1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "clang/Lex/HeaderSearchOptions.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/ADT/StringSwitch.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/IRPrintingPasses.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/ModuleSummaryIndex.h" 35 #include "llvm/IR/Verifier.h" 36 #include "llvm/LTO/LTOBackend.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/SubtargetFeature.h" 39 #include "llvm/Passes/PassBuilder.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/MemoryBuffer.h" 42 #include "llvm/Support/PrettyStackTrace.h" 43 #include "llvm/Support/TargetRegistry.h" 44 #include "llvm/Support/Timer.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include "llvm/Transforms/Coroutines.h" 49 #include "llvm/Transforms/GCOVProfiler.h" 50 #include "llvm/Transforms/IPO.h" 51 #include "llvm/Transforms/IPO/AlwaysInliner.h" 52 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 53 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 54 #include "llvm/Transforms/Instrumentation.h" 55 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 56 #include "llvm/Transforms/ObjCARC.h" 57 #include "llvm/Transforms/Scalar.h" 58 #include "llvm/Transforms/Scalar/GVN.h" 59 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 60 #include "llvm/Transforms/Utils/SymbolRewriter.h" 61 #include <memory> 62 using namespace clang; 63 using namespace llvm; 64 65 namespace { 66 67 // Default filename used for profile generation. 68 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 69 70 class EmitAssemblyHelper { 71 DiagnosticsEngine &Diags; 72 const HeaderSearchOptions &HSOpts; 73 const CodeGenOptions &CodeGenOpts; 74 const clang::TargetOptions &TargetOpts; 75 const LangOptions &LangOpts; 76 Module *TheModule; 77 78 Timer CodeGenerationTime; 79 80 std::unique_ptr<raw_pwrite_stream> OS; 81 82 TargetIRAnalysis getTargetIRAnalysis() const { 83 if (TM) 84 return TM->getTargetIRAnalysis(); 85 86 return TargetIRAnalysis(); 87 } 88 89 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 90 91 /// Generates the TargetMachine. 92 /// Leaves TM unchanged if it is unable to create the target machine. 93 /// Some of our clang tests specify triples which are not built 94 /// into clang. This is okay because these tests check the generated 95 /// IR, and they require DataLayout which depends on the triple. 96 /// In this case, we allow this method to fail and not report an error. 97 /// When MustCreateTM is used, we print an error if we are unable to load 98 /// the requested target. 99 void CreateTargetMachine(bool MustCreateTM); 100 101 /// Add passes necessary to emit assembly or LLVM IR. 102 /// 103 /// \return True on success. 104 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 105 raw_pwrite_stream &OS); 106 107 public: 108 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 109 const HeaderSearchOptions &HeaderSearchOpts, 110 const CodeGenOptions &CGOpts, 111 const clang::TargetOptions &TOpts, 112 const LangOptions &LOpts, Module *M) 113 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 114 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 115 CodeGenerationTime("codegen", "Code Generation Time") {} 116 117 ~EmitAssemblyHelper() { 118 if (CodeGenOpts.DisableFree) 119 BuryPointer(std::move(TM)); 120 } 121 122 std::unique_ptr<TargetMachine> TM; 123 124 void EmitAssembly(BackendAction Action, 125 std::unique_ptr<raw_pwrite_stream> OS); 126 127 void EmitAssemblyWithNewPassManager(BackendAction Action, 128 std::unique_ptr<raw_pwrite_stream> OS); 129 }; 130 131 // We need this wrapper to access LangOpts and CGOpts from extension functions 132 // that we add to the PassManagerBuilder. 133 class PassManagerBuilderWrapper : public PassManagerBuilder { 134 public: 135 PassManagerBuilderWrapper(const Triple &TargetTriple, 136 const CodeGenOptions &CGOpts, 137 const LangOptions &LangOpts) 138 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 139 LangOpts(LangOpts) {} 140 const Triple &getTargetTriple() const { return TargetTriple; } 141 const CodeGenOptions &getCGOpts() const { return CGOpts; } 142 const LangOptions &getLangOpts() const { return LangOpts; } 143 144 private: 145 const Triple &TargetTriple; 146 const CodeGenOptions &CGOpts; 147 const LangOptions &LangOpts; 148 }; 149 } 150 151 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 152 if (Builder.OptLevel > 0) 153 PM.add(createObjCARCAPElimPass()); 154 } 155 156 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 157 if (Builder.OptLevel > 0) 158 PM.add(createObjCARCExpandPass()); 159 } 160 161 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 162 if (Builder.OptLevel > 0) 163 PM.add(createObjCARCOptPass()); 164 } 165 166 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 167 legacy::PassManagerBase &PM) { 168 PM.add(createAddDiscriminatorsPass()); 169 } 170 171 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 172 legacy::PassManagerBase &PM) { 173 PM.add(createBoundsCheckingLegacyPass()); 174 } 175 176 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 177 legacy::PassManagerBase &PM) { 178 const PassManagerBuilderWrapper &BuilderWrapper = 179 static_cast<const PassManagerBuilderWrapper&>(Builder); 180 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 181 SanitizerCoverageOptions Opts; 182 Opts.CoverageType = 183 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 184 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 185 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 186 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 187 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 188 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 189 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 190 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 191 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 192 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 193 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 194 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 195 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 196 PM.add(createSanitizerCoverageModulePass(Opts)); 197 } 198 199 // Check if ASan should use GC-friendly instrumentation for globals. 