1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "clang/Lex/HeaderSearchOptions.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/ADT/StringSwitch.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/IRPrintingPasses.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/ModuleSummaryIndex.h" 35 #include "llvm/IR/Verifier.h" 36 #include "llvm/LTO/LTOBackend.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/SubtargetFeature.h" 39 #include "llvm/Passes/PassBuilder.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/MemoryBuffer.h" 42 #include "llvm/Support/PrettyStackTrace.h" 43 #include "llvm/Support/TargetRegistry.h" 44 #include "llvm/Support/Timer.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include "llvm/Transforms/Coroutines.h" 49 #include "llvm/Transforms/GCOVProfiler.h" 50 #include "llvm/Transforms/IPO.h" 51 #include "llvm/Transforms/IPO/AlwaysInliner.h" 52 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 53 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 54 #include "llvm/Transforms/Instrumentation.h" 55 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 56 #include "llvm/Transforms/ObjCARC.h" 57 #include "llvm/Transforms/Scalar.h" 58 #include "llvm/Transforms/Scalar/GVN.h" 59 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 60 #include "llvm/Transforms/Utils/SymbolRewriter.h" 61 #include <memory> 62 using namespace clang; 63 using namespace llvm; 64 65 namespace { 66 67 // Default filename used for profile generation. 68 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 69 70 class EmitAssemblyHelper { 71 DiagnosticsEngine &Diags; 72 const HeaderSearchOptions &HSOpts; 73 const CodeGenOptions &CodeGenOpts; 74 const clang::TargetOptions &TargetOpts; 75 const LangOptions &LangOpts; 76 Module *TheModule; 77 78 Timer CodeGenerationTime; 79 80 std::unique_ptr<raw_pwrite_stream> OS; 81 82 TargetIRAnalysis getTargetIRAnalysis() const { 83 if (TM) 84 return TM->getTargetIRAnalysis(); 85 86 return TargetIRAnalysis(); 87 } 88 89 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 90 91 /// Generates the TargetMachine. 92 /// Leaves TM unchanged if it is unable to create the target machine. 93 /// Some of our clang tests specify triples which are not built 94 /// into clang. This is okay because these tests check the generated 95 /// IR, and they require DataLayout which depends on the triple. 96 /// In this case, we allow this method to fail and not report an error. 97 /// When MustCreateTM is used, we print an error if we are unable to load 98 /// the requested target. 99 void CreateTargetMachine(bool MustCreateTM); 100 101 /// Add passes necessary to emit assembly or LLVM IR. 102 /// 103 /// \return True on success. 104 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 105 raw_pwrite_stream &OS); 106 107 public: 108 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 109 const HeaderSearchOptions &HeaderSearchOpts, 110 const CodeGenOptions &CGOpts, 111 const clang::TargetOptions &TOpts, 112 const LangOptions &LOpts, Module *M) 113 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 114 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 115 CodeGenerationTime("codegen", "Code Generation Time") {} 116 117 ~EmitAssemblyHelper() { 118 if (CodeGenOpts.DisableFree) 119 BuryPointer(std::move(TM)); 120 } 121 122 std::unique_ptr<TargetMachine> TM; 123 124 void EmitAssembly(BackendAction Action, 125 std::unique_ptr<raw_pwrite_stream> OS); 126 127 void EmitAssemblyWithNewPassManager(BackendAction Action, 128 std::unique_ptr<raw_pwrite_stream> OS); 129 }; 130 131 // We need this wrapper to access LangOpts and CGOpts from extension functions 132 // that we add to the PassManagerBuilder. 133 class PassManagerBuilderWrapper : public PassManagerBuilder { 134 public: 135 PassManagerBuilderWrapper(const Triple &TargetTriple, 136 const CodeGenOptions &CGOpts, 137 const LangOptions &LangOpts) 138 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 139 LangOpts(LangOpts) {} 140 const Triple &getTargetTriple() const { return TargetTriple; } 141 const CodeGenOptions &getCGOpts() const { return CGOpts; } 142 const LangOptions &getLangOpts() const { return LangOpts; } 143 144 private: 145 const Triple &TargetTriple; 146 const CodeGenOptions &CGOpts; 147 const LangOptions &LangOpts; 148 }; 149 } 150 151 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 152 if (Builder.OptLevel > 0) 153 PM.add(createObjCARCAPElimPass()); 154 } 155 156 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 157 if (Builder.OptLevel > 0) 158 PM.add(createObjCARCExpandPass()); 159 } 160 161 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 162 if (Builder.OptLevel > 0) 163 PM.add(createObjCARCOptPass()); 164 } 165 166 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 167 legacy::PassManagerBase &PM) { 168 PM.add(createAddDiscriminatorsPass()); 169 } 170 171 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 172 legacy::PassManagerBase &PM) { 173 PM.add(createBoundsCheckingLegacyPass()); 174 } 175 176 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 177 legacy::PassManagerBase &PM) { 178 const PassManagerBuilderWrapper &BuilderWrapper = 179 static_cast<const PassManagerBuilderWrapper&>(Builder); 180 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 181 SanitizerCoverageOptions Opts; 182 Opts.CoverageType = 183 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 184 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 185 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 186 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 187 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 188 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 189 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 190 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 191 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 192 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 193 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 194 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 195 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 196 PM.add(createSanitizerCoverageModulePass(Opts)); 197 } 198 199 // Check if ASan should use GC-friendly instrumentation for globals. 