1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "clang/Lex/HeaderSearchOptions.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/ADT/StringSwitch.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/IRPrintingPasses.h" 31 #include "llvm/IR/LegacyPassManager.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSummaryIndex.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/LTO/LTOBackend.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/SubtargetFeature.h" 38 #include "llvm/Passes/PassBuilder.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/MemoryBuffer.h" 41 #include "llvm/Support/PrettyStackTrace.h" 42 #include "llvm/Support/TargetRegistry.h" 43 #include "llvm/Support/Timer.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Target/TargetMachine.h" 46 #include "llvm/Target/TargetOptions.h" 47 #include "llvm/Target/TargetSubtargetInfo.h" 48 #include "llvm/Transforms/Coroutines.h" 49 #include "llvm/Transforms/IPO.h" 50 #include "llvm/Transforms/IPO/AlwaysInliner.h" 51 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 52 #include "llvm/Transforms/Instrumentation.h" 53 #include "llvm/Transforms/ObjCARC.h" 54 #include "llvm/Transforms/Scalar.h" 55 #include "llvm/Transforms/Scalar/GVN.h" 56 #include "llvm/Transforms/Utils/SymbolRewriter.h" 57 #include <memory> 58 using namespace clang; 59 using namespace llvm; 60 61 namespace { 62 63 // Default filename used for profile generation. 64 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 65 66 class EmitAssemblyHelper { 67 DiagnosticsEngine &Diags; 68 const HeaderSearchOptions &HSOpts; 69 const CodeGenOptions &CodeGenOpts; 70 const clang::TargetOptions &TargetOpts; 71 const LangOptions &LangOpts; 72 Module *TheModule; 73 74 Timer CodeGenerationTime; 75 76 std::unique_ptr<raw_pwrite_stream> OS; 77 78 TargetIRAnalysis getTargetIRAnalysis() const { 79 if (TM) 80 return TM->getTargetIRAnalysis(); 81 82 return TargetIRAnalysis(); 83 } 84 85 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 86 87 /// Generates the TargetMachine. 88 /// Leaves TM unchanged if it is unable to create the target machine. 89 /// Some of our clang tests specify triples which are not built 90 /// into clang. This is okay because these tests check the generated 91 /// IR, and they require DataLayout which depends on the triple. 92 /// In this case, we allow this method to fail and not report an error. 93 /// When MustCreateTM is used, we print an error if we are unable to load 94 /// the requested target. 95 void CreateTargetMachine(bool MustCreateTM); 96 97 /// Add passes necessary to emit assembly or LLVM IR. 98 /// 99 /// \return True on success. 100 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 101 raw_pwrite_stream &OS); 102 103 public: 104 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 105 const HeaderSearchOptions &HeaderSearchOpts, 106 const CodeGenOptions &CGOpts, 107 const clang::TargetOptions &TOpts, 108 const LangOptions &LOpts, Module *M) 109 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 110 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 111 CodeGenerationTime("codegen", "Code Generation Time") {} 112 113 ~EmitAssemblyHelper() { 114 if (CodeGenOpts.DisableFree) 115 BuryPointer(std::move(TM)); 116 } 117 118 std::unique_ptr<TargetMachine> TM; 119 120 void EmitAssembly(BackendAction Action, 121 std::unique_ptr<raw_pwrite_stream> OS); 122 123 void EmitAssemblyWithNewPassManager(BackendAction Action, 124 std::unique_ptr<raw_pwrite_stream> OS); 125 }; 126 127 // We need this wrapper to access LangOpts and CGOpts from extension functions 128 // that we add to the PassManagerBuilder. 129 class PassManagerBuilderWrapper : public PassManagerBuilder { 130 public: 131 PassManagerBuilderWrapper(const Triple &TargetTriple, 132 const CodeGenOptions &CGOpts, 133 const LangOptions &LangOpts) 134 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 135 LangOpts(LangOpts) {} 136 const Triple &getTargetTriple() const { return TargetTriple; } 137 const CodeGenOptions &getCGOpts() const { return CGOpts; } 138 const LangOptions &getLangOpts() const { return LangOpts; } 139 140 private: 141 const Triple &TargetTriple; 142 const CodeGenOptions &CGOpts; 143 const LangOptions &LangOpts; 144 }; 145 } 146 147 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 148 if (Builder.OptLevel > 0) 149 PM.add(createObjCARCAPElimPass()); 150 } 151 152 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 153 if (Builder.OptLevel > 0) 154 PM.add(createObjCARCExpandPass()); 155 } 156 157 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 158 if (Builder.OptLevel > 0) 159 PM.add(createObjCARCOptPass()); 160 } 161 162 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 163 legacy::PassManagerBase &PM) { 164 PM.add(createAddDiscriminatorsPass()); 165 } 166 167 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 168 legacy::PassManagerBase &PM) { 169 PM.add(createBoundsCheckingPass()); 170 } 171 172 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 173 legacy::PassManagerBase &PM) { 174 const PassManagerBuilderWrapper &BuilderWrapper = 175 static_cast<const PassManagerBuilderWrapper&>(Builder); 176 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 177 SanitizerCoverageOptions Opts; 178 Opts.CoverageType = 179 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 180 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 181 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 182 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 183 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 184 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 185 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 186 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 187 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 188 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 189 PM.add(createSanitizerCoverageModulePass(Opts)); 190 } 191 192 // Check if ASan should use GC-friendly instrumentation for globals. 