200 // First of all, there is no point if -fdata-sections is off (expect for MachO, 201 // where this is not a factor). Also, on ELF this feature requires an assembler 202 // extension that only works with -integrated-as at the moment. 203 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 204 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 205 return false; 206 switch (T.getObjectFormat()) { 207 case Triple::MachO: 208 case Triple::COFF: 209 return true; 210 case Triple::ELF: 211 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 212 default: 213 return false; 214 } 215 } 216 217 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 218 legacy::PassManagerBase &PM) { 219 const PassManagerBuilderWrapper &BuilderWrapper = 220 static_cast<const PassManagerBuilderWrapper&>(Builder); 221 const Triple &T = BuilderWrapper.getTargetTriple(); 222 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 223 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 224 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 225 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 226 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 227 UseAfterScope)); 228 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/ false, Recover, 229 UseGlobalsGC)); 230 } 231 232 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 233 legacy::PassManagerBase &PM) { 234 PM.add(createAddressSanitizerFunctionPass( 235 /*CompileKernel*/ true, 236 /*Recover*/ true, /*UseAfterScope*/ false)); 237 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/true, 238 /*Recover*/true)); 239 } 240 241 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 242 legacy::PassManagerBase &PM) { 243 const PassManagerBuilderWrapper &BuilderWrapper = 244 static_cast<const PassManagerBuilderWrapper &>(Builder); 245 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 246 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 247 PM.add(createHWAddressSanitizerPass(Recover)); 248 } 249 250 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 251 legacy::PassManagerBase &PM) { 252 const PassManagerBuilderWrapper &BuilderWrapper = 253 static_cast<const PassManagerBuilderWrapper&>(Builder); 254 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 255 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 256 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 257 PM.add(createMemorySanitizerPass(TrackOrigins, Recover)); 258 259 // MemorySanitizer inserts complex instrumentation that mostly follows 260 // the logic of the original code, but operates on "shadow" values. 261 // It can benefit from re-running some general purpose optimization passes. 262 if (Builder.OptLevel > 0) { 263 PM.add(createEarlyCSEPass()); 264 PM.add(createReassociatePass()); 265 PM.add(createLICMPass()); 266 PM.add(createGVNPass()); 267 PM.add(createInstructionCombiningPass()); 268 PM.add(createDeadStoreEliminationPass()); 269 } 270 } 271 272 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 273 legacy::PassManagerBase &PM) { 274 PM.add(createThreadSanitizerPass()); 275 } 276 277 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 278 legacy::PassManagerBase &PM) { 279 const PassManagerBuilderWrapper &BuilderWrapper = 280 static_cast<const PassManagerBuilderWrapper&>(Builder); 281 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 282 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 283 } 284 285 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 286 legacy::PassManagerBase &PM) { 287 const PassManagerBuilderWrapper &BuilderWrapper = 288 static_cast<const PassManagerBuilderWrapper&>(Builder); 289 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 290 EfficiencySanitizerOptions Opts; 291 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 292 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 293 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 294 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 295 PM.add(createEfficiencySanitizerPass(Opts)); 296 } 297 298 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 299 const CodeGenOptions &CodeGenOpts) { 300 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 301 if (!CodeGenOpts.SimplifyLibCalls) 302 TLII->disableAllFunctions(); 303 else { 304 // Disable individual libc/libm calls in TargetLibraryInfo. 305 LibFunc F; 306 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 307 if (TLII->getLibFunc(FuncName, F)) 308 TLII->setUnavailable(F); 309 } 310 311 switch (CodeGenOpts.getVecLib()) { 312 case CodeGenOptions::Accelerate: 313 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 314 break; 315 case CodeGenOptions::SVML: 316 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 317 break; 318 default: 319 break; 320 } 321 return TLII; 322 } 323 324 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 325 legacy::PassManager *MPM) { 326 llvm::SymbolRewriter::RewriteDescriptorList DL; 327 328 llvm::SymbolRewriter::RewriteMapParser MapParser; 329 for (const auto &MapFile : Opts.RewriteMapFiles) 330 MapParser.parse(MapFile, &DL); 331 332 MPM->add(createRewriteSymbolsPass(DL)); 333 } 334 335 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 336 switch (CodeGenOpts.OptimizationLevel) { 337 default: 338 llvm_unreachable("Invalid optimization level!"); 339 case 0: 340 return CodeGenOpt::None; 341 case 1: 342 return CodeGenOpt::Less; 343 case 2: 344 return CodeGenOpt::Default; // O2/Os/Oz 345 case 3: 346 return CodeGenOpt::Aggressive; 347 } 348 } 349 350 static Optional<llvm::CodeModel::Model> 351 getCodeModel(const CodeGenOptions &CodeGenOpts) { 352 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 353 .Case("small", llvm::CodeModel::Small) 354 .Case("kernel", llvm::CodeModel::Kernel) 355 .Case("medium", llvm::CodeModel::Medium) 356 .Case("large", llvm::CodeModel::Large) 357 .Case("default", ~1u) 358 .Default(~0u); 359 assert(CodeModel != ~0u && "invalid code model!"); 360 if (CodeModel == ~1u) 361 return None; 362 return static_cast<llvm::CodeModel::Model>(CodeModel); 363 } 364 365 static llvm::Reloc::Model getRelocModel(const CodeGenOptions &CodeGenOpts) { 366 // Keep this synced with the equivalent code in 367 // lib/Frontend/CompilerInvocation.cpp 368 llvm::Optional<llvm::Reloc::Model> RM; 369 RM = llvm::StringSwitch<llvm::Reloc::Model>(CodeGenOpts.RelocationModel) 370 .Case("static", llvm::Reloc::Static) 371 .Case("pic", llvm::Reloc::PIC_) 372 .Case("ropi", llvm::Reloc::ROPI) 373 .Case("rwpi", llvm::Reloc::RWPI) 374 .Case("ropi-rwpi", llvm::Reloc::ROPI_RWPI) 375 .Case("dynamic-no-pic", llvm::Reloc::DynamicNoPIC); 376 assert(RM.hasValue() && "invalid PIC model!"); 377 return *RM; 378 } 379 380 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 381 if (Action == Backend_EmitObj) 382 return TargetMachine::CGFT_ObjectFile; 383 else if (Action == Backend_EmitMCNull) 384 return TargetMachine::CGFT_Null; 385 else { 386 assert(Action == Backend_EmitAssembly && "Invalid action!"); 387 return TargetMachine::CGFT_AssemblyFile; 388 } 389 } 390 391 static void initTargetOptions(llvm::TargetOptions &Options, 392 const CodeGenOptions &CodeGenOpts, 393 const clang::TargetOptions &TargetOpts, 394 const LangOptions &LangOpts, 395 const HeaderSearchOptions &HSOpts) { 396 Options.ThreadModel = 397 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 398 .Case("posix", llvm::ThreadModel::POSIX) 399 .Case("single", llvm::ThreadModel::Single); 400 401 // Set float ABI type. 402 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 403 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 404 "Invalid Floating Point ABI!"); 405 Options.FloatABIType = 406 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 407 .Case("soft", llvm::FloatABI::Soft) 408 .Case("softfp", llvm::FloatABI::Soft) 409 .Case("hard", llvm::FloatABI::Hard) 410 .Default(llvm::FloatABI::Default); 411 412 // Set FP fusion mode. 413 switch (LangOpts.getDefaultFPContractMode()) { 414 case LangOptions::FPC_Off: 415 // Preserve any contraction performed by the front-end. (Strict performs 416 // splitting of the muladd instrinsic in the backend.) 417 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 418 break; 419 case LangOptions::FPC_On: 420 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 421 break; 422 case LangOptions::FPC_Fast: 423 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 424 break; 425 } 426 427 Options.UseInitArray = CodeGenOpts.UseInitArray; 428 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 429 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 430 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 431 432 // Set EABI version. 433 Options.EABIVersion = TargetOpts.EABIVersion; 434 435 if (LangOpts.SjLjExceptions) 436 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 437 if (LangOpts.SEHExceptions) 438 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 439 if (LangOpts.DWARFExceptions) 440 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 441 442 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 443 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 444 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 445 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 446 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 447 Options.FunctionSections = CodeGenOpts.FunctionSections; 448 Options.DataSections = CodeGenOpts.DataSections; 449 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 450 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 451 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 452 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 453 454 if (CodeGenOpts.EnableSplitDwarf) 455 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 456 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 457 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 458 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 459 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 460 Options.MCOptions.MCIncrementalLinkerCompatible = 461 CodeGenOpts.IncrementalLinkerCompatible; 462 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 463 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 464 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 465 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 466 Options.MCOptions.ABIName = TargetOpts.ABI; 467 for (const auto &Entry : HSOpts.UserEntries) 468 if (!Entry.IsFramework && 469 (Entry.Group == frontend::IncludeDirGroup::Quoted || 470 Entry.Group == frontend::IncludeDirGroup::Angled || 471 Entry.Group == frontend::IncludeDirGroup::System)) 472 Options.MCOptions.IASSearchPaths.push_back( 473 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 474 } 475 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 476 if (CodeGenOpts.DisableGCov) 477 return None; 478 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 479 return None; 480 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 481 // LLVM's -default-gcov-version flag is set to something invalid. 482 GCOVOptions Options; 483 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 484 Options.EmitData = CodeGenOpts.EmitGcovArcs; 485 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 486 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 487 Options.NoRedZone = CodeGenOpts.DisableRedZone; 488 Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData; 489 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 490 return Options; 491 } 492 493 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 494 legacy::FunctionPassManager &FPM) { 495 // Handle disabling of all LLVM passes, where we want to preserve the 496 // internal module before any optimization. 