1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/ADT/StringSwitch.h" 19 #include "llvm/ADT/Triple.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Bitcode/BitcodeWriterPass.h" 23 #include "llvm/Bitcode/ReaderWriter.h" 24 #include "llvm/CodeGen/RegAllocRegistry.h" 25 #include "llvm/CodeGen/SchedulerRegistry.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/ModuleSummaryIndex.h" 28 #include "llvm/IR/IRPrintingPasses.h" 29 #include "llvm/IR/LegacyPassManager.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/Verifier.h" 32 #include "llvm/MC/SubtargetFeature.h" 33 #include "llvm/Object/ModuleSummaryIndexObjectFile.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/PrettyStackTrace.h" 36 #include "llvm/Support/TargetRegistry.h" 37 #include "llvm/Support/Timer.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Target/TargetMachine.h" 40 #include "llvm/Target/TargetOptions.h" 41 #include "llvm/Target/TargetSubtargetInfo.h" 42 #include "llvm/Transforms/IPO.h" 43 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 44 #include "llvm/Transforms/Instrumentation.h" 45 #include "llvm/Transforms/ObjCARC.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Scalar/GVN.h" 48 #include "llvm/Transforms/Utils/SymbolRewriter.h" 49 #include <memory> 50 using namespace clang; 51 using namespace llvm; 52 53 namespace { 54 55 class EmitAssemblyHelper { 56 DiagnosticsEngine &Diags; 57 const CodeGenOptions &CodeGenOpts; 58 const clang::TargetOptions &TargetOpts; 59 const LangOptions &LangOpts; 60 Module *TheModule; 61 62 Timer CodeGenerationTime; 63 64 mutable legacy::PassManager *CodeGenPasses; 65 mutable legacy::PassManager *PerModulePasses; 66 mutable legacy::FunctionPassManager *PerFunctionPasses; 67 68 private: 69 TargetIRAnalysis getTargetIRAnalysis() const { 70 if (TM) 71 return TM->getTargetIRAnalysis(); 72 73 return TargetIRAnalysis(); 74 } 75 76 legacy::PassManager *getCodeGenPasses() const { 77 if (!CodeGenPasses) { 78 CodeGenPasses = new legacy::PassManager(); 79 CodeGenPasses->add( 80 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 81 } 82 return CodeGenPasses; 83 } 84 85 legacy::PassManager *getPerModulePasses() const { 86 if (!PerModulePasses) { 87 PerModulePasses = new legacy::PassManager(); 88 PerModulePasses->add( 89 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 90 } 91 return PerModulePasses; 92 } 93 94 legacy::FunctionPassManager *getPerFunctionPasses() const { 95 if (!PerFunctionPasses) { 96 PerFunctionPasses = new legacy::FunctionPassManager(TheModule); 97 PerFunctionPasses->add( 98 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 99 } 100 return PerFunctionPasses; 101 } 102 103 /// Set LLVM command line options passed through -backend-option. 104 void setCommandLineOpts(); 105 106 void CreatePasses(ModuleSummaryIndex *ModuleSummary); 107 108 /// Generates the TargetMachine. 109 /// Returns Null if it is unable to create the target machine. 110 /// Some of our clang tests specify triples which are not built 111 /// into clang. This is okay because these tests check the generated 112 /// IR, and they require DataLayout which depends on the triple. 113 /// In this case, we allow this method to fail and not report an error. 114 /// When MustCreateTM is used, we print an error if we are unable to load 115 /// the requested target. 116 TargetMachine *CreateTargetMachine(bool MustCreateTM); 117 118 /// Add passes necessary to emit assembly or LLVM IR. 119 /// 120 /// \return True on success. 121 bool AddEmitPasses(BackendAction Action, raw_pwrite_stream &OS); 122 123 public: 124 EmitAssemblyHelper(DiagnosticsEngine &_Diags, const CodeGenOptions &CGOpts, 125 const clang::TargetOptions &TOpts, 126 const LangOptions &LOpts, Module *M) 127 : Diags(_Diags), CodeGenOpts(CGOpts), TargetOpts(TOpts), LangOpts(LOpts), 128 TheModule(M), CodeGenerationTime("Code Generation Time"), 129 CodeGenPasses(nullptr), PerModulePasses(nullptr), 130 PerFunctionPasses(nullptr) {} 131 132 ~EmitAssemblyHelper() { 133 delete CodeGenPasses; 134 delete PerModulePasses; 135 delete PerFunctionPasses; 136 if (CodeGenOpts.DisableFree) 137 BuryPointer(std::move(TM)); 138 } 139 140 std::unique_ptr<TargetMachine> TM; 141 142 void EmitAssembly(BackendAction Action, raw_pwrite_stream *OS); 143 }; 144 145 // We need this wrapper to access LangOpts and CGOpts from extension functions 146 // that we add to the PassManagerBuilder. 