1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "clang/Lex/HeaderSearchOptions.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/ADT/StringSwitch.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/IRPrintingPasses.h" 31 #include "llvm/IR/LegacyPassManager.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSummaryIndex.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/LTO/LTOBackend.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/SubtargetFeature.h" 38 #include "llvm/Passes/PassBuilder.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/MemoryBuffer.h" 41 #include "llvm/Support/PrettyStackTrace.h" 42 #include "llvm/Support/TargetRegistry.h" 43 #include "llvm/Support/Timer.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Target/TargetMachine.h" 46 #include "llvm/Target/TargetOptions.h" 47 #include "llvm/Target/TargetSubtargetInfo.h" 48 #include "llvm/Transforms/Coroutines.h" 49 #include "llvm/Transforms/IPO.h" 50 #include "llvm/Transforms/IPO/AlwaysInliner.h" 51 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 52 #include "llvm/Transforms/Instrumentation.h" 53 #include "llvm/Transforms/ObjCARC.h" 54 #include "llvm/Transforms/Scalar.h" 55 #include "llvm/Transforms/Scalar/GVN.h" 56 #include "llvm/Transforms/Utils/SymbolRewriter.h" 57 #include <memory> 58 using namespace clang; 59 using namespace llvm; 60 61 namespace { 62 63 // Default filename used for profile generation. 64 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 65 66 class EmitAssemblyHelper { 67 DiagnosticsEngine &Diags; 68 const HeaderSearchOptions &HSOpts; 69 const CodeGenOptions &CodeGenOpts; 70 const clang::TargetOptions &TargetOpts; 71 const LangOptions &LangOpts; 72 Module *TheModule; 73 74 Timer CodeGenerationTime; 75 76 std::unique_ptr<raw_pwrite_stream> OS; 77 78 TargetIRAnalysis getTargetIRAnalysis() const { 79 if (TM) 80 return TM->getTargetIRAnalysis(); 81 82 return TargetIRAnalysis(); 83 } 84 85 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 86 87 /// Generates the TargetMachine. 88 /// Leaves TM unchanged if it is unable to create the target machine. 89 /// Some of our clang tests specify triples which are not built 90 /// into clang. This is okay because these tests check the generated 91 /// IR, and they require DataLayout which depends on the triple. 92 /// In this case, we allow this method to fail and not report an error. 93 /// When MustCreateTM is used, we print an error if we are unable to load 94 /// the requested target. 95 void CreateTargetMachine(bool MustCreateTM); 96 97 /// Add passes necessary to emit assembly or LLVM IR. 98 /// 99 /// \return True on success. 100 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 101 raw_pwrite_stream &OS); 102 103 public: 104 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 105 const HeaderSearchOptions &HeaderSearchOpts, 106 const CodeGenOptions &CGOpts, 107 const clang::TargetOptions &TOpts, 108 const LangOptions &LOpts, Module *M) 109 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 110 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 111 CodeGenerationTime("codegen", "Code Generation Time") {} 112 113 ~EmitAssemblyHelper() { 114 if (CodeGenOpts.DisableFree) 115 BuryPointer(std::move(TM)); 116 } 117 118 std::unique_ptr<TargetMachine> TM; 119 120 void EmitAssembly(BackendAction Action, 121 std::unique_ptr<raw_pwrite_stream> OS); 122 123 void EmitAssemblyWithNewPassManager(BackendAction Action, 124 std::unique_ptr<raw_pwrite_stream> OS); 125 }; 126 127 // We need this wrapper to access LangOpts and CGOpts from extension functions 128 // that we add to the PassManagerBuilder. 129 class PassManagerBuilderWrapper : public PassManagerBuilder { 130 public: 131 PassManagerBuilderWrapper(const Triple &TargetTriple, 132 const CodeGenOptions &CGOpts, 133 const LangOptions &LangOpts) 134 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 135 LangOpts(LangOpts) {} 136 const Triple &getTargetTriple() const { return TargetTriple; } 137 const CodeGenOptions &getCGOpts() const { return CGOpts; } 138 const LangOptions &getLangOpts() const { return LangOpts; } 139 140 private: 141 const Triple &TargetTriple; 142 const CodeGenOptions &CGOpts; 143 const LangOptions &LangOpts; 144 }; 145 } 146 147 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 148 if (Builder.OptLevel > 0) 149 PM.add(createObjCARCAPElimPass()); 150 } 151 152 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 153 if (Builder.OptLevel > 0) 154 PM.add(createObjCARCExpandPass()); 155 } 156 157 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 158 if (Builder.OptLevel > 0) 159 PM.add(createObjCARCOptPass()); 160 } 161 162 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 163 legacy::PassManagerBase &PM) { 164 PM.add(createAddDiscriminatorsPass()); 165 } 166 167 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 168 legacy::PassManagerBase &PM) { 169 PM.add(createBoundsCheckingPass()); 170 } 171 172 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 173 legacy::PassManagerBase &PM) { 174 const PassManagerBuilderWrapper &BuilderWrapper = 175 static_cast<const PassManagerBuilderWrapper&>(Builder); 176 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 177 SanitizerCoverageOptions Opts; 178 Opts.CoverageType = 179 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 180 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 181 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 182 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 183 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 184 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 185 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 186 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 187 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 188 PM.add(createSanitizerCoverageModulePass(Opts)); 189 } 190 191 // Check if ASan should use GC-friendly instrumentation for globals. 