170 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1171 EmptyModule->setTargetTriple(M->getTargetTriple()); 1172 M = EmptyModule.get(); 1173 } 1174 } 1175 1176 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1177 AsmHelper.EmitAssembly(Action, std::move(OS)); 1178 1179 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1180 // DataLayout. 1181 if (AsmHelper.TM) { 1182 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1183 if (DLDesc != TDesc) { 1184 unsigned DiagID = Diags.getCustomDiagID( 1185 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1186 "expected target description '%1'"); 1187 Diags.Report(DiagID) << DLDesc << TDesc; 1188 } 1189 } 1190 } 1191 1192 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1193 // __LLVM,__bitcode section. 1194 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1195 llvm::MemoryBufferRef Buf) { 1196 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1197 return; 1198 llvm::embedBitcodeInModule( 1199 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1200 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1201 CGOpts.CmdArgs); 1202 } 1203 1204 void clang::EmbedObject(llvm::Module *M, const CodeGenOptions &CGOpts, 1205 DiagnosticsEngine &Diags) { 1206 if (CGOpts.OffloadObjects.empty()) 1207 return; 1208 1209 for (StringRef OffloadObject : CGOpts.OffloadObjects) { 1210 SmallVector<StringRef, 4> ObjectFields; 1211 OffloadObject.split(ObjectFields, ','); 1212 1213 if (ObjectFields.size() != 4) { 1214 auto DiagID = Diags.getCustomDiagID( 1215 DiagnosticsEngine::Error, "Expected at least four arguments '%0'"); 1216 Diags.Report(DiagID) << OffloadObject; 1217 return; 1218 } 1219 1220 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> ObjectOrErr = 1221 llvm::MemoryBuffer::getFileOrSTDIN(ObjectFields[0]); 1222 if (std::error_code EC = ObjectOrErr.getError()) { 1223 auto DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 1224 "could not open '%0' for embedding"); 1225 Diags.Report(DiagID) << ObjectFields[0]; 1226 return; 1227 } 1228 1229 OffloadBinary::OffloadingImage Image{}; 1230 Image.TheImageKind = getImageKind(ObjectFields[0].rsplit(".").second); 1231 Image.TheOffloadKind = getOffloadKind(ObjectFields[1]); 1232 Image.StringData = {{"triple", ObjectFields[2]}, {"arch", ObjectFields[3]}}; 1233 Image.Image = **ObjectOrErr; 1234 1235 std::unique_ptr<MemoryBuffer> OffloadBuffer = OffloadBinary::write(Image); 1236 llvm::embedBufferInModule(*M, *OffloadBuffer, ".llvm.offloading", 1237 Align(OffloadBinary::getAlignment())); 1238 } 1239 } 1240