1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/StackSafetyAnalysis.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/IRPrintingPasses.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/ModuleSummaryIndex.h" 35 #include "llvm/IR/Verifier.h" 36 #include "llvm/LTO/LTOBackend.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/SubtargetFeature.h" 39 #include "llvm/Passes/PassBuilder.h" 40 #include "llvm/Passes/PassPlugin.h" 41 #include "llvm/Passes/StandardInstrumentations.h" 42 #include "llvm/Support/BuryPointer.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/MemoryBuffer.h" 45 #include "llvm/Support/PrettyStackTrace.h" 46 #include "llvm/Support/TargetRegistry.h" 47 #include "llvm/Support/TimeProfiler.h" 48 #include "llvm/Support/Timer.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Target/TargetMachine.h" 51 #include "llvm/Target/TargetOptions.h" 52 #include "llvm/Transforms/Coroutines.h" 53 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 54 #include "llvm/Transforms/Coroutines/CoroEarly.h" 55 #include "llvm/Transforms/Coroutines/CoroElide.h" 56 #include "llvm/Transforms/Coroutines/CoroSplit.h" 57 #include "llvm/Transforms/IPO.h" 58 #include "llvm/Transforms/IPO/AlwaysInliner.h" 59 #include "llvm/Transforms/IPO/LowerTypeTests.h" 60 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 61 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 62 #include "llvm/Transforms/InstCombine/InstCombine.h" 63 #include "llvm/Transforms/Instrumentation.h" 64 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 65 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 66 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 67 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 68 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 69 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 70 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 71 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 72 #include "llvm/Transforms/ObjCARC.h" 73 #include "llvm/Transforms/Scalar.h" 74 #include "llvm/Transforms/Scalar/GVN.h" 75 #include "llvm/Transforms/Utils.h" 76 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 77 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 78 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 79 #include "llvm/Transforms/Utils/SymbolRewriter.h" 80 #include "llvm/Transforms/Utils/UniqueInternalLinkageNames.h" 81 #include <memory> 82 using namespace clang; 83 using namespace llvm; 84 85 #define HANDLE_EXTENSION(Ext) \ 86 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 87 #include "llvm/Support/Extension.def" 88 89 namespace { 90 91 // Default filename used for profile generation. 92 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 93 94 class EmitAssemblyHelper { 95 DiagnosticsEngine &Diags; 96 const HeaderSearchOptions &HSOpts; 97 const CodeGenOptions &CodeGenOpts; 98 const clang::TargetOptions &TargetOpts; 99 const LangOptions &LangOpts; 100 Module *TheModule; 101 102 Timer CodeGenerationTime; 103 104 std::unique_ptr<raw_pwrite_stream> OS; 105 106 TargetIRAnalysis getTargetIRAnalysis() const { 107 if (TM) 108 return TM->getTargetIRAnalysis(); 109 110 return TargetIRAnalysis(); 111 } 112 113 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 114 115 /// Generates the TargetMachine. 116 /// Leaves TM unchanged if it is unable to create the target machine. 117 /// Some of our clang tests specify triples which are not built 118 /// into clang. This is okay because these tests check the generated 119 /// IR, and they require DataLayout which depends on the triple. 120 /// In this case, we allow this method to fail and not report an error. 121 /// When MustCreateTM is used, we print an error if we are unable to load 122 /// the requested target. 123 void CreateTargetMachine(bool MustCreateTM); 124 125 /// Add passes necessary to emit assembly or LLVM IR. 126 /// 127 /// \return True on success. 128 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 129 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 130 131 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 132 std::error_code EC; 133 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 134 llvm::sys::fs::OF_None); 135 if (EC) { 136 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 137 F.reset(); 138 } 139 return F; 140 } 141 142 public: 143 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 144 const HeaderSearchOptions &HeaderSearchOpts, 145 const CodeGenOptions &CGOpts, 146 const clang::TargetOptions &TOpts, 147 const LangOptions &LOpts, Module *M) 148 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 149 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 150 CodeGenerationTime("codegen", "Code Generation Time") {} 151 152 ~EmitAssemblyHelper() { 153 if (CodeGenOpts.DisableFree) 154 BuryPointer(std::move(TM)); 155 } 156 157 std::unique_ptr<TargetMachine> TM; 158 159 void EmitAssembly(BackendAction Action, 160 std::unique_ptr<raw_pwrite_stream> OS); 161 162 void EmitAssemblyWithNewPassManager(BackendAction Action, 163 std::unique_ptr<raw_pwrite_stream> OS); 164 }; 165 166 // We need this wrapper to access LangOpts and CGOpts from extension functions 167 // that we add to the PassManagerBuilder. 168 class PassManagerBuilderWrapper : public PassManagerBuilder { 169 public: 170 PassManagerBuilderWrapper(const Triple &TargetTriple, 171 const CodeGenOptions &CGOpts, 172 const LangOptions &LangOpts) 173 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 174 LangOpts(LangOpts) {} 175 const Triple &getTargetTriple() const { return TargetTriple; } 176 const CodeGenOptions &getCGOpts() const { return CGOpts; } 177 const LangOptions &getLangOpts() const { return LangOpts; } 178 179 private: 180 const Triple &TargetTriple; 181 const CodeGenOptions &CGOpts; 182 const LangOptions &LangOpts; 183 }; 184 } 185 186 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 187 if (Builder.OptLevel > 0) 188 PM.add(createObjCARCAPElimPass()); 189 } 190 191 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 192 if (Builder.OptLevel > 0) 193 PM.add(createObjCARCExpandPass()); 194 } 195 196 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 197 if (Builder.OptLevel > 0) 198 PM.add(createObjCARCOptPass()); 199 } 200 201 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 202 legacy::PassManagerBase &PM) { 203 PM.add(createAddDiscriminatorsPass()); 204 } 205 206 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 207 legacy::PassManagerBase &PM) { 208 PM.add(createBoundsCheckingLegacyPass()); 209 } 210 211 static SanitizerCoverageOptions 212 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 213 SanitizerCoverageOptions Opts; 214 Opts.CoverageType = 215 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 216 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 217 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 218 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 219 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 220 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 221 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 222 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 223 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 224 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 225 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 226 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 227 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 228 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 229 return Opts; 230 } 231 232 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 233 legacy::PassManagerBase &PM) { 234 const PassManagerBuilderWrapper &BuilderWrapper = 235 static_cast<const PassManagerBuilderWrapper &>(Builder); 236 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 237 auto Opts = getSancovOptsFromCGOpts(CGOpts); 238 PM.add(createModuleSanitizerCoverageLegacyPassPass( 239 Opts, CGOpts.SanitizeCoverageWhitelistFiles, 240 CGOpts.SanitizeCoverageBlacklistFiles)); 241 } 242 243 // Check if ASan should use GC-friendly instrumentation for globals. 