193 // First of all, there is no point if -fdata-sections is off (expect for MachO, 194 // where this is not a factor). Also, on ELF this feature requires an assembler 195 // extension that only works with -integrated-as at the moment. 196 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 197 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 198 return false; 199 switch (T.getObjectFormat()) { 200 case Triple::MachO: 201 case Triple::COFF: 202 return true; 203 case Triple::ELF: 204 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 205 default: 206 return false; 207 } 208 } 209 210 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 211 legacy::PassManagerBase &PM) { 212 const PassManagerBuilderWrapper &BuilderWrapper = 213 static_cast<const PassManagerBuilderWrapper&>(Builder); 214 const Triple &T = BuilderWrapper.getTargetTriple(); 215 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 216 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 217 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 218 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 219 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 220 UseAfterScope)); 221 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/ false, Recover, 222 UseGlobalsGC)); 223 } 224 225 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 226 legacy::PassManagerBase &PM) { 227 PM.add(createAddressSanitizerFunctionPass( 228 /*CompileKernel*/ true, 229 /*Recover*/ true, /*UseAfterScope*/ false)); 230 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/true, 231 /*Recover*/true)); 232 } 233 234 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 235 legacy::PassManagerBase &PM) { 236 const PassManagerBuilderWrapper &BuilderWrapper = 237 static_cast<const PassManagerBuilderWrapper&>(Builder); 238 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 239 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 240 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 241 PM.add(createMemorySanitizerPass(TrackOrigins, Recover)); 242 243 // MemorySanitizer inserts complex instrumentation that mostly follows 244 // the logic of the original code, but operates on "shadow" values. 245 // It can benefit from re-running some general purpose optimization passes. 246 if (Builder.OptLevel > 0) { 247 PM.add(createEarlyCSEPass()); 248 PM.add(createReassociatePass()); 249 PM.add(createLICMPass()); 250 PM.add(createGVNPass()); 251 PM.add(createInstructionCombiningPass()); 252 PM.add(createDeadStoreEliminationPass()); 253 } 254 } 255 256 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 257 legacy::PassManagerBase &PM) { 258 PM.add(createThreadSanitizerPass()); 259 } 260 261 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 262 legacy::PassManagerBase &PM) { 263 const PassManagerBuilderWrapper &BuilderWrapper = 264 static_cast<const PassManagerBuilderWrapper&>(Builder); 265 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 266 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 267 } 268 269 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 270 legacy::PassManagerBase &PM) { 271 const PassManagerBuilderWrapper &BuilderWrapper = 272 static_cast<const PassManagerBuilderWrapper&>(Builder); 273 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 274 EfficiencySanitizerOptions Opts; 275 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 276 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 277 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 278 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 279 PM.add(createEfficiencySanitizerPass(Opts)); 280 } 281 282 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 283 const CodeGenOptions &CodeGenOpts) { 284 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 285 if (!CodeGenOpts.SimplifyLibCalls) 286 TLII->disableAllFunctions(); 287 else { 288 // Disable individual libc/libm calls in TargetLibraryInfo. 289 LibFunc F; 290 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 291 if (TLII->getLibFunc(FuncName, F)) 292 TLII->setUnavailable(F); 293 } 294 295 switch (CodeGenOpts.getVecLib()) { 296 case CodeGenOptions::Accelerate: 297 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 298 break; 299 case CodeGenOptions::SVML: 300 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 301 break; 302 default: 303 break; 304 } 305 return TLII; 306 } 307 308 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 309 legacy::PassManager *MPM) { 310 llvm::SymbolRewriter::RewriteDescriptorList DL; 311 312 llvm::SymbolRewriter::RewriteMapParser MapParser; 313 for (const auto &MapFile : Opts.RewriteMapFiles) 314 MapParser.parse(MapFile, &DL); 315 316 MPM->add(createRewriteSymbolsPass(DL)); 317 } 318 319 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 320 switch (CodeGenOpts.OptimizationLevel) { 321 default: 322 llvm_unreachable("Invalid optimization level!"); 323 case 0: 324 