200 // First of all, there is no point if -fdata-sections is off (expect for MachO, 201 // where this is not a factor). Also, on ELF this feature requires an assembler 202 // extension that only works with -integrated-as at the moment. 203 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 204 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 205 return false; 206 switch (T.getObjectFormat()) { 207 case Triple::MachO: 208 case Triple::COFF: 209 return true; 210 case Triple::ELF: 211 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 212 default: 213 return false; 214 } 215 } 216 217 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 218 legacy::PassManagerBase &PM) { 219 const PassManagerBuilderWrapper &BuilderWrapper = 220 static_cast<const PassManagerBuilderWrapper&>(Builder); 221 const Triple &T = BuilderWrapper.getTargetTriple(); 222 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 223 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 224 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 225 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 226 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 227 UseAfterScope)); 228 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/ false, Recover, 229 UseGlobalsGC)); 230 } 231 232 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 233 legacy::PassManagerBase &PM) { 234 PM.add(createAddressSanitizerFunctionPass( 235 /*CompileKernel*/ true, 236 /*Recover*/ true, /*UseAfterScope*/ false)); 237 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/true, 238 /*Recover*/true)); 239 } 240 241 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 242 legacy::PassManagerBase &PM) { 243 const PassManagerBuilderWrapper &BuilderWrapper = 244 static_cast<const PassManagerBuilderWrapper &>(Builder); 245 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 246 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 247 PM.add(createHWAddressSanitizerPass(Recover)); 248 } 249 250 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 251 legacy::PassManagerBase &PM) { 252 const PassManagerBuilderWrapper &BuilderWrapper = 253 static_cast<const PassManagerBuilderWrapper&>(Builder); 254 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 255 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 256 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 257 PM.add(createMemorySanitizerPass(TrackOrigins, Recover)); 258 259 // MemorySanitizer inserts complex instrumentation that mostly follows 260 // the logic of the original code, but operates on "shadow" values. 261 // It can benefit from re-running some general purpose optimization passes. 262 if (Builder.OptLevel > 0) { 263 PM.add(createEarlyCSEPass()); 264 PM.add(createReassociatePass()); 265 PM.add(createLICMPass()); 266 PM.add(createGVNPass()); 267 PM.add(createInstructionCombiningPass()); 268 PM.add(createDeadStoreEliminationPass()); 269 } 270 } 271 272 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 273 legacy::PassManagerBase &PM) { 274 PM.add(createThreadSanitizerPass()); 275 } 276 277 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 278 legacy::PassManagerBase &PM) { 279 const PassManagerBuilderWrapper &BuilderWrapper = 280 static_cast<const PassManagerBuilderWrapper&>(Builder); 281 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 282 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 283 } 284 285 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 286 legacy::PassManagerBase &PM) { 287 const PassManagerBuilderWrapper &BuilderWrapper = 288 static_cast<const PassManagerBuilderWrapper&>(Builder); 289 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 290 EfficiencySanitizerOptions Opts; 291 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 292 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 293 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 294 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 295 PM.add(createEfficiencySanitizerPass(Opts)); 296 } 297 298 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 299 const CodeGenOptions &CodeGenOpts) { 300 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 301 if (!CodeGenOpts.SimplifyLibCalls) 302 TLII->disableAllFunctions(); 303 else { 304 // Disable individual libc/libm calls in TargetLibraryInfo. 305 LibFunc F; 306 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 307 if (TLII->getLibFunc(FuncName, F)) 308 TLII->setUnavailable(F); 309 } 310 311 switch (CodeGenOpts.getVecLib()) { 312 case CodeGenOptions::Accelerate: 313 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 314 break; 315 case CodeGenOptions::SVML: 316 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 317 break; 318 default: 319 break; 320 } 321 return TLII; 322 } 323 324 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 325 legacy::PassManager *MPM) { 326 llvm::SymbolRewriter::RewriteDescriptorList DL; 327 328 llvm::SymbolRewriter::RewriteMapParser MapParser; 329 for (const auto &MapFile : Opts.RewriteMapFiles) 330 MapParser.parse(MapFile, &DL); 331 332 MPM->add(createRewriteSymbolsPass(DL)); 333 } 334 335 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 336 switch (CodeGenOpts.OptimizationLevel) { 337 default: 338 llvm_unreachable("Invalid optimization level!"); 339 case 0: 340 return CodeGenOpt::None; 341 case 1: 342 return CodeGenOpt::Less; 343 case 2: 344 return CodeGenOpt::Default; // O2/Os/Oz 345 case 3: 346 return CodeGenOpt::Aggressive; 347 } 348 } 349 350 static Optional<llvm::CodeModel::Model> 351 getCodeModel(const CodeGenOptions &CodeGenOpts) { 352 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 353 .Case("small", llvm::CodeModel::Small) 