497 if (CodeGenOpts.DisableLLVMPasses) 498 return; 499 500 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 501 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 502 // are inserted before PMBuilder ones - they'd get the default-constructed 503 // TLI with an unknown target otherwise. 504 Triple TargetTriple(TheModule->getTargetTriple()); 505 std::unique_ptr<TargetLibraryInfoImpl> TLII( 506 createTLII(TargetTriple, CodeGenOpts)); 507 508 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 509 510 // At O0 and O1 we only run the always inliner which is more efficient. At 511 // higher optimization levels we run the normal inliner. 512 if (CodeGenOpts.OptimizationLevel <= 1) { 513 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 514 !CodeGenOpts.DisableLifetimeMarkers); 515 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 516 } else { 517 // We do not want to inline hot callsites for SamplePGO module-summary build 518 // because profile annotation will happen again in ThinLTO backend, and we 519 // want the IR of the hot path to match the profile. 520 PMBuilder.Inliner = createFunctionInliningPass( 521 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 522 (!CodeGenOpts.SampleProfileFile.empty() && 523 CodeGenOpts.EmitSummaryIndex)); 524 } 525 526 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 527 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 528 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 529 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 530 531 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 532 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 533 PMBuilder.PrepareForThinLTO = CodeGenOpts.EmitSummaryIndex; 534 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 535 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 536 537 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 538 539 if (TM) 540 TM->adjustPassManager(PMBuilder); 541 542 if (CodeGenOpts.DebugInfoForProfiling || 543 !CodeGenOpts.SampleProfileFile.empty()) 544 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 545 addAddDiscriminatorsPass); 546 547 // In ObjC ARC mode, add the main ARC optimization passes. 548 if (LangOpts.ObjCAutoRefCount) { 549 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 550 addObjCARCExpandPass); 551 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 552 addObjCARCAPElimPass); 553 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 554 addObjCARCOptPass); 555 } 556 557 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 558 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 559 addBoundsCheckingPass); 560 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 561 addBoundsCheckingPass); 562 } 563 564 if (CodeGenOpts.SanitizeCoverageType || 565 CodeGenOpts.SanitizeCoverageIndirectCalls || 566 CodeGenOpts.SanitizeCoverageTraceCmp) { 567 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 568 addSanitizerCoveragePass); 569 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 570 addSanitizerCoveragePass); 571 } 572 573 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 574 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 575 addAddressSanitizerPasses); 576 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 577 addAddressSanitizerPasses); 578 } 579 580 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 581 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 582 addKernelAddressSanitizerPasses); 583 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 584 addKernelAddressSanitizerPasses); 585 } 586 587 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 588 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 589 addHWAddressSanitizerPasses); 590 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 591 addHWAddressSanitizerPasses); 592 } 593 594 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 595 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 596 addMemorySanitizerPass); 597 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 598 addMemorySanitizerPass); 599 } 600 601 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 602 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 603 addThreadSanitizerPass); 604 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 605 addThreadSanitizerPass); 606 } 607 608 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 609 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 610 addDataFlowSanitizerPass); 611 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 612 addDataFlowSanitizerPass); 613 } 614 615 if (LangOpts.CoroutinesTS) 616 addCoroutinePassesToExtensionPoints(PMBuilder); 617 618 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 619 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 620 addEfficiencySanitizerPass); 621 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 622 addEfficiencySanitizerPass); 623 } 624 625 // Set up the per-function pass manager. 626 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 627 if (CodeGenOpts.VerifyModule) 628 FPM.add(createVerifierPass()); 629 630 // Set up the per-module pass manager. 