147 class PassManagerBuilderWrapper : public PassManagerBuilder { 148 public: 149 PassManagerBuilderWrapper(const CodeGenOptions &CGOpts, 150 const LangOptions &LangOpts) 151 : PassManagerBuilder(), CGOpts(CGOpts), LangOpts(LangOpts) {} 152 const CodeGenOptions &getCGOpts() const { return CGOpts; } 153 const LangOptions &getLangOpts() const { return LangOpts; } 154 private: 155 const CodeGenOptions &CGOpts; 156 const LangOptions &LangOpts; 157 }; 158 159 } 160 161 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 162 if (Builder.OptLevel > 0) 163 PM.add(createObjCARCAPElimPass()); 164 } 165 166 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 167 if (Builder.OptLevel > 0) 168 PM.add(createObjCARCExpandPass()); 169 } 170 171 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 172 if (Builder.OptLevel > 0) 173 PM.add(createObjCARCOptPass()); 174 } 175 176 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 177 legacy::PassManagerBase &PM) { 178 PM.add(createAddDiscriminatorsPass()); 179 } 180 181 static void addInstructionCombiningPass(const PassManagerBuilder &Builder, 182 legacy::PassManagerBase &PM) { 183 PM.add(createInstructionCombiningPass()); 184 } 185 186 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 187 legacy::PassManagerBase &PM) { 188 PM.add(createBoundsCheckingPass()); 189 } 190 191 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 192 legacy::PassManagerBase &PM) { 193 const PassManagerBuilderWrapper &BuilderWrapper = 194 static_cast<const PassManagerBuilderWrapper&>(Builder); 195 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 196 SanitizerCoverageOptions Opts; 197 Opts.CoverageType = 198 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 199 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 200 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 201 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 202 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 203 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 204 PM.add(createSanitizerCoverageModulePass(Opts)); 205 } 206 207 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 208 legacy::PassManagerBase &PM) { 209 const PassManagerBuilderWrapper &BuilderWrapper = 210 static_cast<const PassManagerBuilderWrapper&>(Builder); 211 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 212 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 213 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 214 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 215 UseAfterScope)); 216 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/false, Recover)); 217 } 218 219 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 220 legacy::PassManagerBase &PM) { 221 PM.add(createAddressSanitizerFunctionPass( 222 /*CompileKernel*/ true, 223 /*Recover*/ true, /*UseAfterScope*/ false)); 224 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/true, 225 /*Recover*/true)); 226 } 227 228 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 229 legacy::PassManagerBase &PM) { 230 const PassManagerBuilderWrapper &BuilderWrapper = 231 static_cast<const PassManagerBuilderWrapper&>(Builder); 232 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 233 PM.add(createMemorySanitizerPass(CGOpts.SanitizeMemoryTrackOrigins)); 234 235 // MemorySanitizer inserts complex instrumentation that mostly follows 236 // the logic of the original code, but operates on "shadow" values. 237 // It can benefit from re-running some general purpose optimization passes. 238 if (Builder.OptLevel > 0) { 239 PM.add(createEarlyCSEPass()); 240 PM.add(createReassociatePass()); 241 PM.add(createLICMPass()); 242 PM.add(createGVNPass()); 243 PM.add(createInstructionCombiningPass()); 244 PM.add(createDeadStoreEliminationPass()); 245 } 246 } 247 248 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 249 legacy::PassManagerBase &PM) { 250 PM.add(createThreadSanitizerPass()); 251 } 252 253 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 254 legacy::PassManagerBase &PM) { 255 const PassManagerBuilderWrapper &BuilderWrapper = 256 static_cast<const PassManagerBuilderWrapper&>(Builder); 257 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 258 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 259 } 260 261 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 262 legacy::PassManagerBase &PM) { 263 const PassManagerBuilderWrapper &BuilderWrapper = 264 static_cast<const PassManagerBuilderWrapper&>(Builder); 265 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 266 EfficiencySanitizerOptions Opts; 267 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 268 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 269 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 270 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 271 PM.add(createEfficiencySanitizerPass(Opts)); 272 } 273 274 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 275 const CodeGenOptions &CodeGenOpts) { 276 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 277 if (!CodeGenOpts.SimplifyLibCalls) 278 TLII->disableAllFunctions(); 279 else { 280 // Disable individual libc/libm calls in TargetLibraryInfo. 