192 // First of all, there is no point if -fdata-sections is off (expect for MachO, 193 // where this is not a factor). Also, on ELF this feature requires an assembler 194 // extension that only works with -integrated-as at the moment. 195 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 196 switch (T.getObjectFormat()) { 197 case Triple::MachO: 198 case Triple::COFF: 199 return true; 200 case Triple::ELF: 201 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 202 default: 203 return false; 204 } 205 } 206 207 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 208 legacy::PassManagerBase &PM) { 209 const PassManagerBuilderWrapper &BuilderWrapper = 210 static_cast<const PassManagerBuilderWrapper&>(Builder); 211 const Triple &T = BuilderWrapper.getTargetTriple(); 212 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 213 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 214 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 215 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 216 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 217 UseAfterScope)); 218 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/ false, Recover, 219 UseGlobalsGC)); 220 } 221 222 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 223 legacy::PassManagerBase &PM) { 224 PM.add(createAddressSanitizerFunctionPass( 225 /*CompileKernel*/ true, 226 /*Recover*/ true, /*UseAfterScope*/ false)); 227 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/true, 228 /*Recover*/true)); 229 } 230 231 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 232 legacy::PassManagerBase &PM) { 233 const PassManagerBuilderWrapper &BuilderWrapper = 234 static_cast<const PassManagerBuilderWrapper&>(Builder); 235 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 236 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 237 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 238 PM.add(createMemorySanitizerPass(TrackOrigins, Recover)); 239 240 // MemorySanitizer inserts complex instrumentation that mostly follows 241 // the logic of the original code, but operates on "shadow" values. 242 // It can benefit from re-running some general purpose optimization passes. 243 if (Builder.OptLevel > 0) { 244 PM.add(createEarlyCSEPass()); 245 PM.add(createReassociatePass()); 246 PM.add(createLICMPass()); 247 PM.add(createGVNPass()); 248 PM.add(createInstructionCombiningPass()); 249 PM.add(createDeadStoreEliminationPass()); 250 } 251 } 252 253 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 254 legacy::PassManagerBase &PM) { 255 PM.add(createThreadSanitizerPass()); 256 } 257 258 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 259 legacy::PassManagerBase &PM) { 260 const PassManagerBuilderWrapper &BuilderWrapper = 261 static_cast<const PassManagerBuilderWrapper&>(Builder); 262 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 263 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 264 } 265 266 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 267 legacy::PassManagerBase &PM) { 268 const PassManagerBuilderWrapper &BuilderWrapper = 269 static_cast<const PassManagerBuilderWrapper&>(Builder); 270 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 271 EfficiencySanitizerOptions Opts; 272 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 273 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 274 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 275 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 276 PM.add(createEfficiencySanitizerPass(Opts)); 277 } 278 279 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 280 const CodeGenOptions &CodeGenOpts) { 281 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 282 if (!CodeGenOpts.SimplifyLibCalls) 283 TLII->disableAllFunctions(); 284 else { 285 // Disable individual libc/libm calls in TargetLibraryInfo. 286 LibFunc F; 287 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 288 if (TLII->getLibFunc(FuncName, F)) 289 TLII->setUnavailable(F); 290 } 291 292 switch (CodeGenOpts.getVecLib()) { 293 case CodeGenOptions::Accelerate: 294 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 295 break; 296 case CodeGenOptions::SVML: 297 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 298 break; 299 default: 300 break; 301 } 302 return TLII; 303 } 304 305 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 306 legacy::PassManager *MPM) { 307 llvm::SymbolRewriter::RewriteDescriptorList DL; 308 309 llvm::SymbolRewriter::RewriteMapParser MapParser; 310 for (const auto &MapFile : Opts.RewriteMapFiles) 311 MapParser.parse(MapFile, &DL); 312 313 MPM->add(createRewriteSymbolsPass(DL)); 314 } 315 316 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 317 switch (CodeGenOpts.OptimizationLevel) { 318 default: 319 llvm_unreachable("Invalid optimization level!"); 320 case 0: 321 return CodeGenOpt::None; 322 case 1: 323 return CodeGenOpt::Less; 