354 .Case("kernel", llvm::CodeModel::Kernel) 355 .Case("medium", llvm::CodeModel::Medium) 356 .Case("large", llvm::CodeModel::Large) 357 .Case("default", ~1u) 358 .Default(~0u); 359 assert(CodeModel != ~0u && "invalid code model!"); 360 if (CodeModel == ~1u) 361 return None; 362 return static_cast<llvm::CodeModel::Model>(CodeModel); 363 } 364 365 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 366 if (Action == Backend_EmitObj) 367 return TargetMachine::CGFT_ObjectFile; 368 else if (Action == Backend_EmitMCNull) 369 return TargetMachine::CGFT_Null; 370 else { 371 assert(Action == Backend_EmitAssembly && "Invalid action!"); 372 return TargetMachine::CGFT_AssemblyFile; 373 } 374 } 375 376 static void initTargetOptions(llvm::TargetOptions &Options, 377 const CodeGenOptions &CodeGenOpts, 378 const clang::TargetOptions &TargetOpts, 379 const LangOptions &LangOpts, 380 const HeaderSearchOptions &HSOpts) { 381 Options.ThreadModel = 382 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 383 .Case("posix", llvm::ThreadModel::POSIX) 384 .Case("single", llvm::ThreadModel::Single); 385 386 // Set float ABI type. 387 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 388 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 389 "Invalid Floating Point ABI!"); 390 Options.FloatABIType = 391 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 392 .Case("soft", llvm::FloatABI::Soft) 393 .Case("softfp", llvm::FloatABI::Soft) 394 .Case("hard", llvm::FloatABI::Hard) 395 .Default(llvm::FloatABI::Default); 396 397 // Set FP fusion mode. 398 switch (LangOpts.getDefaultFPContractMode()) { 399 case LangOptions::FPC_Off: 400 // Preserve any contraction performed by the front-end. (Strict performs 401 // splitting of the muladd instrinsic in the backend.) 402 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 403 break; 404 case LangOptions::FPC_On: 405 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 406 break; 407 case LangOptions::FPC_Fast: 408 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 409 break; 410 } 411 412 Options.UseInitArray = CodeGenOpts.UseInitArray; 413 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 414 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 415 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 416 417 // Set EABI version. 418 Options.EABIVersion = TargetOpts.EABIVersion; 419 420 if (LangOpts.SjLjExceptions) 421 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 422 if (LangOpts.SEHExceptions) 423 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 424 if (LangOpts.DWARFExceptions) 425 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 426 427 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 428 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 429 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 430 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 431 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 432 Options.FunctionSections = CodeGenOpts.FunctionSections; 433 Options.DataSections = CodeGenOpts.DataSections; 434 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 435 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 436 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 437 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 438 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 439 440 if (CodeGenOpts.EnableSplitDwarf) 441 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 442 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 443 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 444 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 445 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 446 Options.MCOptions.MCIncrementalLinkerCompatible = 447 CodeGenOpts.IncrementalLinkerCompatible; 448 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 449 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 450 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 451 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 452 Options.MCOptions.ABIName = TargetOpts.ABI; 453 for (const auto &Entry : HSOpts.UserEntries) 454 if (!Entry.IsFramework && 455 (Entry.Group == frontend::IncludeDirGroup::Quoted || 456 Entry.Group == frontend::IncludeDirGroup::Angled || 457 Entry.Group == frontend::IncludeDirGroup::System)) 458 Options.MCOptions.IASSearchPaths.push_back( 459 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 460 } 461 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 462 if (CodeGenOpts.DisableGCov) 463 return None; 464 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 465 return None; 466 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 467 // LLVM's -default-gcov-version flag is set to something invalid. 468 GCOVOptions Options; 469 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 470 Options.EmitData = CodeGenOpts.EmitGcovArcs; 471 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 472 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 473 Options.NoRedZone = CodeGenOpts.DisableRedZone; 474 Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData; 475 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 476 return Options; 477 } 478 479 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 480 legacy::FunctionPassManager &FPM) { 481 // Handle disabling of all LLVM passes, where we want to preserve the 482 // internal module before any optimization. 483 if (CodeGenOpts.DisableLLVMPasses) 484 return; 485 486 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 487 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 488 // are inserted before PMBuilder ones - they'd get the default-constructed 489 // TLI with an unknown target otherwise. 490 Triple TargetTriple(TheModule->getTargetTriple()); 491 std::unique_ptr<TargetLibraryInfoImpl> TLII( 492 createTLII(TargetTriple, CodeGenOpts)); 493 494 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 495 496 // At O0 and O1 we only run the always inliner which is more efficient. At 497 // higher optimization levels we run the normal inliner. 