244 // First of all, there is no point if -fdata-sections is off (expect for MachO, 245 // where this is not a factor). Also, on ELF this feature requires an assembler 246 // extension that only works with -integrated-as at the moment. 247 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 248 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 249 return false; 250 switch (T.getObjectFormat()) { 251 case Triple::MachO: 252 case Triple::COFF: 253 return true; 254 case Triple::ELF: 255 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 256 case Triple::XCOFF: 257 llvm::report_fatal_error("ASan not implemented for XCOFF."); 258 case Triple::Wasm: 259 case Triple::UnknownObjectFormat: 260 break; 261 } 262 return false; 263 } 264 265 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 266 legacy::PassManagerBase &PM) { 267 const PassManagerBuilderWrapper &BuilderWrapper = 268 static_cast<const PassManagerBuilderWrapper&>(Builder); 269 const Triple &T = BuilderWrapper.getTargetTriple(); 270 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 271 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 272 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 273 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 274 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 275 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 276 UseAfterScope)); 277 PM.add(createModuleAddressSanitizerLegacyPassPass( 278 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator)); 279 } 280 281 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 282 legacy::PassManagerBase &PM) { 283 PM.add(createAddressSanitizerFunctionPass( 284 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 285 PM.add(createModuleAddressSanitizerLegacyPassPass( 286 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 287 /*UseOdrIndicator*/ false)); 288 } 289 290 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 291 legacy::PassManagerBase &PM) { 292 const PassManagerBuilderWrapper &BuilderWrapper = 293 static_cast<const PassManagerBuilderWrapper &>(Builder); 294 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 295 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 296 PM.add( 297 createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover)); 298 } 299 300 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 301 legacy::PassManagerBase &PM) { 302 PM.add(createHWAddressSanitizerLegacyPassPass( 303 /*CompileKernel*/ true, /*Recover*/ true)); 304 } 305 306 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 307 legacy::PassManagerBase &PM, 308 bool CompileKernel) { 309 const PassManagerBuilderWrapper &BuilderWrapper = 310 static_cast<const PassManagerBuilderWrapper&>(Builder); 311 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 312 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 313 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 314 PM.add(createMemorySanitizerLegacyPassPass( 315 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 316 317 // MemorySanitizer inserts complex instrumentation that mostly follows 318 // the logic of the original code, but operates on "shadow" values. 319 // It can benefit from re-running some general purpose optimization passes. 320 if (Builder.OptLevel > 0) { 321 PM.add(createEarlyCSEPass()); 322 PM.add(createReassociatePass()); 323 PM.add(createLICMPass()); 324 PM.add(createGVNPass()); 325 PM.add(createInstructionCombiningPass()); 326 PM.add(createDeadStoreEliminationPass()); 327 } 328 } 329 330 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 331 legacy::PassManagerBase &PM) { 332 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 333 } 334 335 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 336 legacy::PassManagerBase &PM) { 337 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 338 } 339 340 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 341 legacy::PassManagerBase &PM) { 342 PM.add(createThreadSanitizerLegacyPassPass()); 343 } 344 345 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 346 legacy::PassManagerBase &PM) { 347 const PassManagerBuilderWrapper &BuilderWrapper = 348 static_cast<const PassManagerBuilderWrapper&>(Builder); 349 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 350 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 351 } 352 353 static void addMemTagOptimizationPasses(const PassManagerBuilder &Builder, 354 legacy::PassManagerBase &PM) { 355 PM.add(createStackSafetyGlobalInfoWrapperPass(/*SetMetadata=*/true)); 356 } 357 358 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 359 const CodeGenOptions &CodeGenOpts) { 360 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 361 362 switch (CodeGenOpts.getVecLib()) { 363 case CodeGenOptions::Accelerate: 364 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 365 break; 366 case CodeGenOptions::MASSV: 367 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 368 break; 369 case CodeGenOptions::SVML: 370 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 371 break; 372 default: 373 break; 374 } 375 return TLII; 376 } 377 378 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 379 legacy::PassManager *MPM) { 380 llvm::SymbolRewriter::RewriteDescriptorList DL; 381 382 llvm::SymbolRewriter::RewriteMapParser MapParser; 383 for (const auto &MapFile : Opts.RewriteMapFiles) 384 MapParser.parse(MapFile, &DL); 385 386 MPM->add(createRewriteSymbolsPass(DL)); 387 } 388 389 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 390 switch (CodeGenOpts.OptimizationLevel) { 391 default: 392 llvm_unreachable("Invalid optimization level!"); 393 case 0: 394 return CodeGenOpt::None; 395 case 1: 396 return CodeGenOpt::Less; 397 case 2: 398 return CodeGenOpt::Default; // O2/Os/Oz 399 case 3: 400 return CodeGenOpt::Aggressive; 401 } 402 } 403 404 static Optional<llvm::CodeModel::Model> 405 getCodeModel(const CodeGenOptions &CodeGenOpts) { 406 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 407 .Case("tiny", llvm::CodeModel::Tiny) 408 .Case("small", llvm::CodeModel::Small) 409 .Case("kernel", llvm::CodeModel::Kernel) 410 .Case("medium", llvm::CodeModel::Medium) 411 .Case("large", llvm::CodeModel::Large) 412 .Case("default", ~1u) 413 .Default(~0u); 414 assert(CodeModel != ~0u && "invalid code model!"); 415 if (CodeModel == ~1u) 416 return None; 417 return static_cast<llvm::CodeModel::Model>(CodeModel); 418 } 419 420 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 421 if (Action == Backend_EmitObj) 422 return CGFT_ObjectFile; 423 else if (Action == Backend_EmitMCNull) 424 return CGFT_Null; 425 else { 426 assert(Action == Backend_EmitAssembly && "Invalid action!"); 427 return CGFT_AssemblyFile; 428 } 429 } 430 431 static void initTargetOptions(llvm::TargetOptions &Options, 432 const CodeGenOptions &CodeGenOpts, 433 const clang::TargetOptions &TargetOpts, 434 const LangOptions &LangOpts, 435 const HeaderSearchOptions &HSOpts) { 436 Options.ThreadModel = 437 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 438 .Case("posix", llvm::ThreadModel::POSIX) 439 .Case("single", llvm::ThreadModel::Single); 440 441 // Set float ABI type. 442 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 443 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 444 "Invalid Floating Point ABI!"); 445 Options.FloatABIType = 446 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 447 .Case("soft", llvm::FloatABI::Soft) 448 .Case("softfp", llvm::FloatABI::Soft) 449 .Case("hard", llvm::FloatABI::Hard) 450 .Default(llvm::FloatABI::Default); 451 452 // Set FP fusion mode. 453 switch (LangOpts.getDefaultFPContractMode()) { 454 case LangOptions::FPM_Off: 455 // Preserve any contraction performed by the front-end. (Strict performs 456 // splitting of the muladd intrinsic in the backend.) 