281 LibFunc::Func F; 282 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 283 if (TLII->getLibFunc(FuncName, F)) 284 TLII->setUnavailable(F); 285 } 286 287 switch (CodeGenOpts.getVecLib()) { 288 case CodeGenOptions::Accelerate: 289 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 290 break; 291 default: 292 break; 293 } 294 return TLII; 295 } 296 297 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 298 legacy::PassManager *MPM) { 299 llvm::SymbolRewriter::RewriteDescriptorList DL; 300 301 llvm::SymbolRewriter::RewriteMapParser MapParser; 302 for (const auto &MapFile : Opts.RewriteMapFiles) 303 MapParser.parse(MapFile, &DL); 304 305 MPM->add(createRewriteSymbolsPass(DL)); 306 } 307 308 void EmitAssemblyHelper::CreatePasses(ModuleSummaryIndex *ModuleSummary) { 309 if (CodeGenOpts.DisableLLVMPasses) 310 return; 311 312 unsigned OptLevel = CodeGenOpts.OptimizationLevel; 313 CodeGenOptions::InliningMethod Inlining = CodeGenOpts.getInlining(); 314 315 // Handle disabling of LLVM optimization, where we want to preserve the 316 // internal module before any optimization. 317 if (CodeGenOpts.DisableLLVMOpts) { 318 OptLevel = 0; 319 Inlining = CodeGenOpts.NoInlining; 320 } 321 322 PassManagerBuilderWrapper PMBuilder(CodeGenOpts, LangOpts); 323 324 // Figure out TargetLibraryInfo. 325 Triple TargetTriple(TheModule->getTargetTriple()); 326 PMBuilder.LibraryInfo = createTLII(TargetTriple, CodeGenOpts); 327 328 switch (Inlining) { 329 case CodeGenOptions::NoInlining: 330 break; 331 case CodeGenOptions::NormalInlining: { 332 PMBuilder.Inliner = 333 createFunctionInliningPass(OptLevel, CodeGenOpts.OptimizeSize); 334 break; 335 } 336 case CodeGenOptions::OnlyAlwaysInlining: 337 // Respect always_inline. 338 if (OptLevel == 0) 339 // Do not insert lifetime intrinsics at -O0. 340 PMBuilder.Inliner = createAlwaysInlinerPass(false); 341 else 342 PMBuilder.Inliner = createAlwaysInlinerPass(); 343 break; 344 } 345 346 PMBuilder.OptLevel = OptLevel; 347 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 348 PMBuilder.BBVectorize = CodeGenOpts.VectorizeBB; 349 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 350 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 351 352 PMBuilder.DisableUnitAtATime = !CodeGenOpts.UnitAtATime; 353 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 354 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 355 PMBuilder.PrepareForThinLTO = CodeGenOpts.EmitSummaryIndex; 356 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 357 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 358 359 legacy::PassManager *MPM = getPerModulePasses(); 360 361 // If we are performing a ThinLTO importing compile, invoke the LTO 362 // pipeline and pass down the in-memory module summary index. 363 if (ModuleSummary) { 364 PMBuilder.ModuleSummary = ModuleSummary; 365 PMBuilder.populateThinLTOPassManager(*MPM); 366 return; 367 } 368 369 // Add target-specific passes that need to run as early as possible. 370 if (TM) 371 PMBuilder.addExtension( 372 PassManagerBuilder::EP_EarlyAsPossible, 373 [&](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 374 TM->addEarlyAsPossiblePasses(PM); 375 }); 376 377 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 378 addAddDiscriminatorsPass); 379 380 // In ObjC ARC mode, add the main ARC optimization passes. 381 if (LangOpts.ObjCAutoRefCount) { 382 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 383 addObjCARCExpandPass); 384 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 385 addObjCARCAPElimPass); 386 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 387 addObjCARCOptPass); 388 } 389 390 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 391 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 392 addBoundsCheckingPass); 393 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 394 addBoundsCheckingPass); 395 } 396 397 if (CodeGenOpts.SanitizeCoverageType || 398 CodeGenOpts.SanitizeCoverageIndirectCalls || 399 CodeGenOpts.SanitizeCoverageTraceCmp) { 400 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 401 addSanitizerCoveragePass); 