498 if (CodeGenOpts.OptimizationLevel <= 1) { 499 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 500 !CodeGenOpts.DisableLifetimeMarkers); 501 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 502 } else { 503 // We do not want to inline hot callsites for SamplePGO module-summary build 504 // because profile annotation will happen again in ThinLTO backend, and we 505 // want the IR of the hot path to match the profile. 506 PMBuilder.Inliner = createFunctionInliningPass( 507 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 508 (!CodeGenOpts.SampleProfileFile.empty() && 509 CodeGenOpts.EmitSummaryIndex)); 510 } 511 512 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 513 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 514 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 515 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 516 517 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 518 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 519 PMBuilder.PrepareForThinLTO = CodeGenOpts.EmitSummaryIndex; 520 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 521 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 522 523 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 524 525 if (TM) 526 TM->adjustPassManager(PMBuilder); 527 528 if (CodeGenOpts.DebugInfoForProfiling || 529 !CodeGenOpts.SampleProfileFile.empty()) 530 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 531 addAddDiscriminatorsPass); 532 533 // In ObjC ARC mode, add the main ARC optimization passes. 534 if (LangOpts.ObjCAutoRefCount) { 535 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 536 addObjCARCExpandPass); 537 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 538 addObjCARCAPElimPass); 539 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 540 addObjCARCOptPass); 541 } 542 543 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 544 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 545 addBoundsCheckingPass); 546 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 547 addBoundsCheckingPass); 548 } 549 550 if (CodeGenOpts.SanitizeCoverageType || 551 CodeGenOpts.SanitizeCoverageIndirectCalls || 552 CodeGenOpts.SanitizeCoverageTraceCmp) { 553 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 554 addSanitizerCoveragePass); 555 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 556 addSanitizerCoveragePass); 557 } 558 559 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 560 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 561 addAddressSanitizerPasses); 562 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 563 addAddressSanitizerPasses); 564 } 565 566 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 567 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 568 addKernelAddressSanitizerPasses); 569 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 570 addKernelAddressSanitizerPasses); 571 } 572 573 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 574 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 575 addHWAddressSanitizerPasses); 576 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 577 addHWAddressSanitizerPasses); 578 } 579 580 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 581 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 582 addMemorySanitizerPass); 583 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 584 addMemorySanitizerPass); 585 } 586 587 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 588 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 589 addThreadSanitizerPass); 590 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 591 addThreadSanitizerPass); 592 } 593 594 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 595 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 596 addDataFlowSanitizerPass); 597 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 598 addDataFlowSanitizerPass); 599 } 600 601 if (LangOpts.CoroutinesTS) 602 addCoroutinePassesToExtensionPoints(PMBuilder); 603 604 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 605 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 606 addEfficiencySanitizerPass); 607 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 608 addEfficiencySanitizerPass); 609 } 610 611 // Set up the per-function pass manager. 612 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 613 if (CodeGenOpts.VerifyModule) 614 FPM.add(createVerifierPass()); 615 616 // Set up the per-module pass manager. 617 if (!CodeGenOpts.RewriteMapFiles.empty()) 618 addSymbolRewriterPass(CodeGenOpts, &MPM); 619 620 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 621 MPM.add(createGCOVProfilerPass(*Options)); 622 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 623 MPM.add(createStripSymbolsPass(true)); 624 } 625 626 if (CodeGenOpts.hasProfileClangInstr()) { 627 InstrProfOptions Options; 628 Options.NoRedZone = CodeGenOpts.DisableRedZone; 629 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 630 MPM.add(createInstrProfilingLegacyPass(Options)); 631 } 632 if (CodeGenOpts.hasProfileIRInstr()) { 633 PMBuilder.EnablePGOInstrGen = true; 634 if (!CodeGenOpts.InstrProfileOutput.empty()) 635 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 636 else 637 PMBuilder.PGOInstrGen = DefaultProfileGenName; 638 } 639 if (CodeGenOpts.hasProfileIRUse()) 640 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 641 642 if (!CodeGenOpts.SampleProfileFile.empty()) 643 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 644 645 PMBuilder.populateFunctionPassManager(FPM); 646 PMBuilder.populateModulePassManager(MPM); 647 } 648 649 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 650 SmallVector<const char *, 16> BackendArgs; 651 BackendArgs.push_back("clang"); // Fake program name. 652 if (!CodeGenOpts.DebugPass.empty()) { 653 BackendArgs.push_back("-debug-pass"); 