457 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 458 break; 459 case LangOptions::FPM_On: 460 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 461 break; 462 case LangOptions::FPM_Fast: 463 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 464 break; 465 } 466 467 Options.UseInitArray = CodeGenOpts.UseInitArray; 468 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 469 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 470 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 471 472 // Set EABI version. 473 Options.EABIVersion = TargetOpts.EABIVersion; 474 475 if (LangOpts.SjLjExceptions) 476 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 477 if (LangOpts.SEHExceptions) 478 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 479 if (LangOpts.DWARFExceptions) 480 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 481 if (LangOpts.WasmExceptions) 482 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 483 484 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 485 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 486 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 487 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 488 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 489 Options.FunctionSections = CodeGenOpts.FunctionSections; 490 Options.DataSections = CodeGenOpts.DataSections; 491 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 492 Options.TLSSize = CodeGenOpts.TLSSize; 493 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 494 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 495 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 496 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 497 Options.EmitAddrsig = CodeGenOpts.Addrsig; 498 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 499 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 500 501 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 502 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 503 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 504 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 505 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 506 Options.MCOptions.MCIncrementalLinkerCompatible = 507 CodeGenOpts.IncrementalLinkerCompatible; 508 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 509 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 510 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 511 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 512 Options.MCOptions.ABIName = TargetOpts.ABI; 513 for (const auto &Entry : HSOpts.UserEntries) 514 if (!Entry.IsFramework && 515 (Entry.Group == frontend::IncludeDirGroup::Quoted || 516 Entry.Group == frontend::IncludeDirGroup::Angled || 517 Entry.Group == frontend::IncludeDirGroup::System)) 518 Options.MCOptions.IASSearchPaths.push_back( 519 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 520 } 521 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 522 if (CodeGenOpts.DisableGCov) 523 return None; 524 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 525 return None; 526 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 527 // LLVM's -default-gcov-version flag is set to something invalid. 528 GCOVOptions Options; 529 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 530 Options.EmitData = CodeGenOpts.EmitGcovArcs; 531 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 532 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 533 Options.NoRedZone = CodeGenOpts.DisableRedZone; 534 Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData; 535 Options.Filter = CodeGenOpts.ProfileFilterFiles; 536 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 537 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 538 return Options; 539 } 540 541 static Optional<InstrProfOptions> 542 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 543 const LangOptions &LangOpts) { 544 if (!CodeGenOpts.hasProfileClangInstr()) 545 return None; 546 InstrProfOptions Options; 547 Options.NoRedZone = CodeGenOpts.DisableRedZone; 548 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 549 550 // TODO: Surface the option to emit atomic profile counter increments at 551 // the driver level. 552 Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread); 553 return Options; 554 } 555 556 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 557 legacy::FunctionPassManager &FPM) { 558 // Handle disabling of all LLVM passes, where we want to preserve the 559 // internal module before any optimization. 560 if (CodeGenOpts.DisableLLVMPasses) 561 return; 562 563 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 564 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 565 // are inserted before PMBuilder ones - they'd get the default-constructed 566 // TLI with an unknown target otherwise. 567 Triple TargetTriple(TheModule->getTargetTriple()); 568 std::unique_ptr<TargetLibraryInfoImpl> TLII( 569 createTLII(TargetTriple, CodeGenOpts)); 570 571 // If we reached here with a non-empty index file name, then the index file 572 // was empty and we are not performing ThinLTO backend compilation (used in 573 // testing in a distributed build environment). Drop any the type test 574 // assume sequences inserted for whole program vtables so that codegen doesn't 575 // complain. 576 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 577 MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr, 578 /*ImportSummary=*/nullptr, 579 /*DropTypeTests=*/true)); 580 581 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 582 583 // At O0 and O1 we only run the always inliner which is more efficient. At 584 // higher optimization levels we run the normal inliner. 585 if (CodeGenOpts.OptimizationLevel <= 1) { 586 bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 && 587 !CodeGenOpts.DisableLifetimeMarkers) || 588 LangOpts.Coroutines); 589 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 590 } else { 591 // We do not want to inline hot callsites for SamplePGO module-summary build 592 // because profile annotation will happen again in ThinLTO backend, and we 593 // want the IR of the hot path to match the profile. 594 PMBuilder.Inliner = createFunctionInliningPass( 595 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 596 (!CodeGenOpts.SampleProfileFile.empty() && 597 CodeGenOpts.PrepareForThinLTO)); 598 } 599 600 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 601 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 602 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 603 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 604 605 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 606 // Loop interleaving in the loop vectorizer has historically been set to be 607 // enabled when loop unrolling is enabled. 608 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 609 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 610 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 611 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 612 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 613 614 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 615 616 if (TM) 617 TM->adjustPassManager(PMBuilder); 618 619 if (CodeGenOpts.DebugInfoForProfiling || 620 !CodeGenOpts.SampleProfileFile.empty()) 621 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 622 addAddDiscriminatorsPass); 623 624 // In ObjC ARC mode, add the main ARC optimization passes. 