324 case 2: 325 return CodeGenOpt::Default; // O2/Os/Oz 326 case 3: 327 return CodeGenOpt::Aggressive; 328 } 329 } 330 331 static llvm::CodeModel::Model getCodeModel(const CodeGenOptions &CodeGenOpts) { 332 unsigned CodeModel = 333 llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 334 .Case("small", llvm::CodeModel::Small) 335 .Case("kernel", llvm::CodeModel::Kernel) 336 .Case("medium", llvm::CodeModel::Medium) 337 .Case("large", llvm::CodeModel::Large) 338 .Case("default", llvm::CodeModel::Default) 339 .Default(~0u); 340 assert(CodeModel != ~0u && "invalid code model!"); 341 return static_cast<llvm::CodeModel::Model>(CodeModel); 342 } 343 344 static llvm::Reloc::Model getRelocModel(const CodeGenOptions &CodeGenOpts) { 345 // Keep this synced with the equivalent code in 346 // lib/Frontend/CompilerInvocation.cpp 347 llvm::Optional<llvm::Reloc::Model> RM; 348 RM = llvm::StringSwitch<llvm::Reloc::Model>(CodeGenOpts.RelocationModel) 349 .Case("static", llvm::Reloc::Static) 350 .Case("pic", llvm::Reloc::PIC_) 351 .Case("ropi", llvm::Reloc::ROPI) 352 .Case("rwpi", llvm::Reloc::RWPI) 353 .Case("ropi-rwpi", llvm::Reloc::ROPI_RWPI) 354 .Case("dynamic-no-pic", llvm::Reloc::DynamicNoPIC); 355 assert(RM.hasValue() && "invalid PIC model!"); 356 return *RM; 357 } 358 359 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 360 if (Action == Backend_EmitObj) 361 return TargetMachine::CGFT_ObjectFile; 362 else if (Action == Backend_EmitMCNull) 363 return TargetMachine::CGFT_Null; 364 else { 365 assert(Action == Backend_EmitAssembly && "Invalid action!"); 366 return TargetMachine::CGFT_AssemblyFile; 367 } 368 } 369 370 static void initTargetOptions(llvm::TargetOptions &Options, 371 const CodeGenOptions &CodeGenOpts, 372 const clang::TargetOptions &TargetOpts, 373 const LangOptions &LangOpts, 374 const HeaderSearchOptions &HSOpts) { 375 Options.ThreadModel = 376 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 377 .Case("posix", llvm::ThreadModel::POSIX) 378 .Case("single", llvm::ThreadModel::Single); 379 380 // Set float ABI type. 381 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 382 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 383 "Invalid Floating Point ABI!"); 384 Options.FloatABIType = 385 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 386 .Case("soft", llvm::FloatABI::Soft) 387 .Case("softfp", llvm::FloatABI::Soft) 388 .Case("hard", llvm::FloatABI::Hard) 389 .Default(llvm::FloatABI::Default); 390 391 // Set FP fusion mode. 392 switch (LangOpts.getDefaultFPContractMode()) { 393 case LangOptions::FPC_Off: 394 // Preserve any contraction performed by the front-end. (Strict performs 395 // splitting of the muladd instrinsic in the backend.) 396 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 397 break; 398 case LangOptions::FPC_On: 399 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 400 break; 401 case LangOptions::FPC_Fast: 402 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 403 break; 404 } 405 406 Options.UseInitArray = CodeGenOpts.UseInitArray; 407 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 408 Options.CompressDebugSections = CodeGenOpts.CompressDebugSections; 409 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 410 411 // Set EABI version. 412 Options.EABIVersion = llvm::StringSwitch<llvm::EABI>(TargetOpts.EABIVersion) 413 .Case("4", llvm::EABI::EABI4) 414 .Case("5", llvm::EABI::EABI5) 415 .Case("gnu", llvm::EABI::GNU) 416 .Default(llvm::EABI::Default); 417 418 if (LangOpts.SjLjExceptions) 419 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 420 421 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 422 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 423 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 424 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 425 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 426 Options.FunctionSections = CodeGenOpts.FunctionSections; 427 Options.DataSections = CodeGenOpts.DataSections; 428 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 429 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 430 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 431 432 if (CodeGenOpts.EnableSplitDwarf) 433 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 434 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 435 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 436 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 437 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 438 Options.MCOptions.MCIncrementalLinkerCompatible = 439 CodeGenOpts.IncrementalLinkerCompatible; 440 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 441 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 442 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 443 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 444 Options.MCOptions.ABIName = TargetOpts.ABI; 445 for (const auto &Entry : HSOpts.UserEntries) 446 if (!Entry.IsFramework && 447 (Entry.Group == frontend::IncludeDirGroup::Quoted || 448 Entry.Group == frontend::IncludeDirGroup::Angled || 449 Entry.Group == frontend::IncludeDirGroup::System)) 450 Options.MCOptions.IASSearchPaths.push_back( 451 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 452 } 453 454 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 455 legacy::FunctionPassManager &FPM) { 456 // Handle disabling of all LLVM passes, where we want to preserve the 457 // internal module before any optimization. 