654 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 655 } 656 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 657 BackendArgs.push_back("-limit-float-precision"); 658 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 659 } 660 for (const std::string &BackendOption : CodeGenOpts.BackendOptions) 661 BackendArgs.push_back(BackendOption.c_str()); 662 BackendArgs.push_back(nullptr); 663 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 664 BackendArgs.data()); 665 } 666 667 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 668 // Create the TargetMachine for generating code. 669 std::string Error; 670 std::string Triple = TheModule->getTargetTriple(); 671 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 672 if (!TheTarget) { 673 if (MustCreateTM) 674 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 675 return; 676 } 677 678 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 679 std::string FeaturesStr = 680 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 681 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 682 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 683 684 llvm::TargetOptions Options; 685 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 686 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 687 Options, RM, CM, OptLevel)); 688 } 689 690 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 691 BackendAction Action, 692 raw_pwrite_stream &OS) { 693 // Add LibraryInfo. 694 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 695 std::unique_ptr<TargetLibraryInfoImpl> TLII( 696 createTLII(TargetTriple, CodeGenOpts)); 697 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 698 699 // Normal mode, emit a .s or .o file by running the code generator. Note, 700 // this also adds codegenerator level optimization passes. 701 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 702 703 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 704 // "codegen" passes so that it isn't run multiple times when there is 705 // inlining happening. 706 if (CodeGenOpts.OptimizationLevel > 0) 707 CodeGenPasses.add(createObjCARCContractPass()); 708 709 if (TM->addPassesToEmitFile(CodeGenPasses, OS, CGFT, 710 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 711 Diags.Report(diag::err_fe_unable_to_interface_with_target); 712 return false; 713 } 714 715 return true; 716 } 717 718 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 719 std::unique_ptr<raw_pwrite_stream> OS) { 720 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 721 722 setCommandLineOpts(CodeGenOpts); 723 724 bool UsesCodeGen = (Action != Backend_EmitNothing && 725 Action != Backend_EmitBC && 726 Action != Backend_EmitLL); 727 CreateTargetMachine(UsesCodeGen); 728 729 if (UsesCodeGen && !TM) 730 return; 731 if (TM) 732 TheModule->setDataLayout(TM->createDataLayout()); 733 734 legacy::PassManager PerModulePasses; 735 PerModulePasses.add( 736 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 737 738 legacy::FunctionPassManager PerFunctionPasses(TheModule); 739 PerFunctionPasses.add( 740 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 741 742 CreatePasses(PerModulePasses, PerFunctionPasses); 743 744 legacy::PassManager CodeGenPasses; 745 CodeGenPasses.add( 746 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 747 748 std::unique_ptr<raw_fd_ostream> ThinLinkOS; 749 750 switch (Action) { 751 case Backend_EmitNothing: 752 break; 753 754 case Backend_EmitBC: 755 if (CodeGenOpts.EmitSummaryIndex) { 756 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 757 std::error_code EC; 758 ThinLinkOS.reset(new llvm::raw_fd_ostream( 759 CodeGenOpts.ThinLinkBitcodeFile, EC, 760 llvm::sys::fs::F_None)); 761 if (EC) { 762 Diags.Report(diag::err_fe_unable_to_open_output) << CodeGenOpts.ThinLinkBitcodeFile 763 << EC.message(); 764 return; 765 } 766 } 767 PerModulePasses.add( 768 createWriteThinLTOBitcodePass(*OS, ThinLinkOS.get())); 769 } 770 else 771 PerModulePasses.add( 772 createBitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists)); 773 break; 774 775 case Backend_EmitLL: 776 PerModulePasses.add( 777 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 778 break; 779 780 default: 781 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 782 return; 783 } 784 785 // Before executing passes, print the final values of the LLVM options. 786 cl::PrintOptionValues(); 787 788 // Run passes. For now we do all passes at once, but eventually we 789 // would like to have the option of streaming code generation. 790 791 { 792 PrettyStackTraceString CrashInfo("Per-function optimization"); 793 794 PerFunctionPasses.doInitialization(); 795 for (Function &F : *TheModule) 796 if (!F.isDeclaration()) 797 PerFunctionPasses.run(F); 798 PerFunctionPasses.doFinalization(); 799 } 800 801 { 802 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 803 PerModulePasses.run(*TheModule); 804 } 805 806 { 807 PrettyStackTraceString CrashInfo("Code generation"); 808 CodeGenPasses.run(*TheModule); 809 } 810 } 811 812 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 813 switch (Opts.OptimizationLevel) { 814 default: 815 llvm_unreachable("Invalid optimization level!"); 816 817 case 1: 818 return PassBuilder::O1; 819 820 case 2: 821 switch (Opts.OptimizeSize) { 822 default: 823 llvm_unreachable("Invalide optimization level for size!"); 824 825 case 0: 826 return PassBuilder::O2; 827 828 case 1: 829 return PassBuilder::Os; 830 831 case 2: 832 return PassBuilder::Oz; 833 } 834 835 case 3: 836 return PassBuilder::O3; 837 } 838 } 839 840 /// A clean version of `EmitAssembly` that uses the new pass manager. 841 /// 842 /// Not all features are currently supported in this system, but where 843 /// necessary it falls back to the legacy pass manager to at least provide 844 /// basic functionality. 845 /// 846 /// This API is planned to have its functionality finished and then to replace 847 /// `EmitAssembly` at some point in the future when the default switches. 