625 if (LangOpts.ObjCAutoRefCount) { 626 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 627 addObjCARCExpandPass); 628 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 629 addObjCARCAPElimPass); 630 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 631 addObjCARCOptPass); 632 } 633 634 if (LangOpts.Coroutines) 635 addCoroutinePassesToExtensionPoints(PMBuilder); 636 637 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 638 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 639 addBoundsCheckingPass); 640 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 641 addBoundsCheckingPass); 642 } 643 644 if (CodeGenOpts.SanitizeCoverageType || 645 CodeGenOpts.SanitizeCoverageIndirectCalls || 646 CodeGenOpts.SanitizeCoverageTraceCmp) { 647 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 648 addSanitizerCoveragePass); 649 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 650 addSanitizerCoveragePass); 651 } 652 653 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 654 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 655 addAddressSanitizerPasses); 656 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 657 addAddressSanitizerPasses); 658 } 659 660 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 661 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 662 addKernelAddressSanitizerPasses); 663 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 664 addKernelAddressSanitizerPasses); 665 } 666 667 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 668 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 669 addHWAddressSanitizerPasses); 670 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 671 addHWAddressSanitizerPasses); 672 } 673 674 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 675 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 676 addKernelHWAddressSanitizerPasses); 677 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 678 addKernelHWAddressSanitizerPasses); 679 } 680 681 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 682 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 683 addMemorySanitizerPass); 684 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 685 addMemorySanitizerPass); 686 } 687 688 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 689 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 690 addKernelMemorySanitizerPass); 691 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 692 addKernelMemorySanitizerPass); 693 } 694 695 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 696 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 697 addThreadSanitizerPass); 698 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 699 addThreadSanitizerPass); 700 } 701 702 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 703 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 704 addDataFlowSanitizerPass); 705 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 706 addDataFlowSanitizerPass); 707 } 708 709 if (LangOpts.Sanitize.has(SanitizerKind::MemTag)) { 710 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 711 addMemTagOptimizationPasses); 712 } 713 714 // Set up the per-function pass manager. 715 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 716 if (CodeGenOpts.VerifyModule) 717 FPM.add(createVerifierPass()); 718 719 // Set up the per-module pass manager. 720 if (!CodeGenOpts.RewriteMapFiles.empty()) 721 addSymbolRewriterPass(CodeGenOpts, &MPM); 722 723 // Add UniqueInternalLinkageNames Pass which renames internal linkage symbols 724 // with unique names. 725 if (CodeGenOpts.UniqueInternalLinkageNames) { 726 MPM.add(createUniqueInternalLinkageNamesPass()); 727 } 728 729 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 730 MPM.add(createGCOVProfilerPass(*Options)); 731 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 732 MPM.add(createStripSymbolsPass(true)); 733 } 734 735 if (Optional<InstrProfOptions> Options = 736 getInstrProfOptions(CodeGenOpts, LangOpts)) 737 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 738 739 bool hasIRInstr = false; 740 if (CodeGenOpts.hasProfileIRInstr()) { 741 PMBuilder.EnablePGOInstrGen = true; 742 hasIRInstr = true; 743 } 744 if (CodeGenOpts.hasProfileCSIRInstr()) { 745 assert(!CodeGenOpts.hasProfileCSIRUse() && 746 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 747 "same time"); 748 assert(!hasIRInstr && 749 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 750 "same time"); 751 PMBuilder.EnablePGOCSInstrGen = true; 752 hasIRInstr = true; 753 } 754 if (hasIRInstr) { 755 if (!CodeGenOpts.InstrProfileOutput.empty()) 756 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 757 else 758 PMBuilder.PGOInstrGen = std::string(DefaultProfileGenName); 759 } 760 if (CodeGenOpts.hasProfileIRUse()) { 761 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 762 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 763 } 764 765 if (!CodeGenOpts.SampleProfileFile.empty()) 766 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 767 768 PMBuilder.populateFunctionPassManager(FPM); 769 PMBuilder.populateModulePassManager(MPM); 770 } 771 772 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 773 SmallVector<const char *, 16> BackendArgs; 774 BackendArgs.push_back("clang"); // Fake program name. 775 if (!CodeGenOpts.DebugPass.empty()) { 776 BackendArgs.push_back("-debug-pass"); 777 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 778 } 779 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 780 BackendArgs.push_back("-limit-float-precision"); 781 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 782 } 783 BackendArgs.push_back(nullptr); 784 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 785 BackendArgs.data()); 786 } 787 788 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 789 // Create the TargetMachine for generating code. 790 std::string Error; 791 std::string Triple = TheModule->getTargetTriple(); 792 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 793 if (!TheTarget) { 794 if (MustCreateTM) 795 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 796 return; 797 } 798 799 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 800 std::string FeaturesStr = 801 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 802 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 803 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 804 805 llvm::TargetOptions Options; 806 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 807 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 808 Options, RM, CM, OptLevel)); 809 } 810 811 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 812 BackendAction Action, 813 raw_pwrite_stream &OS, 814 raw_pwrite_stream *DwoOS) { 815 // Add LibraryInfo. 816 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 817 std::unique_ptr<TargetLibraryInfoImpl> TLII( 818 createTLII(TargetTriple, CodeGenOpts)); 819 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 820 821 // Normal mode, emit a .s or .o file by running the code generator. Note, 822 // this also adds codegenerator level optimization passes. 823 CodeGenFileType CGFT = getCodeGenFileType(Action); 824 825 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 826 // "codegen" passes so that it isn't run multiple times when there is 827 // inlining happening. 