631 if (!CodeGenOpts.RewriteMapFiles.empty()) 632 addSymbolRewriterPass(CodeGenOpts, &MPM); 633 634 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 635 MPM.add(createGCOVProfilerPass(*Options)); 636 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 637 MPM.add(createStripSymbolsPass(true)); 638 } 639 640 if (CodeGenOpts.hasProfileClangInstr()) { 641 InstrProfOptions Options; 642 Options.NoRedZone = CodeGenOpts.DisableRedZone; 643 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 644 MPM.add(createInstrProfilingLegacyPass(Options)); 645 } 646 if (CodeGenOpts.hasProfileIRInstr()) { 647 PMBuilder.EnablePGOInstrGen = true; 648 if (!CodeGenOpts.InstrProfileOutput.empty()) 649 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 650 else 651 PMBuilder.PGOInstrGen = DefaultProfileGenName; 652 } 653 if (CodeGenOpts.hasProfileIRUse()) 654 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 655 656 if (!CodeGenOpts.SampleProfileFile.empty()) 657 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 658 659 PMBuilder.populateFunctionPassManager(FPM); 660 PMBuilder.populateModulePassManager(MPM); 661 } 662 663 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 664 SmallVector<const char *, 16> BackendArgs; 665 BackendArgs.push_back("clang"); // Fake program name. 666 if (!CodeGenOpts.DebugPass.empty()) { 667 BackendArgs.push_back("-debug-pass"); 668 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 669 } 670 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 671 BackendArgs.push_back("-limit-float-precision"); 672 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 673 } 674 for (const std::string &BackendOption : CodeGenOpts.BackendOptions) 675 BackendArgs.push_back(BackendOption.c_str()); 676 BackendArgs.push_back(nullptr); 677 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 678 BackendArgs.data()); 679 } 680 681 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 682 // Create the TargetMachine for generating code. 683 std::string Error; 684 std::string Triple = TheModule->getTargetTriple(); 685 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 686 if (!TheTarget) { 687 if (MustCreateTM) 688 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 689 return; 690 } 691 692 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 693 std::string FeaturesStr = 694 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 695 llvm::Reloc::Model RM = getRelocModel(CodeGenOpts); 696 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 697 698 llvm::TargetOptions Options; 699 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 700 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 701 Options, RM, CM, OptLevel)); 702 } 703 704 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 705 BackendAction Action, 706 raw_pwrite_stream &OS) { 707 // Add LibraryInfo. 708 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 709 std::unique_ptr<TargetLibraryInfoImpl> TLII( 710 createTLII(TargetTriple, CodeGenOpts)); 711 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 712 713 // Normal mode, emit a .s or .o file by running the code generator. Note, 714 // this also adds codegenerator level optimization passes. 715 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 716 717 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 718 // "codegen" passes so that it isn't run multiple times when there is 719 // inlining happening. 720 if (CodeGenOpts.OptimizationLevel > 0) 721 CodeGenPasses.add(createObjCARCContractPass()); 722 723 if (TM->addPassesToEmitFile(CodeGenPasses, OS, CGFT, 724 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 725 Diags.Report(diag::err_fe_unable_to_interface_with_target); 726 return false; 727 } 728 729 return true; 730 } 731 732 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 733 std::unique_ptr<raw_pwrite_stream> OS) { 734 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 735 736 setCommandLineOpts(CodeGenOpts); 737 738 bool UsesCodeGen = (Action != Backend_EmitNothing && 739 Action != Backend_EmitBC && 740 Action != Backend_EmitLL); 741 CreateTargetMachine(UsesCodeGen); 742 743 if (UsesCodeGen && !TM) 744 return; 745 if (TM) 746 TheModule->setDataLayout(TM->createDataLayout()); 747 748 legacy::PassManager PerModulePasses; 749 PerModulePasses.add( 750 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 751 752 legacy::FunctionPassManager PerFunctionPasses(TheModule); 753 PerFunctionPasses.add( 754 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 755 756 CreatePasses(PerModulePasses, PerFunctionPasses); 757 758 legacy::PassManager CodeGenPasses; 759 CodeGenPasses.add( 760 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 761 762 std::unique_ptr<raw_fd_ostream> ThinLinkOS; 763 764 switch (Action) { 765 case Backend_EmitNothing: 766 break; 767 768 case Backend_EmitBC: 769 if (CodeGenOpts.EmitSummaryIndex) { 770 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 771 std::error_code EC; 772 ThinLinkOS.reset(new llvm::raw_fd_ostream( 773 CodeGenOpts.ThinLinkBitcodeFile, EC, 774 llvm::sys::fs::F_None)); 775 if (EC) { 776 Diags.Report(diag::err_fe_unable_to_open_output) << CodeGenOpts.ThinLinkBitcodeFile 777 << EC.message(); 778 return; 779 } 780 } 781 PerModulePasses.add( 782 createWriteThinLTOBitcodePass(*OS, ThinLinkOS.get())); 783 } 784 else 785 PerModulePasses.add( 786 createBitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists)); 787 break; 788 789 case Backend_EmitLL: 790 PerModulePasses.add( 791 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 792 break; 793 794 default: 795 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 796 return; 797 } 798 799 // Before executing passes, print the final values of the LLVM options. 800 cl::PrintOptionValues(); 801 802 // Run passes. For now we do all passes at once, but eventually we 803 // would like to have the option of streaming code generation. 804 805 { 806 PrettyStackTraceString CrashInfo("Per-function optimization"); 807 808 PerFunctionPasses.doInitialization(); 809 for (Function &F : *TheModule) 810 if (!F.isDeclaration()) 811 PerFunctionPasses.run(F); 812 PerFunctionPasses.doFinalization(); 813 } 814 815 { 816 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 817 PerModulePasses.run(*TheModule); 818 } 819 820 { 821 PrettyStackTraceString CrashInfo("Code generation"); 822 CodeGenPasses.run(*TheModule); 823 } 824 } 825 826 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 827 switch (Opts.OptimizationLevel) { 828 default: 829 llvm_unreachable("Invalid optimization level!"); 830 831 case 1: 832 return PassBuilder::O1; 833 834 case 2: 835 switch (Opts.OptimizeSize) { 836 default: 837 llvm_unreachable("Invalide optimization level for size!"); 838 839 case 0: 840 return PassBuilder::O2; 841 842 case 1: 843 return PassBuilder::Os; 844 845 case 2: 846 return PassBuilder::Oz; 847 } 848 849 case 3: 850 return PassBuilder::O3; 851 } 852 } 853 854 /// A clean version of `EmitAssembly` that uses the new pass manager. 