return CodeGenOpt::None; 325 case 1: 326 return CodeGenOpt::Less; 327 case 2: 328 return CodeGenOpt::Default; // O2/Os/Oz 329 case 3: 330 return CodeGenOpt::Aggressive; 331 } 332 } 333 334 static llvm::CodeModel::Model getCodeModel(const CodeGenOptions &CodeGenOpts) { 335 unsigned CodeModel = 336 llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 337 .Case("small", llvm::CodeModel::Small) 338 .Case("kernel", llvm::CodeModel::Kernel) 339 .Case("medium", llvm::CodeModel::Medium) 340 .Case("large", llvm::CodeModel::Large) 341 .Case("default", llvm::CodeModel::Default) 342 .Default(~0u); 343 assert(CodeModel != ~0u && "invalid code model!"); 344 return static_cast<llvm::CodeModel::Model>(CodeModel); 345 } 346 347 static llvm::Reloc::Model getRelocModel(const CodeGenOptions &CodeGenOpts) { 348 // Keep this synced with the equivalent code in 349 // lib/Frontend/CompilerInvocation.cpp 350 llvm::Optional<llvm::Reloc::Model> RM; 351 RM = llvm::StringSwitch<llvm::Reloc::Model>(CodeGenOpts.RelocationModel) 352 .Case("static", llvm::Reloc::Static) 353 .Case("pic", llvm::Reloc::PIC_) 354 .Case("ropi", llvm::Reloc::ROPI) 355 .Case("rwpi", llvm::Reloc::RWPI) 356 .Case("ropi-rwpi", llvm::Reloc::ROPI_RWPI) 357 .Case("dynamic-no-pic", llvm::Reloc::DynamicNoPIC); 358 assert(RM.hasValue() && "invalid PIC model!"); 359 return *RM; 360 } 361 362 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 363 if (Action == Backend_EmitObj) 364 return TargetMachine::CGFT_ObjectFile; 365 else if (Action == Backend_EmitMCNull) 366 return TargetMachine::CGFT_Null; 367 else { 368 assert(Action == Backend_EmitAssembly && "Invalid action!"); 369 return TargetMachine::CGFT_AssemblyFile; 370 } 371 } 372 373 static void initTargetOptions(llvm::TargetOptions &Options, 374 const CodeGenOptions &CodeGenOpts, 375 const clang::TargetOptions &TargetOpts, 376 const LangOptions &LangOpts, 377 const HeaderSearchOptions &HSOpts) { 378 Options.ThreadModel = 379 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 380 .Case("posix", llvm::ThreadModel::POSIX) 381 .Case("single", llvm::ThreadModel::Single); 382 383 // Set float ABI type. 384 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 385 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 386 "Invalid Floating Point ABI!"); 387 Options.FloatABIType = 388 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 389 .Case("soft", llvm::FloatABI::Soft) 390 .Case("softfp", llvm::FloatABI::Soft) 391 .Case("hard", llvm::FloatABI::Hard) 392 .Default(llvm::FloatABI::Default); 393 394 // Set FP fusion mode. 395 switch (LangOpts.getDefaultFPContractMode()) { 396 case LangOptions::FPC_Off: 397 // Preserve any contraction performed by the front-end. (Strict performs 398 // splitting of the muladd instrinsic in the backend.) 399 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 400 break; 401 case LangOptions::FPC_On: 402 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 403 break; 404 case LangOptions::FPC_Fast: 405 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 406 break; 407 } 408 409 Options.UseInitArray = CodeGenOpts.UseInitArray; 410 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 411 Options.CompressDebugSections = CodeGenOpts.CompressDebugSections; 412 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 413 414 // Set EABI version. 415 Options.EABIVersion = llvm::StringSwitch<llvm::EABI>(TargetOpts.EABIVersion) 416 .Case("4", llvm::EABI::EABI4) 417 .Case("5", llvm::EABI::EABI5) 418 .Case("gnu", llvm::EABI::GNU) 419 .Default(llvm::EABI::Default); 420 421 if (LangOpts.SjLjExceptions) 422 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 423 424 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 425 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 426 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 427 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 428 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 429 Options.FunctionSections = CodeGenOpts.FunctionSections; 430 Options.DataSections = CodeGenOpts.DataSections; 431 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 432 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 433 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 434 435 if (CodeGenOpts.EnableSplitDwarf) 436 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 437 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 438 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 439 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 440 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 441 Options.MCOptions.MCIncrementalLinkerCompatible = 442 CodeGenOpts.IncrementalLinkerCompatible; 443 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 444 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 445 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 446 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 447 Options.MCOptions.ABIName = TargetOpts.ABI; 448 for (const auto &Entry : HSOpts.UserEntries) 449 if (!Entry.IsFramework && 450 (Entry.Group == frontend::IncludeDirGroup::Quoted || 451 Entry.Group == frontend::IncludeDirGroup::Angled || 452 Entry.Group == frontend::IncludeDirGroup::System)) 453 Options.MCOptions.IASSearchPaths.push_back( 454 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 455 } 456 457 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 458 legacy::FunctionPassManager &FPM) { 459 // Handle disabling of all LLVM passes, where we want to preserve the 460 // internal module before any optimization. 