828 if (CodeGenOpts.OptimizationLevel > 0) 829 CodeGenPasses.add(createObjCARCContractPass()); 830 831 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 832 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 833 Diags.Report(diag::err_fe_unable_to_interface_with_target); 834 return false; 835 } 836 837 return true; 838 } 839 840 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 841 std::unique_ptr<raw_pwrite_stream> OS) { 842 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 843 844 setCommandLineOpts(CodeGenOpts); 845 846 bool UsesCodeGen = (Action != Backend_EmitNothing && 847 Action != Backend_EmitBC && 848 Action != Backend_EmitLL); 849 CreateTargetMachine(UsesCodeGen); 850 851 if (UsesCodeGen && !TM) 852 return; 853 if (TM) 854 TheModule->setDataLayout(TM->createDataLayout()); 855 856 legacy::PassManager PerModulePasses; 857 PerModulePasses.add( 858 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 859 860 legacy::FunctionPassManager PerFunctionPasses(TheModule); 861 PerFunctionPasses.add( 862 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 863 864 CreatePasses(PerModulePasses, PerFunctionPasses); 865 866 legacy::PassManager CodeGenPasses; 867 CodeGenPasses.add( 868 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 869 870 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 871 872 switch (Action) { 873 case Backend_EmitNothing: 874 break; 875 876 case Backend_EmitBC: 877 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 878 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 879 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 880 if (!ThinLinkOS) 881 return; 882 } 883 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 884 CodeGenOpts.EnableSplitLTOUnit); 885 PerModulePasses.add(createWriteThinLTOBitcodePass( 886 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 887 } else { 888 // Emit a module summary by default for Regular LTO except for ld64 889 // targets 890 bool EmitLTOSummary = 891 (CodeGenOpts.PrepareForLTO && 892 !CodeGenOpts.DisableLLVMPasses && 893 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 894 llvm::Triple::Apple); 895 if (EmitLTOSummary) { 896 if (!TheModule->getModuleFlag("ThinLTO")) 897 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 898 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 899 uint32_t(1)); 900 } 901 902 PerModulePasses.add(createBitcodeWriterPass( 903 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 904 } 905 break; 906 907 case Backend_EmitLL: 908 PerModulePasses.add( 909 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 910 break; 911 912 default: 913 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 914 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 915 if (!DwoOS) 916 return; 917 } 918 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 919 DwoOS ? &DwoOS->os() : nullptr)) 920 return; 921 } 922 923 // Before executing passes, print the final values of the LLVM options. 924 cl::PrintOptionValues(); 925 926 // Run passes. For now we do all passes at once, but eventually we 927 // would like to have the option of streaming code generation. 928 929 { 930 PrettyStackTraceString CrashInfo("Per-function optimization"); 931 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 932 933 PerFunctionPasses.doInitialization(); 934 for (Function &F : *TheModule) 935 if (!F.isDeclaration()) 936 PerFunctionPasses.run(F); 937 PerFunctionPasses.doFinalization(); 938 } 939 940 { 941 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 942 llvm::TimeTraceScope TimeScope("PerModulePasses"); 943 PerModulePasses.run(*TheModule); 944 } 945 946 { 947 PrettyStackTraceString CrashInfo("Code generation"); 948 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 949 CodeGenPasses.run(*TheModule); 950 } 951 952 if (ThinLinkOS) 953 ThinLinkOS->keep(); 954 if (DwoOS) 955 DwoOS->keep(); 956 } 957 958 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 959 switch (Opts.OptimizationLevel) { 960 default: 961 llvm_unreachable("Invalid optimization level!"); 962 963 case 1: 964 return PassBuilder::OptimizationLevel::O1; 965 966 case 2: 967 switch (Opts.OptimizeSize) { 968 default: 969 llvm_unreachable("Invalid optimization level for size!"); 970 971 case 0: 972 return PassBuilder::OptimizationLevel::O2; 973 974 case 1: 975 return PassBuilder::OptimizationLevel::Os; 976 977 case 2: 978 return PassBuilder::OptimizationLevel::Oz; 979 } 980 981 case 3: 982 return PassBuilder::OptimizationLevel::O3; 983 } 984 } 985 986 static void addCoroutinePassesAtO0(ModulePassManager &MPM, 987 const LangOptions &LangOpts, 988 const CodeGenOptions &CodeGenOpts) { 989 if (!LangOpts.Coroutines) 990 return; 991 992 MPM.addPass(createModuleToFunctionPassAdaptor(CoroEarlyPass())); 993 994 CGSCCPassManager CGPM(CodeGenOpts.DebugPassManager); 995 CGPM.addPass(CoroSplitPass()); 996 CGPM.addPass(createCGSCCToFunctionPassAdaptor(CoroElidePass())); 997 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM))); 998 999 MPM.addPass(createModuleToFunctionPassAdaptor(CoroCleanupPass())); 1000 } 1001 1002 static void addSanitizersAtO0(ModulePassManager &MPM, 1003 const Triple &TargetTriple, 1004 const LangOptions &LangOpts, 1005 const CodeGenOptions &CodeGenOpts) { 1006 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1007 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1008 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1009 MPM.addPass(createModuleToFunctionPassAdaptor(AddressSanitizerPass( 1010 CompileKernel, Recover, CodeGenOpts.SanitizeAddressUseAfterScope))); 1011 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1012 MPM.addPass( 1013 ModuleAddressSanitizerPass(CompileKernel, Recover, ModuleUseAfterScope, 1014 CodeGenOpts.SanitizeAddressUseOdrIndicator)); 1015 }; 1016 1017 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1018 ASanPass(SanitizerKind::Address, /*CompileKernel=*/false); 1019 } 1020 1021 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 1022 ASanPass(SanitizerKind::KernelAddress, /*CompileKernel=*/true); 1023 } 1024 1025 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 1026 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Memory); 1027 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1028 MPM.addPass(MemorySanitizerPass({TrackOrigins, Recover, false})); 1029 MPM.addPass(createModuleToFunctionPassAdaptor( 1030 MemorySanitizerPass({TrackOrigins, Recover, false}))); 1031 } 1032 1033 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 1034 MPM.addPass(createModuleToFunctionPassAdaptor( 1035 MemorySanitizerPass({0, false, /*Kernel=*/true}))); 1036 } 1037 1038 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1039 MPM.addPass(ThreadSanitizerPass()); 1040 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1041 } 1042 } 1043 1044 /// A clean version of `EmitAssembly` that uses the new pass manager. 1045 /// 1046 /// Not all features are currently supported in this system, but where 1047 /// necessary it falls back to the legacy pass manager to at least provide 1048 /// basic functionality. 1049 /// 1050 /// This API is planned to have its functionality finished and then to replace 1051 /// `EmitAssembly` at some point in the future when the default switches. 1052 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 1053 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 1054 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 1055 setCommandLineOpts(CodeGenOpts); 1056 1057 bool RequiresCodeGen = (Action != Backend_EmitNothing && 1058 Action != Backend_EmitBC && 1059 Action != Backend_EmitLL); 1060 CreateTargetMachine(RequiresCodeGen); 1061 1062 if (RequiresCodeGen && !TM) 1063 return; 1064 if (TM) 1065 TheModule->setDataLayout(TM->createDataLayout()); 1066 1067 Optional<PGOOptions> PGOOpt; 1068 1069 if (CodeGenOpts.hasProfileIRInstr()) 1070 // -fprofile-generate. 