458 if (CodeGenOpts.DisableLLVMPasses) 459 return; 460 461 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 462 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 463 // are inserted before PMBuilder ones - they'd get the default-constructed 464 // TLI with an unknown target otherwise. 465 Triple TargetTriple(TheModule->getTargetTriple()); 466 std::unique_ptr<TargetLibraryInfoImpl> TLII( 467 createTLII(TargetTriple, CodeGenOpts)); 468 469 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 470 471 // At O0 and O1 we only run the always inliner which is more efficient. At 472 // higher optimization levels we run the normal inliner. 473 if (CodeGenOpts.OptimizationLevel <= 1) { 474 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 475 !CodeGenOpts.DisableLifetimeMarkers); 476 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 477 } else { 478 // We do not want to inline hot callsites for SamplePGO module-summary build 479 // because profile annotation will happen again in ThinLTO backend, and we 480 // want the IR of the hot path to match the profile. 481 PMBuilder.Inliner = createFunctionInliningPass( 482 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 483 (!CodeGenOpts.SampleProfileFile.empty() && 484 CodeGenOpts.EmitSummaryIndex)); 485 } 486 487 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 488 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 489 PMBuilder.BBVectorize = CodeGenOpts.VectorizeBB; 490 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 491 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 492 493 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 494 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 495 PMBuilder.PrepareForThinLTO = CodeGenOpts.EmitSummaryIndex; 496 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 497 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 498 499 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 500 501 if (TM) 502 TM->adjustPassManager(PMBuilder); 503 504 if (CodeGenOpts.DebugInfoForProfiling || 505 !CodeGenOpts.SampleProfileFile.empty()) 506 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 507 addAddDiscriminatorsPass); 508 509 // In ObjC ARC mode, add the main ARC optimization passes. 510 if (LangOpts.ObjCAutoRefCount) { 511 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 512 addObjCARCExpandPass); 513 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 514 addObjCARCAPElimPass); 515 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 516 addObjCARCOptPass); 517 } 518 519 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 520 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 521 addBoundsCheckingPass); 522 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 523 addBoundsCheckingPass); 524 } 525 526 if (CodeGenOpts.SanitizeCoverageType || 527 CodeGenOpts.SanitizeCoverageIndirectCalls || 528 CodeGenOpts.SanitizeCoverageTraceCmp) { 529 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 530 addSanitizerCoveragePass); 531 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 532 addSanitizerCoveragePass); 533 } 534 535 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 536 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 537 addAddressSanitizerPasses); 538 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 539 addAddressSanitizerPasses); 540 } 541 542 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 543 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 544 addKernelAddressSanitizerPasses); 545 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 546 addKernelAddressSanitizerPasses); 547 } 548 549 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 550 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 551 addMemorySanitizerPass); 552 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 553 addMemorySanitizerPass); 554 } 555 556 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 557 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 558 addThreadSanitizerPass); 559 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 560 addThreadSanitizerPass); 561 } 562 563 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 564 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 565 addDataFlowSanitizerPass); 566 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 567 addDataFlowSanitizerPass); 568 } 569 570 if (LangOpts.CoroutinesTS) 571 addCoroutinePassesToExtensionPoints(PMBuilder); 572 573 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 574 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 575 addEfficiencySanitizerPass); 576 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 577 addEfficiencySanitizerPass); 578 } 579 580 // Set up the per-function pass manager. 581 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 582 if (CodeGenOpts.VerifyModule) 583 FPM.add(createVerifierPass()); 584 585 // Set up the per-module pass manager. 586 if (!CodeGenOpts.RewriteMapFiles.empty()) 587 addSymbolRewriterPass(CodeGenOpts, &MPM); 588 589 if (!CodeGenOpts.DisableGCov && 590 (CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)) { 591 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 592 // LLVM's -default-gcov-version flag is set to something invalid. 