461 if (CodeGenOpts.DisableLLVMPasses) 462 return; 463 464 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 465 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 466 // are inserted before PMBuilder ones - they'd get the default-constructed 467 // TLI with an unknown target otherwise. 468 Triple TargetTriple(TheModule->getTargetTriple()); 469 std::unique_ptr<TargetLibraryInfoImpl> TLII( 470 createTLII(TargetTriple, CodeGenOpts)); 471 472 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 473 474 // At O0 and O1 we only run the always inliner which is more efficient. At 475 // higher optimization levels we run the normal inliner. 476 if (CodeGenOpts.OptimizationLevel <= 1) { 477 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 478 !CodeGenOpts.DisableLifetimeMarkers); 479 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 480 } else { 481 // We do not want to inline hot callsites for SamplePGO module-summary build 482 // because profile annotation will happen again in ThinLTO backend, and we 483 // want the IR of the hot path to match the profile. 484 PMBuilder.Inliner = createFunctionInliningPass( 485 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 486 (!CodeGenOpts.SampleProfileFile.empty() && 487 CodeGenOpts.EmitSummaryIndex)); 488 } 489 490 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 491 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 492 PMBuilder.BBVectorize = CodeGenOpts.VectorizeBB; 493 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 494 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 495 496 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 497 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 498 PMBuilder.PrepareForThinLTO = CodeGenOpts.EmitSummaryIndex; 499 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 500 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 501 502 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 503 504 if (TM) 505 TM->adjustPassManager(PMBuilder); 506 507 if (CodeGenOpts.DebugInfoForProfiling || 508 !CodeGenOpts.SampleProfileFile.empty()) 509 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 510 addAddDiscriminatorsPass); 511 512 // In ObjC ARC mode, add the main ARC optimization passes. 513 if (LangOpts.ObjCAutoRefCount) { 514 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 515 addObjCARCExpandPass); 516 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 517 addObjCARCAPElimPass); 518 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 519 addObjCARCOptPass); 520 } 521 522 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 523 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 524 addBoundsCheckingPass); 525 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 526 addBoundsCheckingPass); 527 } 528 529 if (CodeGenOpts.SanitizeCoverageType || 530 CodeGenOpts.SanitizeCoverageIndirectCalls || 531 CodeGenOpts.SanitizeCoverageTraceCmp) { 532 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 533 addSanitizerCoveragePass); 534 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 535 addSanitizerCoveragePass); 536 } 537 538 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 539 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 540 addAddressSanitizerPasses); 541 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 542 addAddressSanitizerPasses); 543 } 544 545 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 546 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 547 addKernelAddressSanitizerPasses); 548 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 549 addKernelAddressSanitizerPasses); 550 } 551 552 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 553 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 554 addMemorySanitizerPass); 555 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 556 addMemorySanitizerPass); 557 } 558 559 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 560 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 561 addThreadSanitizerPass); 562 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 563 addThreadSanitizerPass); 564 } 565 566 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 567 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 568 addDataFlowSanitizerPass); 569 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 570 addDataFlowSanitizerPass); 571 } 572 573 if (LangOpts.CoroutinesTS) 574 addCoroutinePassesToExtensionPoints(PMBuilder); 575 576 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 577 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 578 addEfficiencySanitizerPass); 579 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 580 addEfficiencySanitizerPass); 581 } 582 583 // Set up the per-function pass manager. 584 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 585 if (CodeGenOpts.VerifyModule) 586 FPM.add(createVerifierPass()); 587 588 // Set up the per-module pass manager. 589 if (!CodeGenOpts.RewriteMapFiles.empty()) 590 addSymbolRewriterPass(CodeGenOpts, &MPM); 591 592 if (!CodeGenOpts.DisableGCov && 593 (CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)) { 594 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 595 // LLVM's -default-gcov-version flag is set to something invalid. 