1071 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1072 ? std::string(DefaultProfileGenName) 1073 : CodeGenOpts.InstrProfileOutput, 1074 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1075 CodeGenOpts.DebugInfoForProfiling); 1076 else if (CodeGenOpts.hasProfileIRUse()) { 1077 // -fprofile-use. 1078 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1079 : PGOOptions::NoCSAction; 1080 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1081 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1082 CSAction, CodeGenOpts.DebugInfoForProfiling); 1083 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1084 // -fprofile-sample-use 1085 PGOOpt = 1086 PGOOptions(CodeGenOpts.SampleProfileFile, "", 1087 CodeGenOpts.ProfileRemappingFile, PGOOptions::SampleUse, 1088 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling); 1089 else if (CodeGenOpts.DebugInfoForProfiling) 1090 // -fdebug-info-for-profiling 1091 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1092 PGOOptions::NoCSAction, true); 1093 1094 // Check to see if we want to generate a CS profile. 1095 if (CodeGenOpts.hasProfileCSIRInstr()) { 1096 assert(!CodeGenOpts.hasProfileCSIRUse() && 1097 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1098 "the same time"); 1099 if (PGOOpt.hasValue()) { 1100 assert(PGOOpt->Action != PGOOptions::IRInstr && 1101 PGOOpt->Action != PGOOptions::SampleUse && 1102 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1103 " pass"); 1104 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1105 ? std::string(DefaultProfileGenName) 1106 : CodeGenOpts.InstrProfileOutput; 1107 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1108 } else 1109 PGOOpt = PGOOptions("", 1110 CodeGenOpts.InstrProfileOutput.empty() 1111 ? std::string(DefaultProfileGenName) 1112 : CodeGenOpts.InstrProfileOutput, 1113 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1114 CodeGenOpts.DebugInfoForProfiling); 1115 } 1116 1117 PipelineTuningOptions PTO; 1118 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1119 // For historical reasons, loop interleaving is set to mirror setting for loop 1120 // unrolling. 1121 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1122 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1123 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1124 PTO.CallGraphProfile = CodeGenOpts.CallGraphProfile; 1125 PTO.Coroutines = LangOpts.Coroutines; 1126 1127 PassInstrumentationCallbacks PIC; 1128 StandardInstrumentations SI; 1129 SI.registerCallbacks(PIC); 1130 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 1131 1132 // Attempt to load pass plugins and register their callbacks with PB. 1133 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1134 auto PassPlugin = PassPlugin::Load(PluginFN); 1135 if (PassPlugin) { 1136 PassPlugin->registerPassBuilderCallbacks(PB); 1137 } else { 1138 Diags.Report(diag::err_fe_unable_to_load_plugin) 1139 << PluginFN << toString(PassPlugin.takeError()); 1140 } 1141 } 1142 #define HANDLE_EXTENSION(Ext) \ 1143 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 1144 #include "llvm/Support/Extension.def" 1145 1146 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 1147 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 1148 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 1149 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 1150 1151 // Register the AA manager first so that our version is the one used. 1152 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1153 1154 // Register the target library analysis directly and give it a customized 1155 // preset TLI. 1156 Triple TargetTriple(TheModule->getTargetTriple()); 1157 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1158 createTLII(TargetTriple, CodeGenOpts)); 1159 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1160 1161 // Register all the basic analyses with the managers. 1162 PB.registerModuleAnalyses(MAM); 1163 PB.registerCGSCCAnalyses(CGAM); 1164 PB.registerFunctionAnalyses(FAM); 1165 PB.registerLoopAnalyses(LAM); 1166 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1167 1168 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 1169 1170 if (!CodeGenOpts.DisableLLVMPasses) { 1171 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1172 bool IsLTO = CodeGenOpts.PrepareForLTO; 1173 1174 if (CodeGenOpts.OptimizationLevel == 0) { 1175 // If we reached here with a non-empty index file name, then the index 1176 // file was empty and we are not performing ThinLTO backend compilation 1177 // (used in testing in a distributed build environment). Drop any the type 1178 // test assume sequences inserted for whole program vtables so that 1179 // codegen doesn't complain. 1180 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 1181 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1182 /*ImportSummary=*/nullptr, 1183 /*DropTypeTests=*/true)); 1184 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1185 MPM.addPass(GCOVProfilerPass(*Options)); 1186 if (Optional<InstrProfOptions> Options = 1187 getInstrProfOptions(CodeGenOpts, LangOpts)) 1188 MPM.addPass(InstrProfiling(*Options, false)); 1189 1190 // Build a minimal pipeline based on the semantics required by Clang, 1191 // which is just that always inlining occurs. Further, disable generating 1192 // lifetime intrinsics to avoid enabling further optimizations during 1193 // code generation. 1194 // However, we need to insert lifetime intrinsics to avoid invalid access 1195 // caused by multithreaded coroutines. 1196 MPM.addPass( 1197 AlwaysInlinerPass(/*InsertLifetimeIntrinsics=*/LangOpts.Coroutines)); 1198 1199 // At -O0, we can still do PGO. Add all the requested passes for 1200 // instrumentation PGO, if requested. 1201 if (PGOOpt && (PGOOpt->Action == PGOOptions::IRInstr || 1202 PGOOpt->Action == PGOOptions::IRUse)) 1203 PB.addPGOInstrPassesForO0( 1204 MPM, CodeGenOpts.DebugPassManager, 1205 /* RunProfileGen */ (PGOOpt->Action == PGOOptions::IRInstr), 1206 /* IsCS */ false, PGOOpt->ProfileFile, 1207 PGOOpt->ProfileRemappingFile); 1208 1209 // At -O0 we directly run necessary sanitizer passes. 1210 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1211 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 1212 1213 // Add UniqueInternalLinkageNames Pass which renames internal linkage 1214 // symbols with unique names. 1215 if (CodeGenOpts.UniqueInternalLinkageNames) { 1216 MPM.addPass(UniqueInternalLinkageNamesPass()); 1217 } 1218 1219 // Lastly, add semantically necessary passes for LTO. 1220 if (IsLTO || IsThinLTO) { 1221 MPM.addPass(CanonicalizeAliasesPass()); 1222 MPM.addPass(NameAnonGlobalPass()); 1223 } 1224 } else { 1225 // Map our optimization levels into one of the distinct levels used to 1226 // configure the pipeline. 1227 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1228 1229 // If we reached here with a non-empty index file name, then the index 1230 // file was empty and we are not performing ThinLTO backend compilation 1231 // (used in testing in a distributed build environment). Drop any the type 1232 // test assume sequences inserted for whole program vtables so that 1233 // codegen doesn't complain. 1234 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 1235 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1236 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1237 /*ImportSummary=*/nullptr, 1238 /*DropTypeTests=*/true)); 1239 }); 1240 1241 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1242 MPM.addPass(createModuleToFunctionPassAdaptor( 1243 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1244 }); 1245 1246 // Register callbacks to schedule sanitizer passes at the appropriate part of 1247 // the pipeline. 