593 GCOVOptions Options; 594 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 595 Options.EmitData = CodeGenOpts.EmitGcovArcs; 596 memcpy(Options.Version, CodeGenOpts.CoverageVersion, 4); 597 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 598 Options.NoRedZone = CodeGenOpts.DisableRedZone; 599 Options.FunctionNamesInData = 600 !CodeGenOpts.CoverageNoFunctionNamesInData; 601 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 602 MPM.add(createGCOVProfilerPass(Options)); 603 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 604 MPM.add(createStripSymbolsPass(true)); 605 } 606 607 if (CodeGenOpts.hasProfileClangInstr()) { 608 InstrProfOptions Options; 609 Options.NoRedZone = CodeGenOpts.DisableRedZone; 610 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 611 MPM.add(createInstrProfilingLegacyPass(Options)); 612 } 613 if (CodeGenOpts.hasProfileIRInstr()) { 614 PMBuilder.EnablePGOInstrGen = true; 615 if (!CodeGenOpts.InstrProfileOutput.empty()) 616 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 617 else 618 PMBuilder.PGOInstrGen = DefaultProfileGenName; 619 } 620 if (CodeGenOpts.hasProfileIRUse()) 621 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 622 623 if (!CodeGenOpts.SampleProfileFile.empty()) 624 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 625 626 PMBuilder.populateFunctionPassManager(FPM); 627 PMBuilder.populateModulePassManager(MPM); 628 } 629 630 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 631 SmallVector<const char *, 16> BackendArgs; 632 BackendArgs.push_back("clang"); // Fake program name. 633 if (!CodeGenOpts.DebugPass.empty()) { 634 BackendArgs.push_back("-debug-pass"); 635 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 636 } 637 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 638 BackendArgs.push_back("-limit-float-precision"); 639 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 640 } 641 for (const std::string &BackendOption : CodeGenOpts.BackendOptions) 642 BackendArgs.push_back(BackendOption.c_str()); 643 BackendArgs.push_back(nullptr); 644 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 645 BackendArgs.data()); 646 } 647 648 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 649 // Create the TargetMachine for generating code. 650 std::string Error; 651 std::string Triple = TheModule->getTargetTriple(); 652 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 653 if (!TheTarget) { 654 if (MustCreateTM) 655 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 656 return; 657 } 658 659 llvm::CodeModel::Model CM = getCodeModel(CodeGenOpts); 660 std::string FeaturesStr = 661 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 662 llvm::Reloc::Model RM = getRelocModel(CodeGenOpts); 663 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 664 665 llvm::TargetOptions Options; 666 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 667 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 668 Options, RM, CM, OptLevel)); 669 } 670 671 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 672 BackendAction Action, 673 raw_pwrite_stream &OS) { 674 // Add LibraryInfo. 675 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 676 std::unique_ptr<TargetLibraryInfoImpl> TLII( 677 createTLII(TargetTriple, CodeGenOpts)); 678 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 679 680 // Normal mode, emit a .s or .o file by running the code generator. Note, 681 // this also adds codegenerator level optimization passes. 682 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 683 684 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 685 // "codegen" passes so that it isn't run multiple times when there is 686 // inlining happening. 687 if (CodeGenOpts.OptimizationLevel > 0) 688 CodeGenPasses.add(createObjCARCContractPass()); 689 690 if (TM->addPassesToEmitFile(CodeGenPasses, OS, CGFT, 691 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 692 Diags.Report(diag::err_fe_unable_to_interface_with_target); 693 return false; 694 } 695 696 return true; 697 } 698 699 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 700 std::unique_ptr<raw_pwrite_stream> OS) { 701 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 702 703 setCommandLineOpts(CodeGenOpts); 704 705 bool UsesCodeGen = (Action != Backend_EmitNothing && 706 Action != Backend_EmitBC && 707 Action != Backend_EmitLL); 708 CreateTargetMachine(UsesCodeGen); 709 710 if (UsesCodeGen && !TM) 711 return; 712 if (TM) 713 TheModule->setDataLayout(TM->createDataLayout()); 714 715 legacy::PassManager PerModulePasses; 716 PerModulePasses.add( 717 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 718 719 legacy::FunctionPassManager PerFunctionPasses(TheModule); 720 PerFunctionPasses.add( 721 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 722 723 CreatePasses(PerModulePasses, PerFunctionPasses); 724 725 legacy::PassManager CodeGenPasses; 726 CodeGenPasses.add( 727 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 728 729 std::unique_ptr<raw_fd_ostream> ThinLinkOS; 730 731 switch (Action) { 732 case Backend_EmitNothing: 733 break; 734 735 case Backend_EmitBC: 736 if (CodeGenOpts.EmitSummaryIndex) { 737 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 738 std::error_code EC; 739 ThinLinkOS.reset(new llvm::raw_fd_ostream( 740 CodeGenOpts.ThinLinkBitcodeFile, EC, 741 llvm::sys::fs::F_None)); 742 if (EC) { 743 Diags.Report(diag::err_fe_unable_to_open_output) << CodeGenOpts.ThinLinkBitcodeFile 744 << EC.message(); 745 return; 746 } 747 } 748 PerModulePasses.add( 749 createWriteThinLTOBitcodePass(*OS, ThinLinkOS.get())); 750 } 751 else 752 PerModulePasses.add( 753 createBitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists)); 754 break; 755 756 case Backend_EmitLL: 757 PerModulePasses.add( 758 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 759 break; 760 761 default: 762 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 763 return; 764 } 765 766 // Before executing passes, print the final values of the LLVM options. 