596 GCOVOptions Options; 597 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 598 Options.EmitData = CodeGenOpts.EmitGcovArcs; 599 memcpy(Options.Version, CodeGenOpts.CoverageVersion, 4); 600 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 601 Options.NoRedZone = CodeGenOpts.DisableRedZone; 602 Options.FunctionNamesInData = 603 !CodeGenOpts.CoverageNoFunctionNamesInData; 604 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 605 MPM.add(createGCOVProfilerPass(Options)); 606 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 607 MPM.add(createStripSymbolsPass(true)); 608 } 609 610 if (CodeGenOpts.hasProfileClangInstr()) { 611 InstrProfOptions Options; 612 Options.NoRedZone = CodeGenOpts.DisableRedZone; 613 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 614 MPM.add(createInstrProfilingLegacyPass(Options)); 615 } 616 if (CodeGenOpts.hasProfileIRInstr()) { 617 PMBuilder.EnablePGOInstrGen = true; 618 if (!CodeGenOpts.InstrProfileOutput.empty()) 619 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 620 else 621 PMBuilder.PGOInstrGen = DefaultProfileGenName; 622 } 623 if (CodeGenOpts.hasProfileIRUse()) 624 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 625 626 if (!CodeGenOpts.SampleProfileFile.empty()) 627 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 628 629 PMBuilder.populateFunctionPassManager(FPM); 630 PMBuilder.populateModulePassManager(MPM); 631 } 632 633 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 634 SmallVector<const char *, 16> BackendArgs; 635 BackendArgs.push_back("clang"); // Fake program name. 636 if (!CodeGenOpts.DebugPass.empty()) { 637 BackendArgs.push_back("-debug-pass"); 638 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 639 } 640 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 641 BackendArgs.push_back("-limit-float-precision"); 642 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 643 } 644 for (const std::string &BackendOption : CodeGenOpts.BackendOptions) 645 BackendArgs.push_back(BackendOption.c_str()); 646 BackendArgs.push_back(nullptr); 647 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 648 BackendArgs.data()); 649 } 650 651 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 652 // Create the TargetMachine for generating code. 653 std::string Error; 654 std::string Triple = TheModule->getTargetTriple(); 655 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 656 if (!TheTarget) { 657 if (MustCreateTM) 658 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 659 return; 660 } 661 662 llvm::CodeModel::Model CM = getCodeModel(CodeGenOpts); 663 std::string FeaturesStr = 664 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 665 llvm::Reloc::Model RM = getRelocModel(CodeGenOpts); 666 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 667 668 llvm::TargetOptions Options; 669 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 670 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 671 Options, RM, CM, OptLevel)); 672 } 673 674 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 675 BackendAction Action, 676 raw_pwrite_stream &OS) { 677 // Add LibraryInfo. 678 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 679 std::unique_ptr<TargetLibraryInfoImpl> TLII( 680 createTLII(TargetTriple, CodeGenOpts)); 681 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 682 683 // Normal mode, emit a .s or .o file by running the code generator. Note, 684 // this also adds codegenerator level optimization passes. 685 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 686 687 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 688 // "codegen" passes so that it isn't run multiple times when there is 689 // inlining happening. 690 if (CodeGenOpts.OptimizationLevel > 0) 691 CodeGenPasses.add(createObjCARCContractPass()); 692 693 if (TM->addPassesToEmitFile(CodeGenPasses, OS, CGFT, 694 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 695 Diags.Report(diag::err_fe_unable_to_interface_with_target); 696 return false; 697 } 698 699 return true; 700 } 701 702 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 703 std::unique_ptr<raw_pwrite_stream> OS) { 704 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 705 706 setCommandLineOpts(CodeGenOpts); 707 708 bool UsesCodeGen = (Action != Backend_EmitNothing && 709 Action != Backend_EmitBC && 710 Action != Backend_EmitLL); 711 CreateTargetMachine(UsesCodeGen); 712 713 if (UsesCodeGen && !TM) 714 return; 715 if (TM) 716 TheModule->setDataLayout(TM->createDataLayout()); 717 718 legacy::PassManager PerModulePasses; 719 PerModulePasses.add( 720 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 721 722 legacy::FunctionPassManager PerFunctionPasses(TheModule); 723 PerFunctionPasses.add( 724 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 725 726 CreatePasses(PerModulePasses, PerFunctionPasses); 727 728 legacy::PassManager CodeGenPasses; 729 CodeGenPasses.add( 730 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 731 732 std::unique_ptr<raw_fd_ostream> ThinLinkOS; 733 734 switch (Action) { 735 case Backend_EmitNothing: 736 break; 737 738 case Backend_EmitBC: 739 if (CodeGenOpts.EmitSummaryIndex) { 740 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 741 std::error_code EC; 742 ThinLinkOS.reset(new llvm::raw_fd_ostream( 743 CodeGenOpts.ThinLinkBitcodeFile, EC, 744 llvm::sys::fs::F_None)); 745 if (EC) { 746 Diags.Report(diag::err_fe_unable_to_open_output) << CodeGenOpts.ThinLinkBitcodeFile 747 << EC.message(); 748 return; 749 } 750 } 751 PerModulePasses.add( 752 createWriteThinLTOBitcodePass(*OS, ThinLinkOS.get())); 753 } 754 else 755 PerModulePasses.add( 756 createBitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists)); 757 break; 758 759 case Backend_EmitLL: 760 PerModulePasses.add( 761 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 762 break; 763 764 default: 765 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 766 return; 767 } 768 769 // Before executing passes, print the final values of the LLVM options. 