402 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 403 addSanitizerCoveragePass); 404 } 405 406 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 407 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 408 addAddressSanitizerPasses); 409 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 410 addAddressSanitizerPasses); 411 } 412 413 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 414 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 415 addKernelAddressSanitizerPasses); 416 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 417 addKernelAddressSanitizerPasses); 418 } 419 420 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 421 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 422 addMemorySanitizerPass); 423 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 424 addMemorySanitizerPass); 425 } 426 427 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 428 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 429 addThreadSanitizerPass); 430 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 431 addThreadSanitizerPass); 432 } 433 434 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 435 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 436 addDataFlowSanitizerPass); 437 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 438 addDataFlowSanitizerPass); 439 } 440 441 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 442 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 443 addEfficiencySanitizerPass); 444 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 445 addEfficiencySanitizerPass); 446 } 447 448 // Set up the per-function pass manager. 449 legacy::FunctionPassManager *FPM = getPerFunctionPasses(); 450 if (CodeGenOpts.VerifyModule) 451 FPM->add(createVerifierPass()); 452 453 // Set up the per-module pass manager. 454 if (!CodeGenOpts.RewriteMapFiles.empty()) 455 addSymbolRewriterPass(CodeGenOpts, MPM); 456 457 if (!CodeGenOpts.DisableGCov && 458 (CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)) { 459 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 460 // LLVM's -default-gcov-version flag is set to something invalid. 461 GCOVOptions Options; 462 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 463 Options.EmitData = CodeGenOpts.EmitGcovArcs; 464 memcpy(Options.Version, CodeGenOpts.CoverageVersion, 4); 465 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 466 Options.NoRedZone = CodeGenOpts.DisableRedZone; 467 Options.FunctionNamesInData = 468 !CodeGenOpts.CoverageNoFunctionNamesInData; 469 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 470 MPM->add(createGCOVProfilerPass(Options)); 471 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 472 MPM->add(createStripSymbolsPass(true)); 473 } 474 475 if (CodeGenOpts.hasProfileClangInstr()) { 476 InstrProfOptions Options; 477 Options.NoRedZone = CodeGenOpts.DisableRedZone; 478 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 479 MPM->add(createInstrProfilingLegacyPass(Options)); 480 } 481 if (CodeGenOpts.hasProfileIRInstr()) { 482 if (!CodeGenOpts.InstrProfileOutput.empty()) 483 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 484 else 485 PMBuilder.PGOInstrGen = "default.profraw"; 486 } 487 if (CodeGenOpts.hasProfileIRUse()) 488 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 489 490 if (!CodeGenOpts.SampleProfileFile.empty()) { 491 MPM->add(createSampleProfileLoaderPass(CodeGenOpts.SampleProfileFile)); 492 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 493 addInstructionCombiningPass); 494 } 495 496 PMBuilder.populateFunctionPassManager(*FPM); 497 PMBuilder.populateModulePassManager(*MPM); 498 } 499 500 void EmitAssemblyHelper::setCommandLineOpts() { 501 SmallVector<const char *, 16> BackendArgs; 502 BackendArgs.push_back("clang"); // Fake program name. 503 if (!CodeGenOpts.DebugPass.empty()) { 504 BackendArgs.push_back("-debug-pass"); 505 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 506 } 507 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 508 BackendArgs.push_back("-limit-float-precision"); 509 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 510 } 511 for (const std::string &BackendOption : CodeGenOpts.BackendOptions) 512 BackendArgs.push_back(BackendOption.c_str()); 513 BackendArgs.push_back(nullptr); 514 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 515 BackendArgs.data()); 516 } 517 518 TargetMachine *EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 519 // Create the TargetMachine for generating code. 520 std::string Error; 521 std::string Triple = TheModule->getTargetTriple(); 522 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 523 if (!TheTarget) { 524 if (MustCreateTM) 525 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 526 return nullptr; 527 } 528 529 unsigned CodeModel = 530 llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 531 .Case("small", llvm::CodeModel::Small) 532 .Case("kernel", llvm::CodeModel::Kernel) 533 .Case("medium", llvm::CodeModel::Medium) 534 .Case("large", llvm::CodeModel::Large) 535 .Case("default", llvm::CodeModel::Default) 536 .Default(~0u); 537 assert(CodeModel != ~0u && "invalid code model!"); 538 llvm::CodeModel::Model CM = static_cast<llvm::CodeModel::Model>(CodeModel); 539 540 std::string FeaturesStr = 541 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 542 543 // Keep this synced with the equivalent code in tools/driver/cc1as_main.cpp. 544 llvm::Optional<llvm::Reloc::Model> RM; 545 if (CodeGenOpts.RelocationModel == "static") { 546 RM = llvm::Reloc::Static; 547 } else if (CodeGenOpts.RelocationModel == "pic") { 548 RM = llvm::Reloc::PIC_; 549 } else { 550 assert(CodeGenOpts.RelocationModel == "dynamic-no-pic" && 551 "Invalid PIC model!"); 552 RM = llvm::Reloc::DynamicNoPIC; 553 } 554 555 CodeGenOpt::Level OptLevel = CodeGenOpt::Default; 556 switch (CodeGenOpts.OptimizationLevel) { 557 default: break; 558 case 0: OptLevel = CodeGenOpt::None; break; 559 case 3: OptLevel = CodeGenOpt::Aggressive; break; 560 } 561 562 llvm::TargetOptions Options; 563 564 if (!TargetOpts.Reciprocals.empty()) 565 Options.Reciprocals = TargetRecip(TargetOpts.Reciprocals); 566 567 Options.ThreadModel = 568 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 569 .Case("posix", llvm::ThreadModel::POSIX) 570 .Case("single", llvm::ThreadModel::Single); 571 572 // Set float ABI type. 573 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 574 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 575 "Invalid Floating Point ABI!"); 576 Options.FloatABIType = 577 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 578 .Case("soft", llvm::FloatABI::Soft) 579 .Case("softfp", llvm::FloatABI::Soft) 580 .Case("hard", llvm::FloatABI::Hard) 581 .Default(llvm::FloatABI::Default); 582 583 // Set FP fusion mode. 584 switch (CodeGenOpts.getFPContractMode()) { 585 case CodeGenOptions::FPC_Off: 586 Options.AllowFPOpFusion = llvm::FPOpFusion::Strict; 587 break; 588 case CodeGenOptions::FPC_On: 589 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 590 break; 591 case CodeGenOptions::FPC_Fast: 592 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 593 break; 594 } 595 596 Options.UseInitArray = CodeGenOpts.UseInitArray; 597 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 598 Options.CompressDebugSections = CodeGenOpts.CompressDebugSections; 599 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 600 601 // Set EABI version. 602 Options.EABIVersion = llvm::StringSwitch<llvm::EABI>(TargetOpts.EABIVersion) 603 .Case("4", llvm::EABI::EABI4) 604 .Case("5", llvm::EABI::EABI5) 605 .Case("gnu", llvm::EABI::GNU) 606 .Default(llvm::EABI::Default); 607 608 if (LangOpts.SjLjExceptions) 609 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 610 611 Options.LessPreciseFPMADOption = CodeGenOpts.LessPreciseFPMAD; 612 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 613 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 614 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 615 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 616 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 617 Options.FunctionSections = CodeGenOpts.FunctionSections; 618 Options.DataSections = CodeGenOpts.DataSections; 619 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 620 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 621 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 622 623 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 624 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 625 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 626 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 627 Options.MCOptions.MCIncrementalLinkerCompatible = 628 CodeGenOpts.IncrementalLinkerCompatible; 629 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 630 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 631 Options.MCOptions.ABIName = TargetOpts.ABI; 632 633 TargetMachine *TM = TheTarget->createTargetMachine(Triple, TargetOpts.CPU, 634 FeaturesStr, Options, 635 RM, CM, OptLevel); 636 637 return TM; 638 } 639 640 bool EmitAssemblyHelper::AddEmitPasses(BackendAction Action, 641 raw_pwrite_stream &OS) { 642 643 // Create the code generator passes. 