767 cl::PrintOptionValues(); 768 769 // Run passes. For now we do all passes at once, but eventually we 770 // would like to have the option of streaming code generation. 771 772 { 773 PrettyStackTraceString CrashInfo("Per-function optimization"); 774 775 PerFunctionPasses.doInitialization(); 776 for (Function &F : *TheModule) 777 if (!F.isDeclaration()) 778 PerFunctionPasses.run(F); 779 PerFunctionPasses.doFinalization(); 780 } 781 782 { 783 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 784 PerModulePasses.run(*TheModule); 785 } 786 787 { 788 PrettyStackTraceString CrashInfo("Code generation"); 789 CodeGenPasses.run(*TheModule); 790 } 791 } 792 793 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 794 switch (Opts.OptimizationLevel) { 795 default: 796 llvm_unreachable("Invalid optimization level!"); 797 798 case 1: 799 return PassBuilder::O1; 800 801 case 2: 802 switch (Opts.OptimizeSize) { 803 default: 804 llvm_unreachable("Invalide optimization level for size!"); 805 806 case 0: 807 return PassBuilder::O2; 808 809 case 1: 810 return PassBuilder::Os; 811 812 case 2: 813 return PassBuilder::Oz; 814 } 815 816 case 3: 817 return PassBuilder::O3; 818 } 819 } 820 821 /// A clean version of `EmitAssembly` that uses the new pass manager. 822 /// 823 /// Not all features are currently supported in this system, but where 824 /// necessary it falls back to the legacy pass manager to at least provide 825 /// basic functionality. 826 /// 827 /// This API is planned to have its functionality finished and then to replace 828 /// `EmitAssembly` at some point in the future when the default switches. 829 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 830 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 831 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 832 setCommandLineOpts(CodeGenOpts); 833 834 // The new pass manager always makes a target machine available to passes 835 // during construction. 836 CreateTargetMachine(/*MustCreateTM*/ true); 837 if (!TM) 838 // This will already be diagnosed, just bail. 839 return; 840 TheModule->setDataLayout(TM->createDataLayout()); 841 842 PGOOptions PGOOpt; 843 844 // -fprofile-generate. 845 PGOOpt.RunProfileGen = CodeGenOpts.hasProfileIRInstr(); 846 if (PGOOpt.RunProfileGen) 847 PGOOpt.ProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() ? 848 DefaultProfileGenName : CodeGenOpts.InstrProfileOutput; 849 850 // -fprofile-use. 851 if (CodeGenOpts.hasProfileIRUse()) 852 PGOOpt.ProfileUseFile = CodeGenOpts.ProfileInstrumentUsePath; 853 854 // Only pass a PGO options struct if -fprofile-generate or 855 // -fprofile-use were passed on the cmdline. 856 PassBuilder PB(TM.get(), 857 (PGOOpt.RunProfileGen || 858 !PGOOpt.ProfileUseFile.empty()) ? 859 Optional<PGOOptions>(PGOOpt) : None); 860 861 LoopAnalysisManager LAM; 862 FunctionAnalysisManager FAM; 863 CGSCCAnalysisManager CGAM; 864 ModuleAnalysisManager MAM; 865 866 // Register the AA manager first so that our version is the one used. 867 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 868 869 // Register all the basic analyses with the managers. 870 PB.registerModuleAnalyses(MAM); 871 PB.registerCGSCCAnalyses(CGAM); 872 PB.registerFunctionAnalyses(FAM); 873 PB.registerLoopAnalyses(LAM); 874 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 875 876 ModulePassManager MPM; 877 878 if (!CodeGenOpts.DisableLLVMPasses) { 879 if (CodeGenOpts.OptimizationLevel == 0) { 880 // Build a minimal pipeline based on the semantics required by Clang, 881 // which is just that always inlining occurs. 882 MPM.addPass(AlwaysInlinerPass()); 883 } else { 884 // Otherwise, use the default pass pipeline. We also have to map our 885 // optimization levels into one of the distinct levels used to configure 886 // the pipeline. 887 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 888 889 MPM = PB.buildPerModuleDefaultPipeline(Level); 890 } 891 } 892 893 // FIXME: We still use the legacy pass manager to do code generation. We 894 // create that pass manager here and use it as needed below. 895 legacy::PassManager CodeGenPasses; 896 bool NeedCodeGen = false; 897 898 // Append any output we need to the pass manager. 899 switch (Action) { 900 case Backend_EmitNothing: 901 break; 902 903 case Backend_EmitBC: 904 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 905 CodeGenOpts.EmitSummaryIndex, 906 CodeGenOpts.EmitSummaryIndex)); 907 break; 908 909 case Backend_EmitLL: 910 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 911 break; 912 913 case Backend_EmitAssembly: 914 case Backend_EmitMCNull: 915 case Backend_EmitObj: 916 NeedCodeGen = true; 917 CodeGenPasses.add( 918 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 919 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 920 // FIXME: Should we handle this error differently? 921 return; 922 break; 923 } 924 925 // Before executing passes, print the final values of the LLVM options. 