848 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 849 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 850 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 851 setCommandLineOpts(CodeGenOpts); 852 853 // The new pass manager always makes a target machine available to passes 854 // during construction. 855 CreateTargetMachine(/*MustCreateTM*/ true); 856 if (!TM) 857 // This will already be diagnosed, just bail. 858 return; 859 TheModule->setDataLayout(TM->createDataLayout()); 860 861 Optional<PGOOptions> PGOOpt; 862 863 if (CodeGenOpts.hasProfileIRInstr()) 864 // -fprofile-generate. 865 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 866 ? DefaultProfileGenName 867 : CodeGenOpts.InstrProfileOutput, 868 "", "", true, CodeGenOpts.DebugInfoForProfiling); 869 else if (CodeGenOpts.hasProfileIRUse()) 870 // -fprofile-use. 871 PGOOpt = PGOOptions("", CodeGenOpts.ProfileInstrumentUsePath, "", false, 872 CodeGenOpts.DebugInfoForProfiling); 873 else if (!CodeGenOpts.SampleProfileFile.empty()) 874 // -fprofile-sample-use 875 PGOOpt = PGOOptions("", "", CodeGenOpts.SampleProfileFile, false, 876 CodeGenOpts.DebugInfoForProfiling); 877 else if (CodeGenOpts.DebugInfoForProfiling) 878 // -fdebug-info-for-profiling 879 PGOOpt = PGOOptions("", "", "", false, true); 880 881 PassBuilder PB(TM.get(), PGOOpt); 882 883 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 884 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 885 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 886 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 887 888 // Register the AA manager first so that our version is the one used. 889 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 890 891 // Register the target library analysis directly and give it a customized 892 // preset TLI. 893 Triple TargetTriple(TheModule->getTargetTriple()); 894 std::unique_ptr<TargetLibraryInfoImpl> TLII( 895 createTLII(TargetTriple, CodeGenOpts)); 896 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 897 MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 898 899 // Register all the basic analyses with the managers. 900 PB.registerModuleAnalyses(MAM); 901 PB.registerCGSCCAnalyses(CGAM); 902 PB.registerFunctionAnalyses(FAM); 903 PB.registerLoopAnalyses(LAM); 904 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 905 906 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 907 908 if (!CodeGenOpts.DisableLLVMPasses) { 909 bool IsThinLTO = CodeGenOpts.EmitSummaryIndex; 910 bool IsLTO = CodeGenOpts.PrepareForLTO; 911 912 if (CodeGenOpts.OptimizationLevel == 0) { 913 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 914 MPM.addPass(GCOVProfilerPass(*Options)); 915 916 // Build a minimal pipeline based on the semantics required by Clang, 917 // which is just that always inlining occurs. 918 MPM.addPass(AlwaysInlinerPass()); 919 920 // At -O0 we directly run necessary sanitizer passes. 921 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 922 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 923 924 // Lastly, add a semantically necessary pass for ThinLTO. 925 if (IsThinLTO) 926 MPM.addPass(NameAnonGlobalPass()); 927 } else { 928 // Map our optimization levels into one of the distinct levels used to 929 // configure the pipeline. 930 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 931 932 // Register callbacks to schedule sanitizer passes at the appropriate part of 933 // the pipeline. 934 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 935 PB.registerScalarOptimizerLateEPCallback( 936 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 937 FPM.addPass(BoundsCheckingPass()); 938 }); 939 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 940 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 941 MPM.addPass(GCOVProfilerPass(*Options)); 942 }); 943 944 if (IsThinLTO) { 945 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 946 Level, CodeGenOpts.DebugPassManager); 947 MPM.addPass(NameAnonGlobalPass()); 948 } else if (IsLTO) { 949 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 950 CodeGenOpts.DebugPassManager); 951 } else { 952 MPM = PB.buildPerModuleDefaultPipeline(Level, 953 CodeGenOpts.DebugPassManager); 954 } 955 } 956 } 957 958 // FIXME: We still use the legacy pass manager to do code generation. We 959 // create that pass manager here and use it as needed below. 960 legacy::PassManager CodeGenPasses; 961 bool NeedCodeGen = false; 962 Optional<raw_fd_ostream> ThinLinkOS; 963 964 // Append any output we need to the pass manager. 965 switch (Action) { 966 case Backend_EmitNothing: 967 break; 968 969 case Backend_EmitBC: 970 if (CodeGenOpts.EmitSummaryIndex) { 971 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 972 std::error_code EC; 973 ThinLinkOS.emplace(CodeGenOpts.ThinLinkBitcodeFile, EC, 974 llvm::sys::fs::F_None); 975 if (EC) { 976 Diags.Report(diag::err_fe_unable_to_open_output) 977 << CodeGenOpts.ThinLinkBitcodeFile << EC.message(); 978 return; 979 } 980 } 981 MPM.addPass( 982 ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &*ThinLinkOS : nullptr)); 983 } else { 984 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 985 CodeGenOpts.EmitSummaryIndex, 986 CodeGenOpts.EmitSummaryIndex)); 987 } 988 break; 989 990 case Backend_EmitLL: 991 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 992 break; 993 994 case Backend_EmitAssembly: 995 case Backend_EmitMCNull: 996 case Backend_EmitObj: 997 NeedCodeGen = true; 998 CodeGenPasses.add( 999 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1000 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 1001 // FIXME: Should we handle this error differently? 1002 return; 1003 break; 1004 } 1005 1006 // Before executing passes, print the final values of the LLVM options. 1007 cl::PrintOptionValues(); 1008 1009 // Now that we have all of the passes ready, run them. 1010 { 1011 PrettyStackTraceString CrashInfo("Optimizer"); 1012 MPM.run(*TheModule, MAM); 1013 } 1014 1015 // Now if needed, run the legacy PM for codegen. 