770 cl::PrintOptionValues(); 771 772 // Run passes. For now we do all passes at once, but eventually we 773 // would like to have the option of streaming code generation. 774 775 { 776 PrettyStackTraceString CrashInfo("Per-function optimization"); 777 778 PerFunctionPasses.doInitialization(); 779 for (Function &F : *TheModule) 780 if (!F.isDeclaration()) 781 PerFunctionPasses.run(F); 782 PerFunctionPasses.doFinalization(); 783 } 784 785 { 786 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 787 PerModulePasses.run(*TheModule); 788 } 789 790 { 791 PrettyStackTraceString CrashInfo("Code generation"); 792 CodeGenPasses.run(*TheModule); 793 } 794 } 795 796 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 797 switch (Opts.OptimizationLevel) { 798 default: 799 llvm_unreachable("Invalid optimization level!"); 800 801 case 1: 802 return PassBuilder::O1; 803 804 case 2: 805 switch (Opts.OptimizeSize) { 806 default: 807 llvm_unreachable("Invalide optimization level for size!"); 808 809 case 0: 810 return PassBuilder::O2; 811 812 case 1: 813 return PassBuilder::Os; 814 815 case 2: 816 return PassBuilder::Oz; 817 } 818 819 case 3: 820 return PassBuilder::O3; 821 } 822 } 823 824 /// A clean version of `EmitAssembly` that uses the new pass manager. 825 /// 826 /// Not all features are currently supported in this system, but where 827 /// necessary it falls back to the legacy pass manager to at least provide 828 /// basic functionality. 829 /// 830 /// This API is planned to have its functionality finished and then to replace 831 /// `EmitAssembly` at some point in the future when the default switches. 832 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 833 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 834 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 835 setCommandLineOpts(CodeGenOpts); 836 837 // The new pass manager always makes a target machine available to passes 838 // during construction. 839 CreateTargetMachine(/*MustCreateTM*/ true); 840 if (!TM) 841 // This will already be diagnosed, just bail. 842 return; 843 TheModule->setDataLayout(TM->createDataLayout()); 844 845 PGOOptions PGOOpt; 846 847 // -fprofile-generate. 848 PGOOpt.RunProfileGen = CodeGenOpts.hasProfileIRInstr(); 849 if (PGOOpt.RunProfileGen) 850 PGOOpt.ProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() ? 851 DefaultProfileGenName : CodeGenOpts.InstrProfileOutput; 852 853 // -fprofile-use. 854 if (CodeGenOpts.hasProfileIRUse()) 855 PGOOpt.ProfileUseFile = CodeGenOpts.ProfileInstrumentUsePath; 856 857 // Only pass a PGO options struct if -fprofile-generate or 858 // -fprofile-use were passed on the cmdline. 859 PassBuilder PB(TM.get(), 860 (PGOOpt.RunProfileGen || 861 !PGOOpt.ProfileUseFile.empty()) ? 862 Optional<PGOOptions>(PGOOpt) : None); 863 864 LoopAnalysisManager LAM; 865 FunctionAnalysisManager FAM; 866 CGSCCAnalysisManager CGAM; 867 ModuleAnalysisManager MAM; 868 869 // Register the AA manager first so that our version is the one used. 870 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 871 872 // Register all the basic analyses with the managers. 873 PB.registerModuleAnalyses(MAM); 874 PB.registerCGSCCAnalyses(CGAM); 875 PB.registerFunctionAnalyses(FAM); 876 PB.registerLoopAnalyses(LAM); 877 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 878 879 ModulePassManager MPM; 880 881 if (!CodeGenOpts.DisableLLVMPasses) { 882 if (CodeGenOpts.OptimizationLevel == 0) { 883 // Build a minimal pipeline based on the semantics required by Clang, 884 // which is just that always inlining occurs. 885 MPM.addPass(AlwaysInlinerPass()); 886 } else { 887 // Otherwise, use the default pass pipeline. We also have to map our 888 // optimization levels into one of the distinct levels used to configure 889 // the pipeline. 890 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 891 892 MPM = PB.buildPerModuleDefaultPipeline(Level); 893 } 894 } 895 896 // FIXME: We still use the legacy pass manager to do code generation. We 897 // create that pass manager here and use it as needed below. 898 legacy::PassManager CodeGenPasses; 899 bool NeedCodeGen = false; 900 901 // Append any output we need to the pass manager. 902 switch (Action) { 903 case Backend_EmitNothing: 904 break; 905 906 case Backend_EmitBC: 907 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 908 CodeGenOpts.EmitSummaryIndex, 909 CodeGenOpts.EmitSummaryIndex)); 910 break; 911 912 case Backend_EmitLL: 913 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 914 break; 915 916 case Backend_EmitAssembly: 917 case Backend_EmitMCNull: 918 case Backend_EmitObj: 919 NeedCodeGen = true; 920 CodeGenPasses.add( 921 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 922 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 923 // FIXME: Should we handle this error differently? 924 return; 925 break; 926 } 927 928 // Before executing passes, print the final values of the LLVM options. 