926 cl::PrintOptionValues(); 927 928 // Now that we have all of the passes ready, run them. 929 { 930 PrettyStackTraceString CrashInfo("Optimizer"); 931 MPM.run(*TheModule, MAM); 932 } 933 934 // Now if needed, run the legacy PM for codegen. 935 if (NeedCodeGen) { 936 PrettyStackTraceString CrashInfo("Code generation"); 937 CodeGenPasses.run(*TheModule); 938 } 939 } 940 941 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 942 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 943 if (!BMsOrErr) 944 return BMsOrErr.takeError(); 945 946 // The bitcode file may contain multiple modules, we want the one with a 947 // summary. 948 for (BitcodeModule &BM : *BMsOrErr) { 949 Expected<bool> HasSummary = BM.hasSummary(); 950 if (HasSummary && *HasSummary) 951 return BM; 952 } 953 954 return make_error<StringError>("Could not find module summary", 955 inconvertibleErrorCode()); 956 } 957 958 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 959 const HeaderSearchOptions &HeaderOpts, 960 const CodeGenOptions &CGOpts, 961 const clang::TargetOptions &TOpts, 962 const LangOptions &LOpts, 963 std::unique_ptr<raw_pwrite_stream> OS, 964 std::string SampleProfile, 965 BackendAction Action) { 966 StringMap<std::map<GlobalValue::GUID, GlobalValueSummary *>> 967 ModuleToDefinedGVSummaries; 968 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 969 970 setCommandLineOpts(CGOpts); 971 972 // We can simply import the values mentioned in the combined index, since 973 // we should only invoke this using the individual indexes written out 974 // via a WriteIndexesThinBackend. 975 FunctionImporter::ImportMapTy ImportList; 976 for (auto &GlobalList : *CombinedIndex) { 977 auto GUID = GlobalList.first; 978 assert(GlobalList.second.size() == 1 && 979 "Expected individual combined index to have one summary per GUID"); 980 auto &Summary = GlobalList.second[0]; 981 // Skip the summaries for the importing module. These are included to 982 // e.g. record required linkage changes. 983 if (Summary->modulePath() == M->getModuleIdentifier()) 984 continue; 985 // Doesn't matter what value we plug in to the map, just needs an entry 986 // to provoke importing by thinBackend. 987 ImportList[Summary->modulePath()][GUID] = 1; 988 } 989 990 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 991 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 992 993 for (auto &I : ImportList) { 994 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 995 llvm::MemoryBuffer::getFile(I.first()); 996 if (!MBOrErr) { 997 errs() << "Error loading imported file '" << I.first() 998 << "': " << MBOrErr.getError().message() << "\n"; 999 return; 1000 } 1001 1002 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1003 if (!BMOrErr) { 1004 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1005 errs() << "Error loading imported file '" << I.first() 1006 << "': " << EIB.message() << '\n'; 1007 }); 1008 return; 1009 } 1010 ModuleMap.insert({I.first(), *BMOrErr}); 1011 1012 OwnedImports.push_back(std::move(*MBOrErr)); 1013 } 1014 auto AddStream = [&](size_t Task) { 1015 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 1016 }; 1017 lto::Config Conf; 1018 Conf.CPU = TOpts.CPU; 1019 Conf.CodeModel = getCodeModel(CGOpts); 1020 Conf.MAttrs = TOpts.Features; 1021 Conf.RelocModel = getRelocModel(CGOpts); 1022 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1023 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1024 Conf.SampleProfile = std::move(SampleProfile); 1025 switch (Action) { 1026 case Backend_EmitNothing: 1027 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1028 return false; 1029 }; 1030 break; 1031 case Backend_EmitLL: 1032 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1033 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1034 return false; 1035 }; 1036 break; 1037 case Backend_EmitBC: 1038 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1039 WriteBitcodeToFile(M, *OS, CGOpts.EmitLLVMUseLists); 1040 return false; 1041 }; 1042 break; 1043 default: 1044 Conf.CGFileType = getCodeGenFileType(Action); 1045 break; 1046 } 1047 if (Error E = thinBackend( 1048 Conf, 0, AddStream, *M, *CombinedIndex, ImportList, 1049 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1050 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1051 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1052 }); 1053 } 1054 } 1055 1056 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1057 const HeaderSearchOptions &HeaderOpts, 1058 const CodeGenOptions &CGOpts, 1059 const clang::TargetOptions &TOpts, 1060 const LangOptions &LOpts, 1061 const llvm::DataLayout &TDesc, Module *M, 1062 BackendAction Action, 1063 std::unique_ptr<raw_pwrite_stream> OS) { 1064 if (!CGOpts.ThinLTOIndexFile.empty()) { 1065 // If we are performing a ThinLTO importing compile, load the function index 1066 // into memory and pass it into runThinLTOBackend, which will run the 1067 // function importer and invoke LTO passes. 1068 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1069 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile); 1070 if (!IndexOrErr) { 1071 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1072 "Error loading index file '" + 1073 CGOpts.ThinLTOIndexFile + "': "); 1074 return; 1075 } 1076 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1077 // A null CombinedIndex means we should skip ThinLTO compilation 1078 // (LLVM will optionally ignore empty index files, returning null instead 1079 // of an error). 