1016 if (NeedCodeGen) { 1017 PrettyStackTraceString CrashInfo("Code generation"); 1018 CodeGenPasses.run(*TheModule); 1019 } 1020 } 1021 1022 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1023 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1024 if (!BMsOrErr) 1025 return BMsOrErr.takeError(); 1026 1027 // The bitcode file may contain multiple modules, we want the one that is 1028 // marked as being the ThinLTO module. 1029 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1030 return *Bm; 1031 1032 return make_error<StringError>("Could not find module summary", 1033 inconvertibleErrorCode()); 1034 } 1035 1036 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1037 for (BitcodeModule &BM : BMs) { 1038 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1039 if (LTOInfo && LTOInfo->IsThinLTO) 1040 return &BM; 1041 } 1042 return nullptr; 1043 } 1044 1045 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1046 const HeaderSearchOptions &HeaderOpts, 1047 const CodeGenOptions &CGOpts, 1048 const clang::TargetOptions &TOpts, 1049 const LangOptions &LOpts, 1050 std::unique_ptr<raw_pwrite_stream> OS, 1051 std::string SampleProfile, 1052 BackendAction Action) { 1053 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1054 ModuleToDefinedGVSummaries; 1055 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1056 1057 setCommandLineOpts(CGOpts); 1058 1059 // We can simply import the values mentioned in the combined index, since 1060 // we should only invoke this using the individual indexes written out 1061 // via a WriteIndexesThinBackend. 1062 FunctionImporter::ImportMapTy ImportList; 1063 for (auto &GlobalList : *CombinedIndex) { 1064 // Ignore entries for undefined references. 1065 if (GlobalList.second.SummaryList.empty()) 1066 continue; 1067 1068 auto GUID = GlobalList.first; 1069 assert(GlobalList.second.SummaryList.size() == 1 && 1070 "Expected individual combined index to have one summary per GUID"); 1071 auto &Summary = GlobalList.second.SummaryList[0]; 1072 // Skip the summaries for the importing module. These are included to 1073 // e.g. record required linkage changes. 1074 if (Summary->modulePath() == M->getModuleIdentifier()) 1075 continue; 1076 // Doesn't matter what value we plug in to the map, just needs an entry 1077 // to provoke importing by thinBackend. 1078 ImportList[Summary->modulePath()][GUID] = 1; 1079 } 1080 1081 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1082 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1083 1084 for (auto &I : ImportList) { 1085 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1086 llvm::MemoryBuffer::getFile(I.first()); 1087 if (!MBOrErr) { 1088 errs() << "Error loading imported file '" << I.first() 1089 << "': " << MBOrErr.getError().message() << "\n"; 1090 return; 1091 } 1092 1093 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1094 if (!BMOrErr) { 1095 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1096 errs() << "Error loading imported file '" << I.first() 1097 << "': " << EIB.message() << '\n'; 1098 }); 1099 return; 1100 } 1101 ModuleMap.insert({I.first(), *BMOrErr}); 1102 1103 OwnedImports.push_back(std::move(*MBOrErr)); 1104 } 1105 auto AddStream = [&](size_t Task) { 1106 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 1107 }; 1108 lto::Config Conf; 1109 Conf.CPU = TOpts.CPU; 1110 Conf.CodeModel = getCodeModel(CGOpts); 1111 Conf.MAttrs = TOpts.Features; 1112 Conf.RelocModel = CGOpts.RelocationModel; 1113 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1114 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1115 Conf.SampleProfile = std::move(SampleProfile); 1116 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1117 Conf.DebugPassManager = CGOpts.DebugPassManager; 1118 switch (Action) { 1119 case Backend_EmitNothing: 1120 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1121 return false; 1122 }; 1123 break; 1124 case Backend_EmitLL: 1125 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1126 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1127 return false; 1128 }; 1129 break; 1130 case Backend_EmitBC: 1131 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1132 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1133 return false; 1134 }; 1135 break; 1136 default: 1137 Conf.CGFileType = getCodeGenFileType(Action); 1138 break; 1139 } 1140 if (Error E = thinBackend( 1141 Conf, 0, AddStream, *M, *CombinedIndex, ImportList, 1142 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1143 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1144 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1145 }); 1146 } 1147 } 1148 1149 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1150 const HeaderSearchOptions &HeaderOpts, 1151 const CodeGenOptions &CGOpts, 1152 const clang::TargetOptions &TOpts, 1153 const LangOptions &LOpts, 1154 const llvm::DataLayout &TDesc, Module *M, 1155 BackendAction Action, 1156 std::unique_ptr<raw_pwrite_stream> OS) { 1157 std::unique_ptr<llvm::Module> EmptyModule; 1158 if (!CGOpts.ThinLTOIndexFile.empty()) { 1159 // If we are performing a ThinLTO importing compile, load the function index 1160 // into memory and pass it into runThinLTOBackend, which will run the 1161 // function importer and invoke LTO passes. 1162 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1163 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1164 /*IgnoreEmptyThinLTOIndexFile*/true); 1165 if (!IndexOrErr) { 1166 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1167 "Error loading index file '" + 1168 CGOpts.ThinLTOIndexFile + "': "); 1169 return; 1170 } 1171 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1172 // A null CombinedIndex means we should skip ThinLTO compilation 1173 // (LLVM will optionally ignore empty index files, returning null instead 1174 // of an error). 