644 legacy::PassManager *PM = getCodeGenPasses(); 645 646 // Add LibraryInfo. 647 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 648 std::unique_ptr<TargetLibraryInfoImpl> TLII( 649 createTLII(TargetTriple, CodeGenOpts)); 650 PM->add(new TargetLibraryInfoWrapperPass(*TLII)); 651 652 // Normal mode, emit a .s or .o file by running the code generator. Note, 653 // this also adds codegenerator level optimization passes. 654 TargetMachine::CodeGenFileType CGFT = TargetMachine::CGFT_AssemblyFile; 655 if (Action == Backend_EmitObj) 656 CGFT = TargetMachine::CGFT_ObjectFile; 657 else if (Action == Backend_EmitMCNull) 658 CGFT = TargetMachine::CGFT_Null; 659 else 660 assert(Action == Backend_EmitAssembly && "Invalid action!"); 661 662 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 663 // "codegen" passes so that it isn't run multiple times when there is 664 // inlining happening. 665 if (CodeGenOpts.OptimizationLevel > 0) 666 PM->add(createObjCARCContractPass()); 667 668 if (TM->addPassesToEmitFile(*PM, OS, CGFT, 669 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 670 Diags.Report(diag::err_fe_unable_to_interface_with_target); 671 return false; 672 } 673 674 return true; 675 } 676 677 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 678 raw_pwrite_stream *OS) { 679 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 680 681 setCommandLineOpts(); 682 683 bool UsesCodeGen = (Action != Backend_EmitNothing && 684 Action != Backend_EmitBC && 685 Action != Backend_EmitLL); 686 if (!TM) 687 TM.reset(CreateTargetMachine(UsesCodeGen)); 688 689 if (UsesCodeGen && !TM) 690 return; 691 if (TM) 692 TheModule->setDataLayout(TM->createDataLayout()); 693 694 // If we are performing a ThinLTO importing compile, load the function 695 // index into memory and pass it into CreatePasses, which will add it 696 // to the PassManagerBuilder and invoke LTO passes. 697 std::unique_ptr<ModuleSummaryIndex> ModuleSummary; 698 if (!CodeGenOpts.ThinLTOIndexFile.empty()) { 699 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 700 llvm::getModuleSummaryIndexForFile( 701 CodeGenOpts.ThinLTOIndexFile, [&](const DiagnosticInfo &DI) { 702 TheModule->getContext().diagnose(DI); 703 }); 704 if (std::error_code EC = IndexOrErr.getError()) { 705 std::string Error = EC.message(); 706 errs() << "Error loading index file '" << CodeGenOpts.ThinLTOIndexFile 707 << "': " << Error << "\n"; 708 return; 709 } 710 ModuleSummary = std::move(IndexOrErr.get()); 711 assert(ModuleSummary && "Expected non-empty module summary index"); 712 } 713 714 CreatePasses(ModuleSummary.get()); 715 716 switch (Action) { 717 case Backend_EmitNothing: 718 break; 719 720 case Backend_EmitBC: 721 getPerModulePasses()->add(createBitcodeWriterPass( 722 *OS, CodeGenOpts.EmitLLVMUseLists, CodeGenOpts.EmitSummaryIndex, 723 CodeGenOpts.EmitSummaryIndex)); 724 break; 725 726 case Backend_EmitLL: 727 getPerModulePasses()->add( 728 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 729 break; 730 731 default: 732 if (!AddEmitPasses(Action, *OS)) 733 return; 734 } 735 736 // Before executing passes, print the final values of the LLVM options. 737 cl::PrintOptionValues(); 738 739 // Run passes. For now we do all passes at once, but eventually we 740 // would like to have the option of streaming code generation. 741 742 if (PerFunctionPasses) { 743 PrettyStackTraceString CrashInfo("Per-function optimization"); 744 745 PerFunctionPasses->doInitialization(); 746 for (Function &F : *TheModule) 747 if (!F.isDeclaration()) 748 PerFunctionPasses->run(F); 749 PerFunctionPasses->doFinalization(); 750 } 751 752 if (PerModulePasses) { 753 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 754 PerModulePasses->run(*TheModule); 755 } 756 757 if (CodeGenPasses) { 758 PrettyStackTraceString CrashInfo("Code generation"); 759 CodeGenPasses->run(*TheModule); 760 } 761 } 762 763 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 764 const CodeGenOptions &CGOpts, 765 const clang::TargetOptions &TOpts, 766 const LangOptions &LOpts, const llvm::DataLayout &TDesc, 767 Module *M, BackendAction Action, 768 raw_pwrite_stream *OS) { 769 EmitAssemblyHelper AsmHelper(Diags, CGOpts, TOpts, LOpts, M); 770 771 AsmHelper.EmitAssembly(Action, OS); 772 773 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 774 // DataLayout. 