855 /// 856 /// Not all features are currently supported in this system, but where 857 /// necessary it falls back to the legacy pass manager to at least provide 858 /// basic functionality. 859 /// 860 /// This API is planned to have its functionality finished and then to replace 861 /// `EmitAssembly` at some point in the future when the default switches. 862 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 863 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 864 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 865 setCommandLineOpts(CodeGenOpts); 866 867 // The new pass manager always makes a target machine available to passes 868 // during construction. 869 CreateTargetMachine(/*MustCreateTM*/ true); 870 if (!TM) 871 // This will already be diagnosed, just bail. 872 return; 873 TheModule->setDataLayout(TM->createDataLayout()); 874 875 Optional<PGOOptions> PGOOpt; 876 877 if (CodeGenOpts.hasProfileIRInstr()) 878 // -fprofile-generate. 879 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 880 ? DefaultProfileGenName 881 : CodeGenOpts.InstrProfileOutput, 882 "", "", true, CodeGenOpts.DebugInfoForProfiling); 883 else if (CodeGenOpts.hasProfileIRUse()) 884 // -fprofile-use. 885 PGOOpt = PGOOptions("", CodeGenOpts.ProfileInstrumentUsePath, "", false, 886 CodeGenOpts.DebugInfoForProfiling); 887 else if (!CodeGenOpts.SampleProfileFile.empty()) 888 // -fprofile-sample-use 889 PGOOpt = PGOOptions("", "", CodeGenOpts.SampleProfileFile, false, 890 CodeGenOpts.DebugInfoForProfiling); 891 else if (CodeGenOpts.DebugInfoForProfiling) 892 // -fdebug-info-for-profiling 893 PGOOpt = PGOOptions("", "", "", false, true); 894 895 PassBuilder PB(TM.get(), PGOOpt); 896 897 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 898 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 899 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 900 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 901 902 // Register the AA manager first so that our version is the one used. 903 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 904 905 // Register the target library analysis directly and give it a customized 906 // preset TLI. 907 Triple TargetTriple(TheModule->getTargetTriple()); 908 std::unique_ptr<TargetLibraryInfoImpl> TLII( 909 createTLII(TargetTriple, CodeGenOpts)); 910 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 911 MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 912 913 // Register all the basic analyses with the managers. 914 PB.registerModuleAnalyses(MAM); 915 PB.registerCGSCCAnalyses(CGAM); 916 PB.registerFunctionAnalyses(FAM); 917 PB.registerLoopAnalyses(LAM); 918 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 919 920 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 921 922 if (!CodeGenOpts.DisableLLVMPasses) { 923 bool IsThinLTO = CodeGenOpts.EmitSummaryIndex; 924 bool IsLTO = CodeGenOpts.PrepareForLTO; 925 926 if (CodeGenOpts.OptimizationLevel == 0) { 927 // Build a minimal pipeline based on the semantics required by Clang, 928 // which is just that always inlining occurs. 929 MPM.addPass(AlwaysInlinerPass()); 930 931 // At -O0 we directly run necessary sanitizer passes. 932 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 933 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 934 935 // Lastly, add a semantically necessary pass for ThinLTO. 936 if (IsThinLTO) 937 MPM.addPass(NameAnonGlobalPass()); 938 } else { 939 // Map our optimization levels into one of the distinct levels used to 940 // configure the pipeline. 941 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 942 943 // Register callbacks to schedule sanitizer passes at the appropriate part of 944 // the pipeline. 945 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 946 PB.registerScalarOptimizerLateEPCallback( 947 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 948 FPM.addPass(BoundsCheckingPass()); 949 }); 950 951 if (IsThinLTO) { 952 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 953 Level, CodeGenOpts.DebugPassManager); 954 MPM.addPass(NameAnonGlobalPass()); 955 } else if (IsLTO) { 956 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 957 CodeGenOpts.DebugPassManager); 958 } else { 959 MPM = PB.buildPerModuleDefaultPipeline(Level, 960 CodeGenOpts.DebugPassManager); 961 } 962 } 963 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 964 MPM.addPass(GCOVProfilerPass(*Options)); 965 } 966 } 967 968 // FIXME: We still use the legacy pass manager to do code generation. We 969 // create that pass manager here and use it as needed below. 970 legacy::PassManager CodeGenPasses; 971 bool NeedCodeGen = false; 972 Optional<raw_fd_ostream> ThinLinkOS; 973 974 // Append any output we need to the pass manager. 975 switch (Action) { 976 case Backend_EmitNothing: 977 break; 978 979 case Backend_EmitBC: 980 if (CodeGenOpts.EmitSummaryIndex) { 981 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 982 std::error_code EC; 983 ThinLinkOS.emplace(CodeGenOpts.ThinLinkBitcodeFile, EC, 984 llvm::sys::fs::F_None); 985 if (EC) { 986 Diags.Report(diag::err_fe_unable_to_open_output) 987 << CodeGenOpts.ThinLinkBitcodeFile << EC.message(); 988 return; 989 } 990 } 991 MPM.addPass( 992 ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &*ThinLinkOS : nullptr)); 993 } else { 994 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 995 CodeGenOpts.EmitSummaryIndex, 996 CodeGenOpts.EmitSummaryIndex)); 997 } 998 break; 999 1000 case Backend_EmitLL: 1001 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1002 break; 1003 1004 case Backend_EmitAssembly: 1005 case Backend_EmitMCNull: 1006 case Backend_EmitObj: 1007 NeedCodeGen = true; 1008 CodeGenPasses.add( 1009 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1010 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 1011 // FIXME: Should we handle this error differently? 