929 cl::PrintOptionValues(); 930 931 // Now that we have all of the passes ready, run them. 932 { 933 PrettyStackTraceString CrashInfo("Optimizer"); 934 MPM.run(*TheModule, MAM); 935 } 936 937 // Now if needed, run the legacy PM for codegen. 938 if (NeedCodeGen) { 939 PrettyStackTraceString CrashInfo("Code generation"); 940 CodeGenPasses.run(*TheModule); 941 } 942 } 943 944 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 945 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 946 if (!BMsOrErr) 947 return BMsOrErr.takeError(); 948 949 // The bitcode file may contain multiple modules, we want the one with a 950 // summary. 951 for (BitcodeModule &BM : *BMsOrErr) { 952 Expected<bool> HasSummary = BM.hasSummary(); 953 if (HasSummary && *HasSummary) 954 return BM; 955 } 956 957 return make_error<StringError>("Could not find module summary", 958 inconvertibleErrorCode()); 959 } 960 961 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 962 const HeaderSearchOptions &HeaderOpts, 963 const CodeGenOptions &CGOpts, 964 const clang::TargetOptions &TOpts, 965 const LangOptions &LOpts, 966 std::unique_ptr<raw_pwrite_stream> OS, 967 std::string SampleProfile, 968 BackendAction Action) { 969 StringMap<std::map<GlobalValue::GUID, GlobalValueSummary *>> 970 ModuleToDefinedGVSummaries; 971 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 972 973 setCommandLineOpts(CGOpts); 974 975 // We can simply import the values mentioned in the combined index, since 976 // we should only invoke this using the individual indexes written out 977 // via a WriteIndexesThinBackend. 978 FunctionImporter::ImportMapTy ImportList; 979 for (auto &GlobalList : *CombinedIndex) { 980 // Ignore entries for undefined references. 981 if (GlobalList.second.SummaryList.empty()) 982 continue; 983 984 auto GUID = GlobalList.first; 985 assert(GlobalList.second.SummaryList.size() == 1 && 986 "Expected individual combined index to have one summary per GUID"); 987 auto &Summary = GlobalList.second.SummaryList[0]; 988 // Skip the summaries for the importing module. These are included to 989 // e.g. record required linkage changes. 990 if (Summary->modulePath() == M->getModuleIdentifier()) 991 continue; 992 // Doesn't matter what value we plug in to the map, just needs an entry 993 // to provoke importing by thinBackend. 994 ImportList[Summary->modulePath()][GUID] = 1; 995 } 996 997 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 998 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 999 1000 for (auto &I : ImportList) { 1001 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1002 llvm::MemoryBuffer::getFile(I.first()); 1003 if (!MBOrErr) { 1004 errs() << "Error loading imported file '" << I.first() 1005 << "': " << MBOrErr.getError().message() << "\n"; 1006 return; 1007 } 1008 1009 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1010 if (!BMOrErr) { 1011 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1012 errs() << "Error loading imported file '" << I.first() 1013 << "': " << EIB.message() << '\n'; 1014 }); 1015 return; 1016 } 1017 ModuleMap.insert({I.first(), *BMOrErr}); 1018 1019 OwnedImports.push_back(std::move(*MBOrErr)); 1020 } 1021 auto AddStream = [&](size_t Task) { 1022 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 1023 }; 1024 lto::Config Conf; 1025 Conf.CPU = TOpts.CPU; 1026 Conf.CodeModel = getCodeModel(CGOpts); 1027 Conf.MAttrs = TOpts.Features; 1028 Conf.RelocModel = getRelocModel(CGOpts); 1029 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1030 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1031 Conf.SampleProfile = std::move(SampleProfile); 1032 switch (Action) { 1033 case Backend_EmitNothing: 1034 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1035 return false; 1036 }; 1037 break; 1038 case Backend_EmitLL: 1039 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1040 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1041 return false; 1042 }; 1043 break; 1044 case Backend_EmitBC: 1045 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1046 WriteBitcodeToFile(M, *OS, CGOpts.EmitLLVMUseLists); 1047 return false; 1048 }; 1049 break; 1050 default: 1051 Conf.CGFileType = getCodeGenFileType(Action); 1052 break; 1053 } 1054 if (Error E = thinBackend( 1055 Conf, 0, AddStream, *M, *CombinedIndex, ImportList, 1056 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1057 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1058 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1059 }); 1060 } 1061 } 1062 1063 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1064 const HeaderSearchOptions &HeaderOpts, 1065 const CodeGenOptions &CGOpts, 1066 const clang::TargetOptions &TOpts, 1067 const LangOptions &LOpts, 1068 const llvm::DataLayout &TDesc, Module *M, 1069 BackendAction Action, 1070 std::unique_ptr<raw_pwrite_stream> OS) { 1071 if (!CGOpts.ThinLTOIndexFile.empty()) { 1072 // If we are performing a ThinLTO importing compile, load the function index 1073 // into memory and pass it into runThinLTOBackend, which will run the 1074 // function importer and invoke LTO passes. 1075 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1076 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile); 1077 if (!IndexOrErr) { 1078 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1079 "Error loading index file '" + 1080 CGOpts.ThinLTOIndexFile + "': "); 1081 return; 1082 } 1083 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1084 // A null CombinedIndex means we should skip ThinLTO compilation 1085 // (LLVM will optionally ignore empty index files, returning null instead 1086 // of an error). 