1175 if (CombinedIndex) { 1176 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1177 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1178 LOpts, std::move(OS), CGOpts.SampleProfileFile, 1179 Action); 1180 return; 1181 } 1182 // Distributed indexing detected that nothing from the module is needed 1183 // for the final linking. So we can skip the compilation. We sill need to 1184 // output an empty object file to make sure that a linker does not fail 1185 // trying to read it. Also for some features, like CFI, we must skip 1186 // the compilation as CombinedIndex does not contain all required 1187 // information. 1188 EmptyModule = llvm::make_unique<llvm::Module>("empty", M->getContext()); 1189 EmptyModule->setTargetTriple(M->getTargetTriple()); 1190 M = EmptyModule.get(); 1191 } 1192 } 1193 1194 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1195 1196 if (CGOpts.ExperimentalNewPassManager) 1197 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1198 else 1199 AsmHelper.EmitAssembly(Action, std::move(OS)); 1200 1201 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1202 // DataLayout. 1203 if (AsmHelper.TM) { 1204 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1205 if (DLDesc != TDesc.getStringRepresentation()) { 1206 unsigned DiagID = Diags.getCustomDiagID( 1207 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1208 "expected target description '%1'"); 1209 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1210 } 1211 } 1212 } 1213 1214 static const char* getSectionNameForBitcode(const Triple &T) { 1215 switch (T.getObjectFormat()) { 1216 case Triple::MachO: 1217 return "__LLVM,__bitcode"; 1218 case Triple::COFF: 1219 case Triple::ELF: 1220 case Triple::Wasm: 1221 case Triple::UnknownObjectFormat: 1222 return ".llvmbc"; 1223 } 1224 llvm_unreachable("Unimplemented ObjectFormatType"); 1225 } 1226 1227 static const char* getSectionNameForCommandline(const Triple &T) { 1228 switch (T.getObjectFormat()) { 1229 case Triple::MachO: 1230 return "__LLVM,__cmdline"; 1231 case Triple::COFF: 1232 case Triple::ELF: 1233 case Triple::Wasm: 1234 case Triple::UnknownObjectFormat: 1235 return ".llvmcmd"; 1236 } 1237 llvm_unreachable("Unimplemented ObjectFormatType"); 1238 } 1239 1240 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1241 // __LLVM,__bitcode section. 1242 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1243 llvm::MemoryBufferRef Buf) { 1244 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1245 return; 1246 1247 // Save llvm.compiler.used and remote it. 1248 SmallVector<Constant*, 2> UsedArray; 1249 SmallSet<GlobalValue*, 4> UsedGlobals; 1250 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1251 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1252 for (auto *GV : UsedGlobals) { 1253 if (GV->getName() != "llvm.embedded.module" && 1254 GV->getName() != "llvm.cmdline") 1255 UsedArray.push_back( 1256 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1257 } 1258 if (Used) 1259 Used->eraseFromParent(); 1260 1261 // Embed the bitcode for the llvm module. 1262 std::string Data; 1263 ArrayRef<uint8_t> ModuleData; 1264 Triple T(M->getTargetTriple()); 1265 // Create a constant that contains the bitcode. 1266 // In case of embedding a marker, ignore the input Buf and use the empty 1267 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1268 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1269 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1270 (const unsigned char *)Buf.getBufferEnd())) { 1271 // If the input is LLVM Assembly, bitcode is produced by serializing 1272 // the module. Use-lists order need to be perserved in this case. 1273 llvm::raw_string_ostream OS(Data); 1274 llvm::WriteBitcodeToFile(*M, OS, /* ShouldPreserveUseListOrder */ true); 1275 ModuleData = 1276 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1277 } else 1278 // If the input is LLVM bitcode, write the input byte stream directly. 1279 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1280 Buf.getBufferSize()); 1281 } 1282 llvm::Constant *ModuleConstant = 1283 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1284 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1285 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1286 ModuleConstant); 1287 GV->setSection(getSectionNameForBitcode(T)); 1288 UsedArray.push_back( 1289 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1290 if (llvm::GlobalVariable *Old = 1291 M->getGlobalVariable("llvm.embedded.module", true)) { 1292 assert(Old->hasOneUse() && 1293 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1294 GV->takeName(Old); 1295 Old->eraseFromParent(); 1296 } else { 1297 GV->setName("llvm.embedded.module"); 1298 } 1299 1300 // Skip if only bitcode needs to be embedded. 1301 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1302 // Embed command-line options. 1303 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1304 CGOpts.CmdArgs.size()); 1305 llvm::Constant *CmdConstant = 1306 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1307 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1308 llvm::GlobalValue::PrivateLinkage, 1309 CmdConstant); 1310 GV->setSection(getSectionNameForCommandline(T)); 1311 UsedArray.push_back( 1312 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1313 if (llvm::GlobalVariable *Old = 1314 M->getGlobalVariable("llvm.cmdline", true)) { 1315 assert(Old->hasOneUse() && 1316 "llvm.cmdline can only be used once in llvm.compiler.used"); 1317 GV->takeName(Old); 1318 Old->eraseFromParent(); 1319 } else { 1320 GV->setName("llvm.cmdline"); 1321 } 1322 } 1323 1324 if (UsedArray.empty()) 1325 return; 1326 1327 // Recreate llvm.compiler.used. 1328 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1329 auto *NewUsed = new GlobalVariable( 1330 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1331 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1332 NewUsed->setSection("llvm.metadata"); 1333 } 1334