1012 return; 1013 break; 1014 } 1015 1016 // Before executing passes, print the final values of the LLVM options. 1017 cl::PrintOptionValues(); 1018 1019 // Now that we have all of the passes ready, run them. 1020 { 1021 PrettyStackTraceString CrashInfo("Optimizer"); 1022 MPM.run(*TheModule, MAM); 1023 } 1024 1025 // Now if needed, run the legacy PM for codegen. 1026 if (NeedCodeGen) { 1027 PrettyStackTraceString CrashInfo("Code generation"); 1028 CodeGenPasses.run(*TheModule); 1029 } 1030 } 1031 1032 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1033 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1034 if (!BMsOrErr) 1035 return BMsOrErr.takeError(); 1036 1037 // The bitcode file may contain multiple modules, we want the one that is 1038 // marked as being the ThinLTO module. 1039 for (BitcodeModule &BM : *BMsOrErr) { 1040 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1041 if (LTOInfo && LTOInfo->IsThinLTO) 1042 return BM; 1043 } 1044 1045 return make_error<StringError>("Could not find module summary", 1046 inconvertibleErrorCode()); 1047 } 1048 1049 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1050 const HeaderSearchOptions &HeaderOpts, 1051 const CodeGenOptions &CGOpts, 1052 const clang::TargetOptions &TOpts, 1053 const LangOptions &LOpts, 1054 std::unique_ptr<raw_pwrite_stream> OS, 1055 std::string SampleProfile, 1056 BackendAction Action) { 1057 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1058 ModuleToDefinedGVSummaries; 1059 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1060 1061 setCommandLineOpts(CGOpts); 1062 1063 // We can simply import the values mentioned in the combined index, since 1064 // we should only invoke this using the individual indexes written out 1065 // via a WriteIndexesThinBackend. 1066 FunctionImporter::ImportMapTy ImportList; 1067 for (auto &GlobalList : *CombinedIndex) { 1068 // Ignore entries for undefined references. 1069 if (GlobalList.second.SummaryList.empty()) 1070 continue; 1071 1072 auto GUID = GlobalList.first; 1073 assert(GlobalList.second.SummaryList.size() == 1 && 1074 "Expected individual combined index to have one summary per GUID"); 1075 auto &Summary = GlobalList.second.SummaryList[0]; 1076 // Skip the summaries for the importing module. These are included to 1077 // e.g. record required linkage changes. 1078 if (Summary->modulePath() == M->getModuleIdentifier()) 1079 continue; 1080 // Doesn't matter what value we plug in to the map, just needs an entry 1081 // to provoke importing by thinBackend. 1082 ImportList[Summary->modulePath()][GUID] = 1; 1083 } 1084 1085 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1086 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1087 1088 for (auto &I : ImportList) { 1089 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1090 llvm::MemoryBuffer::getFile(I.first()); 1091 if (!MBOrErr) { 1092 errs() << "Error loading imported file '" << I.first() 1093 << "': " << MBOrErr.getError().message() << "\n"; 1094 return; 1095 } 1096 1097 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1098 if (!BMOrErr) { 1099 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1100 errs() << "Error loading imported file '" << I.first() 1101 << "': " << EIB.message() << '\n'; 1102 }); 1103 return; 1104 } 1105 ModuleMap.insert({I.first(), *BMOrErr}); 1106 1107 OwnedImports.push_back(std::move(*MBOrErr)); 1108 } 1109 auto AddStream = [&](size_t Task) { 1110 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 1111 }; 1112 lto::Config Conf; 1113 Conf.CPU = TOpts.CPU; 1114 Conf.CodeModel = getCodeModel(CGOpts); 1115 Conf.MAttrs = TOpts.Features; 1116 Conf.RelocModel = getRelocModel(CGOpts); 1117 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1118 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1119 Conf.SampleProfile = std::move(SampleProfile); 1120 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1121 Conf.DebugPassManager = CGOpts.DebugPassManager; 1122 switch (Action) { 1123 case Backend_EmitNothing: 1124 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1125 return false; 1126 }; 1127 break; 1128 case Backend_EmitLL: 1129 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1130 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1131 return false; 1132 }; 1133 break; 1134 case Backend_EmitBC: 1135 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1136 WriteBitcodeToFile(M, *OS, CGOpts.EmitLLVMUseLists); 1137 return false; 1138 }; 1139 break; 1140 default: 1141 Conf.CGFileType = getCodeGenFileType(Action); 1142 break; 1143 } 1144 if (Error E = thinBackend( 1145 Conf, 0, AddStream, *M, *CombinedIndex, ImportList, 1146 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1147 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1148 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1149 }); 1150 } 1151 } 1152 1153 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1154 const HeaderSearchOptions &HeaderOpts, 1155 const CodeGenOptions &CGOpts, 1156 const clang::TargetOptions &TOpts, 1157 const LangOptions &LOpts, 1158 const llvm::DataLayout &TDesc, Module *M, 1159 BackendAction Action, 1160 std::unique_ptr<raw_pwrite_stream> OS) { 1161 if (!CGOpts.ThinLTOIndexFile.empty()) { 1162 // If we are performing a ThinLTO importing compile, load the function index 1163 // into memory and pass it into runThinLTOBackend, which will run the 1164 // function importer and invoke LTO passes. 