775 if (AsmHelper.TM) { 776 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 777 if (DLDesc != TDesc.getStringRepresentation()) { 778 unsigned DiagID = Diags.getCustomDiagID( 779 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 780 "expected target description '%1'"); 781 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 782 } 783 } 784 } 785 786 static const char* getSectionNameForBitcode(const Triple &T) { 787 switch (T.getObjectFormat()) { 788 case Triple::MachO: 789 return "__LLVM,__bitcode"; 790 case Triple::COFF: 791 case Triple::ELF: 792 case Triple::UnknownObjectFormat: 793 return ".llvmbc"; 794 } 795 llvm_unreachable("Unimplemented ObjectFormatType"); 796 } 797 798 static const char* getSectionNameForCommandline(const Triple &T) { 799 switch (T.getObjectFormat()) { 800 case Triple::MachO: 801 return "__LLVM,__cmdline"; 802 case Triple::COFF: 803 case Triple::ELF: 804 case Triple::UnknownObjectFormat: 805 return ".llvmcmd"; 806 } 807 llvm_unreachable("Unimplemented ObjectFormatType"); 808 } 809 810 // With -fembed-bitcode, save a copy of the llvm IR as data in the 811 // __LLVM,__bitcode section. 812 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 813 llvm::MemoryBufferRef Buf) { 814 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 815 return; 816 817 // Save llvm.compiler.used and remote it. 818 SmallVector<Constant*, 2> UsedArray; 819 SmallSet<GlobalValue*, 4> UsedGlobals; 820 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 821 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 822 for (auto *GV : UsedGlobals) { 823 if (GV->getName() != "llvm.embedded.module" && 824 GV->getName() != "llvm.cmdline") 825 UsedArray.push_back( 826 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 827 } 828 if (Used) 829 Used->eraseFromParent(); 830 831 // Embed the bitcode for the llvm module. 832 std::string Data; 833 ArrayRef<uint8_t> ModuleData; 834 Triple T(M->getTargetTriple()); 835 // Create a constant that contains the bitcode. 836 // In case of embedding a marker, ignore the input Buf and use the empty 837 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 838 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 839 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 840 (const unsigned char *)Buf.getBufferEnd())) { 841 // If the input is LLVM Assembly, bitcode is produced by serializing 842 // the module. Use-lists order need to be perserved in this case. 843 llvm::raw_string_ostream OS(Data); 844 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 845 ModuleData = 846 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 847 } else 848 // If the input is LLVM bitcode, write the input byte stream directly. 849 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 850 Buf.getBufferSize()); 851 } 852 llvm::Constant *ModuleConstant = 853 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 854 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 855 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 856 ModuleConstant); 857 GV->setSection(getSectionNameForBitcode(T)); 858 UsedArray.push_back( 859 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 860 if (llvm::GlobalVariable *Old = 861 M->getGlobalVariable("llvm.embedded.module", true)) { 862 assert(Old->hasOneUse() && 863 "llvm.embedded.module can only be used once in llvm.compiler.used"); 864 GV->takeName(Old); 865 Old->eraseFromParent(); 866 } else { 867 GV->setName("llvm.embedded.module"); 868 } 869 870 // Skip if only bitcode needs to be embedded. 871 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 872 // Embed command-line options. 873 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 874 CGOpts.CmdArgs.size()); 875 llvm::Constant *CmdConstant = 876 llvm::ConstantDataArray::get(M->getContext(), CmdData); 877 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 878 llvm::GlobalValue::PrivateLinkage, 879 CmdConstant); 880 GV->setSection(getSectionNameForCommandline(T)); 881 UsedArray.push_back( 882 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 883 if (llvm::GlobalVariable *Old = 884 M->getGlobalVariable("llvm.cmdline", true)) { 885 assert(Old->hasOneUse() && 886 "llvm.cmdline can only be used once in llvm.compiler.used"); 887 GV->takeName(Old); 888 Old->eraseFromParent(); 889 } else { 890 GV->setName("llvm.cmdline"); 891 } 892 } 893 894 if (UsedArray.empty()) 895 return; 896 897 // Recreate llvm.compiler.used. 898 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 899 auto *NewUsed = new GlobalVariable( 900 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 901 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 902 NewUsed->setSection("llvm.metadata"); 903 } 904