1080 bool DoThinLTOBackend = CombinedIndex != nullptr; 1081 if (DoThinLTOBackend) { 1082 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1083 LOpts, std::move(OS), CGOpts.SampleProfileFile, Action); 1084 return; 1085 } 1086 } 1087 1088 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1089 1090 if (CGOpts.ExperimentalNewPassManager) 1091 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1092 else 1093 AsmHelper.EmitAssembly(Action, std::move(OS)); 1094 1095 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1096 // DataLayout. 1097 if (AsmHelper.TM) { 1098 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1099 if (DLDesc != TDesc.getStringRepresentation()) { 1100 unsigned DiagID = Diags.getCustomDiagID( 1101 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1102 "expected target description '%1'"); 1103 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1104 } 1105 } 1106 } 1107 1108 static const char* getSectionNameForBitcode(const Triple &T) { 1109 switch (T.getObjectFormat()) { 1110 case Triple::MachO: 1111 return "__LLVM,__bitcode"; 1112 case Triple::COFF: 1113 case Triple::ELF: 1114 case Triple::Wasm: 1115 case Triple::UnknownObjectFormat: 1116 return ".llvmbc"; 1117 } 1118 llvm_unreachable("Unimplemented ObjectFormatType"); 1119 } 1120 1121 static const char* getSectionNameForCommandline(const Triple &T) { 1122 switch (T.getObjectFormat()) { 1123 case Triple::MachO: 1124 return "__LLVM,__cmdline"; 1125 case Triple::COFF: 1126 case Triple::ELF: 1127 case Triple::Wasm: 1128 case Triple::UnknownObjectFormat: 1129 return ".llvmcmd"; 1130 } 1131 llvm_unreachable("Unimplemented ObjectFormatType"); 1132 } 1133 1134 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1135 // __LLVM,__bitcode section. 1136 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1137 llvm::MemoryBufferRef Buf) { 1138 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1139 return; 1140 1141 // Save llvm.compiler.used and remote it. 1142 SmallVector<Constant*, 2> UsedArray; 1143 SmallSet<GlobalValue*, 4> UsedGlobals; 1144 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1145 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1146 for (auto *GV : UsedGlobals) { 1147 if (GV->getName() != "llvm.embedded.module" && 1148 GV->getName() != "llvm.cmdline") 1149 UsedArray.push_back( 1150 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1151 } 1152 if (Used) 1153 Used->eraseFromParent(); 1154 1155 // Embed the bitcode for the llvm module. 1156 std::string Data; 1157 ArrayRef<uint8_t> ModuleData; 1158 Triple T(M->getTargetTriple()); 1159 // Create a constant that contains the bitcode. 1160 // In case of embedding a marker, ignore the input Buf and use the empty 1161 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1162 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1163 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1164 (const unsigned char *)Buf.getBufferEnd())) { 1165 // If the input is LLVM Assembly, bitcode is produced by serializing 1166 // the module. Use-lists order need to be perserved in this case. 1167 llvm::raw_string_ostream OS(Data); 1168 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 1169 ModuleData = 1170 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1171 } else 1172 // If the input is LLVM bitcode, write the input byte stream directly. 1173 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1174 Buf.getBufferSize()); 1175 } 1176 llvm::Constant *ModuleConstant = 1177 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1178 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1179 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1180 ModuleConstant); 1181 GV->setSection(getSectionNameForBitcode(T)); 1182 UsedArray.push_back( 1183 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1184 if (llvm::GlobalVariable *Old = 1185 M->getGlobalVariable("llvm.embedded.module", true)) { 1186 assert(Old->hasOneUse() && 1187 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1188 GV->takeName(Old); 1189 Old->eraseFromParent(); 1190 } else { 1191 GV->setName("llvm.embedded.module"); 1192 } 1193 1194 // Skip if only bitcode needs to be embedded. 1195 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1196 // Embed command-line options. 1197 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1198 CGOpts.CmdArgs.size()); 1199 llvm::Constant *CmdConstant = 1200 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1201 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1202 llvm::GlobalValue::PrivateLinkage, 1203 CmdConstant); 1204 GV->setSection(getSectionNameForCommandline(T)); 1205 UsedArray.push_back( 1206 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1207 if (llvm::GlobalVariable *Old = 1208 M->getGlobalVariable("llvm.cmdline", true)) { 1209 assert(Old->hasOneUse() && 1210 "llvm.cmdline can only be used once in llvm.compiler.used"); 1211 GV->takeName(Old); 1212 Old->eraseFromParent(); 1213 } else { 1214 GV->setName("llvm.cmdline"); 1215 } 1216 } 1217 1218 if (UsedArray.empty()) 1219 return; 1220 1221 // Recreate llvm.compiler.used. 1222 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1223 auto *NewUsed = new GlobalVariable( 1224 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1225 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1226 NewUsed->setSection("llvm.metadata"); 1227 } 1228