1165 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1166 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1167 /*IgnoreEmptyThinLTOIndexFile*/true); 1168 if (!IndexOrErr) { 1169 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1170 "Error loading index file '" + 1171 CGOpts.ThinLTOIndexFile + "': "); 1172 return; 1173 } 1174 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1175 // A null CombinedIndex means we should skip ThinLTO compilation 1176 // (LLVM will optionally ignore empty index files, returning null instead 1177 // of an error). 1178 bool DoThinLTOBackend = CombinedIndex != nullptr; 1179 if (DoThinLTOBackend) { 1180 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1181 LOpts, std::move(OS), CGOpts.SampleProfileFile, Action); 1182 return; 1183 } 1184 } 1185 1186 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1187 1188 if (CGOpts.ExperimentalNewPassManager) 1189 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1190 else 1191 AsmHelper.EmitAssembly(Action, std::move(OS)); 1192 1193 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1194 // DataLayout. 1195 if (AsmHelper.TM) { 1196 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1197 if (DLDesc != TDesc.getStringRepresentation()) { 1198 unsigned DiagID = Diags.getCustomDiagID( 1199 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1200 "expected target description '%1'"); 1201 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1202 } 1203 } 1204 } 1205 1206 static const char* getSectionNameForBitcode(const Triple &T) { 1207 switch (T.getObjectFormat()) { 1208 case Triple::MachO: 1209 return "__LLVM,__bitcode"; 1210 case Triple::COFF: 1211 case Triple::ELF: 1212 case Triple::Wasm: 1213 case Triple::UnknownObjectFormat: 1214 return ".llvmbc"; 1215 } 1216 llvm_unreachable("Unimplemented ObjectFormatType"); 1217 } 1218 1219 static const char* getSectionNameForCommandline(const Triple &T) { 1220 switch (T.getObjectFormat()) { 1221 case Triple::MachO: 1222 return "__LLVM,__cmdline"; 1223 case Triple::COFF: 1224 case Triple::ELF: 1225 case Triple::Wasm: 1226 case Triple::UnknownObjectFormat: 1227 return ".llvmcmd"; 1228 } 1229 llvm_unreachable("Unimplemented ObjectFormatType"); 1230 } 1231 1232 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1233 // __LLVM,__bitcode section. 1234 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1235 llvm::MemoryBufferRef Buf) { 1236 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1237 return; 1238 1239 // Save llvm.compiler.used and remote it. 1240 SmallVector<Constant*, 2> UsedArray; 1241 SmallSet<GlobalValue*, 4> UsedGlobals; 1242 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1243 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1244 for (auto *GV : UsedGlobals) { 1245 if (GV->getName() != "llvm.embedded.module" && 1246 GV->getName() != "llvm.cmdline") 1247 UsedArray.push_back( 1248 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1249 } 1250 if (Used) 1251 Used->eraseFromParent(); 1252 1253 // Embed the bitcode for the llvm module. 1254 std::string Data; 1255 ArrayRef<uint8_t> ModuleData; 1256 Triple T(M->getTargetTriple()); 1257 // Create a constant that contains the bitcode. 1258 // In case of embedding a marker, ignore the input Buf and use the empty 1259 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1260 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1261 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1262 (const unsigned char *)Buf.getBufferEnd())) { 1263 // If the input is LLVM Assembly, bitcode is produced by serializing 1264 // the module. Use-lists order need to be perserved in this case. 1265 llvm::raw_string_ostream OS(Data); 1266 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 1267 ModuleData = 1268 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1269 } else 1270 // If the input is LLVM bitcode, write the input byte stream directly. 1271 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1272 Buf.getBufferSize()); 1273 } 1274 llvm::Constant *ModuleConstant = 1275 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1276 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1277 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1278 ModuleConstant); 1279 GV->setSection(getSectionNameForBitcode(T)); 1280 UsedArray.push_back( 1281 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1282 if (llvm::GlobalVariable *Old = 1283 M->getGlobalVariable("llvm.embedded.module", true)) { 1284 assert(Old->hasOneUse() && 1285 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1286 GV->takeName(Old); 1287 Old->eraseFromParent(); 1288 } else { 1289 GV->setName("llvm.embedded.module"); 1290 } 1291 1292 // Skip if only bitcode needs to be embedded. 1293 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1294 // Embed command-line options. 1295 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1296 CGOpts.CmdArgs.size()); 1297 llvm::Constant *CmdConstant = 1298 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1299 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1300 llvm::GlobalValue::PrivateLinkage, 1301 CmdConstant); 1302 GV->setSection(getSectionNameForCommandline(T)); 1303 UsedArray.push_back( 1304 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1305 if (llvm::GlobalVariable *Old = 1306 M->getGlobalVariable("llvm.cmdline", true)) { 1307 assert(Old->hasOneUse() && 1308 "llvm.cmdline can only be used once in llvm.compiler.used"); 1309 GV->takeName(Old); 1310 Old->eraseFromParent(); 1311 } else { 1312 GV->setName("llvm.cmdline"); 1313 } 1314 } 1315 1316 if (UsedArray.empty()) 1317 return; 1318 1319 // Recreate llvm.compiler.used. 1320 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1321 auto *NewUsed = new GlobalVariable( 1322 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1323 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1324 NewUsed->setSection("llvm.metadata"); 1325 } 1326