1248 // FIXME: either handle asan/the remaining sanitizers or error out 1249 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1250 PB.registerScalarOptimizerLateEPCallback( 1251 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1252 FPM.addPass(BoundsCheckingPass()); 1253 }); 1254 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 1255 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1256 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Memory); 1257 PB.registerPipelineStartEPCallback( 1258 [TrackOrigins, Recover](ModulePassManager &MPM) { 1259 MPM.addPass(MemorySanitizerPass({TrackOrigins, Recover, false})); 1260 }); 1261 PB.registerOptimizerLastEPCallback( 1262 [TrackOrigins, Recover](FunctionPassManager &FPM, 1263 PassBuilder::OptimizationLevel Level) { 1264 FPM.addPass(MemorySanitizerPass({TrackOrigins, Recover, false})); 1265 }); 1266 } 1267 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1268 PB.registerPipelineStartEPCallback( 1269 [](ModulePassManager &MPM) { MPM.addPass(ThreadSanitizerPass()); }); 1270 PB.registerOptimizerLastEPCallback( 1271 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1272 FPM.addPass(ThreadSanitizerPass()); 1273 }); 1274 } 1275 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1276 PB.registerPipelineStartEPCallback([&](ModulePassManager &MPM) { 1277 MPM.addPass( 1278 RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1279 }); 1280 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address); 1281 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1282 PB.registerOptimizerLastEPCallback( 1283 [Recover, UseAfterScope](FunctionPassManager &FPM, 1284 PassBuilder::OptimizationLevel Level) { 1285 FPM.addPass(AddressSanitizerPass( 1286 /*CompileKernel=*/false, Recover, UseAfterScope)); 1287 }); 1288 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1289 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1290 PB.registerPipelineStartEPCallback( 1291 [Recover, ModuleUseAfterScope, 1292 UseOdrIndicator](ModulePassManager &MPM) { 1293 MPM.addPass(ModuleAddressSanitizerPass( 1294 /*CompileKernel=*/false, Recover, ModuleUseAfterScope, 1295 UseOdrIndicator)); 1296 }); 1297 } 1298 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1299 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1300 MPM.addPass(GCOVProfilerPass(*Options)); 1301 }); 1302 if (Optional<InstrProfOptions> Options = 1303 getInstrProfOptions(CodeGenOpts, LangOpts)) 1304 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1305 MPM.addPass(InstrProfiling(*Options, false)); 1306 }); 1307 1308 // Add UniqueInternalLinkageNames Pass which renames internal linkage 1309 // symbols with unique names. 1310 if (CodeGenOpts.UniqueInternalLinkageNames) { 1311 MPM.addPass(UniqueInternalLinkageNamesPass()); 1312 } 1313 1314 if (IsThinLTO) { 1315 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 1316 Level, CodeGenOpts.DebugPassManager); 1317 MPM.addPass(CanonicalizeAliasesPass()); 1318 MPM.addPass(NameAnonGlobalPass()); 1319 } else if (IsLTO) { 1320 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 1321 CodeGenOpts.DebugPassManager); 1322 MPM.addPass(CanonicalizeAliasesPass()); 1323 MPM.addPass(NameAnonGlobalPass()); 1324 } else { 1325 MPM = PB.buildPerModuleDefaultPipeline(Level, 1326 CodeGenOpts.DebugPassManager); 1327 } 1328 } 1329 1330 if (CodeGenOpts.SanitizeCoverageType || 1331 CodeGenOpts.SanitizeCoverageIndirectCalls || 1332 CodeGenOpts.SanitizeCoverageTraceCmp) { 1333 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1334 MPM.addPass(ModuleSanitizerCoveragePass(SancovOpts)); 1335 } 1336 1337 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 1338 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 1339 MPM.addPass(HWAddressSanitizerPass( 1340 /*CompileKernel=*/false, Recover)); 1341 } 1342 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 1343 MPM.addPass(HWAddressSanitizerPass( 1344 /*CompileKernel=*/true, /*Recover=*/true)); 1345 } 1346 1347 if (CodeGenOpts.OptimizationLevel > 0 && 1348 LangOpts.Sanitize.has(SanitizerKind::MemTag)) { 1349 MPM.addPass(StackSafetyGlobalAnnotatorPass()); 1350 } 1351 1352 if (CodeGenOpts.OptimizationLevel == 0) { 1353 addCoroutinePassesAtO0(MPM, LangOpts, CodeGenOpts); 1354 addSanitizersAtO0(MPM, TargetTriple, LangOpts, CodeGenOpts); 1355 } 1356 } 1357 1358 // FIXME: We still use the legacy pass manager to do code generation. We 1359 // create that pass manager here and use it as needed below. 1360 legacy::PassManager CodeGenPasses; 1361 bool NeedCodeGen = false; 1362 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1363 1364 // Append any output we need to the pass manager. 1365 switch (Action) { 1366 case Backend_EmitNothing: 1367 break; 1368 1369 case Backend_EmitBC: 1370 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1371 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1372 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1373 if (!ThinLinkOS) 1374 return; 1375 } 1376 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1377 CodeGenOpts.EnableSplitLTOUnit); 1378 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1379 : nullptr)); 1380 } else { 1381 // Emit a module summary by default for Regular LTO except for ld64 1382 // targets 1383 bool EmitLTOSummary = 1384 (CodeGenOpts.PrepareForLTO && 1385 !CodeGenOpts.DisableLLVMPasses && 1386 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1387 llvm::Triple::Apple); 1388 if (EmitLTOSummary) { 1389 if (!TheModule->getModuleFlag("ThinLTO")) 1390 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1391 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1392 uint32_t(1)); 1393 } 1394 MPM.addPass( 1395 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1396 } 1397 break; 1398 1399 case Backend_EmitLL: 1400 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1401 break; 1402 1403 case Backend_EmitAssembly: 1404 case Backend_EmitMCNull: 1405 case Backend_EmitObj: 1406 NeedCodeGen = true; 1407 CodeGenPasses.add( 1408 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1409 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1410 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1411 if (!DwoOS) 1412 return; 1413 } 1414 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1415 DwoOS ? &DwoOS->os() : nullptr)) 1416 // FIXME: Should we handle this error differently? 1417 return; 1418 break; 1419 } 1420 1421 // Before executing passes, print the final values of the LLVM options. 1422 cl::PrintOptionValues(); 1423 1424 // Now that we have all of the passes ready, run them. 1425 { 1426 PrettyStackTraceString CrashInfo("Optimizer"); 1427 MPM.run(*TheModule, MAM); 1428 } 1429 1430 // Now if needed, run the legacy PM for codegen. 1431 if (NeedCodeGen) { 1432 PrettyStackTraceString CrashInfo("Code generation"); 1433 CodeGenPasses.run(*TheModule); 1434 } 1435 1436 if (ThinLinkOS) 1437 ThinLinkOS->keep(); 1438 if (DwoOS) 1439 DwoOS->keep(); 1440 } 1441 1442 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1443 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1444 if (!BMsOrErr) 1445 return BMsOrErr.takeError(); 1446 1447 // The bitcode file may contain multiple modules, we want the one that is 1448 // marked as being the ThinLTO module. 1449 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1450 return *Bm; 1451 1452 return make_error<StringError>("Could not find module summary", 1453 inconvertibleErrorCode()); 1454 } 1455 1456 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1457 for (BitcodeModule &BM : BMs) { 1458 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1459 if (LTOInfo && LTOInfo->IsThinLTO) 1460 return &BM; 1461 } 1462 return nullptr; 1463 } 1464 1465 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1466 const HeaderSearchOptions &HeaderOpts, 1467 const CodeGenOptions &CGOpts, 1468 const clang::TargetOptions &TOpts, 1469 const LangOptions &LOpts, 1470 std::unique_ptr<raw_pwrite_stream> OS, 1471 std::string SampleProfile, 1472 std::string ProfileRemapping, 1473 BackendAction Action) { 1474 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1475 ModuleToDefinedGVSummaries; 1476 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1477 1478 setCommandLineOpts(CGOpts); 1479 1480 // We can simply import the values mentioned in the combined index, since 1481 // we should only invoke this using the individual indexes written out 1482 // via a WriteIndexesThinBackend. 