1087 bool DoThinLTOBackend = CombinedIndex != nullptr; 1088 if (DoThinLTOBackend) { 1089 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1090 LOpts, std::move(OS), CGOpts.SampleProfileFile, Action); 1091 return; 1092 } 1093 } 1094 1095 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1096 1097 if (CGOpts.ExperimentalNewPassManager) 1098 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1099 else 1100 AsmHelper.EmitAssembly(Action, std::move(OS)); 1101 1102 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1103 // DataLayout. 1104 if (AsmHelper.TM) { 1105 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1106 if (DLDesc != TDesc.getStringRepresentation()) { 1107 unsigned DiagID = Diags.getCustomDiagID( 1108 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1109 "expected target description '%1'"); 1110 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1111 } 1112 } 1113 } 1114 1115 static const char* getSectionNameForBitcode(const Triple &T) { 1116 switch (T.getObjectFormat()) { 1117 case Triple::MachO: 1118 return "__LLVM,__bitcode"; 1119 case Triple::COFF: 1120 case Triple::ELF: 1121 case Triple::Wasm: 1122 case Triple::UnknownObjectFormat: 1123 return ".llvmbc"; 1124 } 1125 llvm_unreachable("Unimplemented ObjectFormatType"); 1126 } 1127 1128 static const char* getSectionNameForCommandline(const Triple &T) { 1129 switch (T.getObjectFormat()) { 1130 case Triple::MachO: 1131 return "__LLVM,__cmdline"; 1132 case Triple::COFF: 1133 case Triple::ELF: 1134 case Triple::Wasm: 1135 case Triple::UnknownObjectFormat: 1136 return ".llvmcmd"; 1137 } 1138 llvm_unreachable("Unimplemented ObjectFormatType"); 1139 } 1140 1141 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1142 // __LLVM,__bitcode section. 1143 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1144 llvm::MemoryBufferRef Buf) { 1145 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1146 return; 1147 1148 // Save llvm.compiler.used and remote it. 1149 SmallVector<Constant*, 2> UsedArray; 1150 SmallSet<GlobalValue*, 4> UsedGlobals; 1151 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1152 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1153 for (auto *GV : UsedGlobals) { 1154 if (GV->getName() != "llvm.embedded.module" && 1155 GV->getName() != "llvm.cmdline") 1156 UsedArray.push_back( 1157 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1158 } 1159 if (Used) 1160 Used->eraseFromParent(); 1161 1162 // Embed the bitcode for the llvm module. 1163 std::string Data; 1164 ArrayRef<uint8_t> ModuleData; 1165 Triple T(M->getTargetTriple()); 1166 // Create a constant that contains the bitcode. 1167 // In case of embedding a marker, ignore the input Buf and use the empty 1168 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1169 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1170 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1171 (const unsigned char *)Buf.getBufferEnd())) { 1172 // If the input is LLVM Assembly, bitcode is produced by serializing 1173 // the module. Use-lists order need to be perserved in this case. 1174 llvm::raw_string_ostream OS(Data); 1175 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 1176 ModuleData = 1177 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1178 } else 1179 // If the input is LLVM bitcode, write the input byte stream directly. 1180 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1181 Buf.getBufferSize()); 1182 } 1183 llvm::Constant *ModuleConstant = 1184 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1185 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1186 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1187 ModuleConstant); 1188 GV->setSection(getSectionNameForBitcode(T)); 1189 UsedArray.push_back( 1190 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1191 if (llvm::GlobalVariable *Old = 1192 M->getGlobalVariable("llvm.embedded.module", true)) { 1193 assert(Old->hasOneUse() && 1194 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1195 GV->takeName(Old); 1196 Old->eraseFromParent(); 1197 } else { 1198 GV->setName("llvm.embedded.module"); 1199 } 1200 1201 // Skip if only bitcode needs to be embedded. 1202 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1203 // Embed command-line options. 1204 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1205 CGOpts.CmdArgs.size()); 1206 llvm::Constant *CmdConstant = 1207 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1208 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1209 llvm::GlobalValue::PrivateLinkage, 1210 CmdConstant); 1211 GV->setSection(getSectionNameForCommandline(T)); 1212 UsedArray.push_back( 1213 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1214 if (llvm::GlobalVariable *Old = 1215 M->getGlobalVariable("llvm.cmdline", true)) { 1216 assert(Old->hasOneUse() && 1217 "llvm.cmdline can only be used once in llvm.compiler.used"); 1218 GV->takeName(Old); 1219 Old->eraseFromParent(); 1220 } else { 1221 GV->setName("llvm.cmdline"); 1222 } 1223 } 1224 1225 if (UsedArray.empty()) 1226 return; 1227 1228 // Recreate llvm.compiler.used. 1229 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1230 auto *NewUsed = new GlobalVariable( 1231 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1232 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1233 NewUsed->setSection("llvm.metadata"); 1234 } 1235