1483 FunctionImporter::ImportMapTy ImportList; 1484 for (auto &GlobalList : *CombinedIndex) { 1485 // Ignore entries for undefined references. 1486 if (GlobalList.second.SummaryList.empty()) 1487 continue; 1488 1489 auto GUID = GlobalList.first; 1490 for (auto &Summary : GlobalList.second.SummaryList) { 1491 // Skip the summaries for the importing module. These are included to 1492 // e.g. record required linkage changes. 1493 if (Summary->modulePath() == M->getModuleIdentifier()) 1494 continue; 1495 // Add an entry to provoke importing by thinBackend. 1496 ImportList[Summary->modulePath()].insert(GUID); 1497 } 1498 } 1499 1500 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1501 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1502 1503 for (auto &I : ImportList) { 1504 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1505 llvm::MemoryBuffer::getFile(I.first()); 1506 if (!MBOrErr) { 1507 errs() << "Error loading imported file '" << I.first() 1508 << "': " << MBOrErr.getError().message() << "\n"; 1509 return; 1510 } 1511 1512 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1513 if (!BMOrErr) { 1514 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1515 errs() << "Error loading imported file '" << I.first() 1516 << "': " << EIB.message() << '\n'; 1517 }); 1518 return; 1519 } 1520 ModuleMap.insert({I.first(), *BMOrErr}); 1521 1522 OwnedImports.push_back(std::move(*MBOrErr)); 1523 } 1524 auto AddStream = [&](size_t Task) { 1525 return std::make_unique<lto::NativeObjectStream>(std::move(OS)); 1526 }; 1527 lto::Config Conf; 1528 if (CGOpts.SaveTempsFilePrefix != "") { 1529 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1530 /* UseInputModulePath */ false)) { 1531 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1532 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1533 << '\n'; 1534 }); 1535 } 1536 } 1537 Conf.CPU = TOpts.CPU; 1538 Conf.CodeModel = getCodeModel(CGOpts); 1539 Conf.MAttrs = TOpts.Features; 1540 Conf.RelocModel = CGOpts.RelocationModel; 1541 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1542 Conf.OptLevel = CGOpts.OptimizationLevel; 1543 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1544 Conf.SampleProfile = std::move(SampleProfile); 1545 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1546 // For historical reasons, loop interleaving is set to mirror setting for loop 1547 // unrolling. 1548 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1549 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1550 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1551 Conf.PTO.CallGraphProfile = CGOpts.CallGraphProfile; 1552 1553 // Context sensitive profile. 1554 if (CGOpts.hasProfileCSIRInstr()) { 1555 Conf.RunCSIRInstr = true; 1556 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1557 } else if (CGOpts.hasProfileCSIRUse()) { 1558 Conf.RunCSIRInstr = false; 1559 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1560 } 1561 1562 Conf.ProfileRemapping = std::move(ProfileRemapping); 1563 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1564 Conf.DebugPassManager = CGOpts.DebugPassManager; 1565 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1566 Conf.RemarksFilename = CGOpts.OptRecordFile; 1567 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1568 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1569 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1570 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1571 switch (Action) { 1572 case Backend_EmitNothing: 1573 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1574 return false; 1575 }; 1576 break; 1577 case Backend_EmitLL: 1578 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1579 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1580 return false; 1581 }; 1582 break; 1583 case Backend_EmitBC: 1584 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1585 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1586 return false; 1587 }; 1588 break; 1589 default: 1590 Conf.CGFileType = getCodeGenFileType(Action); 1591 break; 1592 } 1593 if (Error E = thinBackend( 1594 Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1595 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1596 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1597 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1598 }); 1599 } 1600 } 1601 1602 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1603 const HeaderSearchOptions &HeaderOpts, 1604 const CodeGenOptions &CGOpts, 1605 const clang::TargetOptions &TOpts, 1606 const LangOptions &LOpts, 1607 const llvm::DataLayout &TDesc, Module *M, 1608 BackendAction Action, 1609 std::unique_ptr<raw_pwrite_stream> OS) { 1610 1611 llvm::TimeTraceScope TimeScope("Backend"); 1612 1613 std::unique_ptr<llvm::Module> EmptyModule; 1614 if (!CGOpts.ThinLTOIndexFile.empty()) { 1615 // If we are performing a ThinLTO importing compile, load the function index 1616 // into memory and pass it into runThinLTOBackend, which will run the 1617 // function importer and invoke LTO passes. 1618 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1619 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1620 /*IgnoreEmptyThinLTOIndexFile*/true); 1621 if (!IndexOrErr) { 1622 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1623 "Error loading index file '" + 1624 CGOpts.ThinLTOIndexFile + "': "); 1625 return; 1626 } 1627 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1628 // A null CombinedIndex means we should skip ThinLTO compilation 1629 // (LLVM will optionally ignore empty index files, returning null instead 1630 // of an error). 1631 if (CombinedIndex) { 1632 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1633 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1634 LOpts, std::move(OS), CGOpts.SampleProfileFile, 1635 CGOpts.ProfileRemappingFile, Action); 1636 return; 1637 } 1638 // Distributed indexing detected that nothing from the module is needed 1639 // for the final linking. So we can skip the compilation. We sill need to 1640 // output an empty object file to make sure that a linker does not fail 1641 // trying to read it. Also for some features, like CFI, we must skip 1642 // the compilation as CombinedIndex does not contain all required 1643 // information. 1644 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1645 EmptyModule->setTargetTriple(M->getTargetTriple()); 1646 M = EmptyModule.get(); 1647 } 1648 } 1649 1650 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1651 1652 if (CGOpts.ExperimentalNewPassManager) 1653 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1654 else 1655 AsmHelper.EmitAssembly(Action, std::move(OS)); 1656 1657 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1658 // DataLayout. 1659 if (AsmHelper.TM) { 1660 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1661 if (DLDesc != TDesc.getStringRepresentation()) { 1662 unsigned DiagID = Diags.getCustomDiagID( 1663 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1664 "expected target description '%1'"); 1665 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1666 } 1667 } 1668 } 1669 1670 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1671 // __LLVM,__bitcode section. 1672 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1673 llvm::MemoryBufferRef Buf) { 1674 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1675 return; 1676 llvm::EmbedBitcodeInModule( 1677 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1678 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1679 &CGOpts.CmdArgs); 1680 } 1681