1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/ADT/StringSwitch.h" 19 #include "llvm/ADT/Triple.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Bitcode/BitcodeWriterPass.h" 23 #include "llvm/Bitcode/ReaderWriter.h" 24 #include "llvm/CodeGen/RegAllocRegistry.h" 25 #include "llvm/CodeGen/SchedulerRegistry.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/ModuleSummaryIndex.h" 28 #include "llvm/IR/IRPrintingPasses.h" 29 #include "llvm/IR/LegacyPassManager.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/Verifier.h" 32 #include "llvm/MC/SubtargetFeature.h" 33 #include "llvm/Object/ModuleSummaryIndexObjectFile.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/PrettyStackTrace.h" 36 #include "llvm/Support/TargetRegistry.h" 37 #include "llvm/Support/Timer.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Target/TargetMachine.h" 40 #include "llvm/Target/TargetOptions.h" 41 #include "llvm/Target/TargetSubtargetInfo.h" 42 #include "llvm/Transforms/IPO.h" 43 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 44 #include "llvm/Transforms/Instrumentation.h" 45 #include "llvm/Transforms/ObjCARC.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Scalar/GVN.h" 48 #include "llvm/Transforms/Utils/SymbolRewriter.h" 49 #include <memory> 50 using namespace clang; 51 using namespace llvm; 52 53 namespace { 54 55 class EmitAssemblyHelper { 56 DiagnosticsEngine &Diags; 57 const CodeGenOptions &CodeGenOpts; 58 const clang::TargetOptions &TargetOpts; 59 const LangOptions &LangOpts; 60 Module *TheModule; 61 62 Timer CodeGenerationTime; 63 64 mutable legacy::PassManager *CodeGenPasses; 65 mutable legacy::PassManager *PerModulePasses; 66 mutable legacy::FunctionPassManager *PerFunctionPasses; 67 68 private: 69 TargetIRAnalysis getTargetIRAnalysis() const { 70 if (TM) 71 return TM->getTargetIRAnalysis(); 72 73 return TargetIRAnalysis(); 74 } 75 76 legacy::PassManager *getCodeGenPasses() const { 77 if (!CodeGenPasses) { 78 CodeGenPasses = new legacy::PassManager(); 79 CodeGenPasses->add( 80 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 81 } 82 return CodeGenPasses; 83 } 84 85 legacy::PassManager *getPerModulePasses() const { 86 if (!PerModulePasses) { 87 PerModulePasses = new legacy::PassManager(); 88 PerModulePasses->add( 89 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 90 } 91 return PerModulePasses; 92 } 93 94 legacy::FunctionPassManager *getPerFunctionPasses() const { 95 if (!PerFunctionPasses) { 96 PerFunctionPasses = new legacy::FunctionPassManager(TheModule); 97 PerFunctionPasses->add( 98 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 99 } 100 return PerFunctionPasses; 101 } 102 103 /// Set LLVM command line options passed through -backend-option. 104 void setCommandLineOpts(); 105 106 void CreatePasses(ModuleSummaryIndex *ModuleSummary); 107 108 /// Generates the TargetMachine. 109 /// Returns Null if it is unable to create the target machine. 110 /// Some of our clang tests specify triples which are not built 111 /// into clang. This is okay because these tests check the generated 112 /// IR, and they require DataLayout which depends on the triple. 113 /// In this case, we allow this method to fail and not report an error. 114 /// When MustCreateTM is used, we print an error if we are unable to load 115 /// the requested target. 116 TargetMachine *CreateTargetMachine(bool MustCreateTM); 117 118 /// Add passes necessary to emit assembly or LLVM IR. 119 /// 120 /// \return True on success. 121 bool AddEmitPasses(BackendAction Action, raw_pwrite_stream &OS); 122 123 public: 124 EmitAssemblyHelper(DiagnosticsEngine &_Diags, const CodeGenOptions &CGOpts, 125 const clang::TargetOptions &TOpts, 126 const LangOptions &LOpts, Module *M) 127 : Diags(_Diags), CodeGenOpts(CGOpts), TargetOpts(TOpts), LangOpts(LOpts), 128 TheModule(M), CodeGenerationTime("Code Generation Time"), 129 CodeGenPasses(nullptr), PerModulePasses(nullptr), 130 PerFunctionPasses(nullptr) {} 131 132 ~EmitAssemblyHelper() { 133 delete CodeGenPasses; 134 delete PerModulePasses; 135 delete PerFunctionPasses; 136 if (CodeGenOpts.DisableFree) 137 BuryPointer(std::move(TM)); 138 } 139 140 std::unique_ptr<TargetMachine> TM; 141 142 void EmitAssembly(BackendAction Action, raw_pwrite_stream *OS); 143 }; 144 145 // We need this wrapper to access LangOpts and CGOpts from extension functions 146 // that we add to the PassManagerBuilder. 147 class PassManagerBuilderWrapper : public PassManagerBuilder { 148 public: 149 PassManagerBuilderWrapper(const CodeGenOptions &CGOpts, 150 const LangOptions &LangOpts) 151 : PassManagerBuilder(), CGOpts(CGOpts), LangOpts(LangOpts) {} 152 const CodeGenOptions &getCGOpts() const { return CGOpts; } 153 const LangOptions &getLangOpts() const { return LangOpts; } 154 private: 155 const CodeGenOptions &CGOpts; 156 const LangOptions &LangOpts; 157 }; 158 159 } 160 161 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 162 if (Builder.OptLevel > 0) 163 PM.add(createObjCARCAPElimPass()); 164 } 165 166 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 167 if (Builder.OptLevel > 0) 168 PM.add(createObjCARCExpandPass()); 169 } 170 171 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 172 if (Builder.OptLevel > 0) 173 PM.add(createObjCARCOptPass()); 174 } 175 176 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 177 legacy::PassManagerBase &PM) { 178 PM.add(createAddDiscriminatorsPass()); 179 } 180 181 static void addCleanupPassesForSampleProfiler( 182 const PassManagerBuilder &Builder, legacy::PassManagerBase &PM) { 183 // instcombine is needed before sample profile annotation because it converts 184 // certain function calls to be inlinable. simplifycfg and sroa are needed 185 // before instcombine for necessary preparation. E.g. load store is eliminated 186 // properly so that instcombine will not introduce unecessary liverange. 187 PM.add(createCFGSimplificationPass()); 188 PM.add(createSROAPass()); 189 PM.add(createInstructionCombiningPass()); 190 } 191 192 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 193 legacy::PassManagerBase &PM) { 194 PM.add(createBoundsCheckingPass()); 195 } 196 197 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 198 legacy::PassManagerBase &PM) { 199 const PassManagerBuilderWrapper &BuilderWrapper = 200 static_cast<const PassManagerBuilderWrapper&>(Builder); 201 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 202 SanitizerCoverageOptions Opts; 203 Opts.CoverageType = 204 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 205 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 206 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 207 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 208 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 209 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 210 PM.add(createSanitizerCoverageModulePass(Opts)); 211 } 212 213 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 214 legacy::PassManagerBase &PM) { 215 const PassManagerBuilderWrapper &BuilderWrapper = 216 static_cast<const PassManagerBuilderWrapper&>(Builder); 217 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 218 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 219 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 220 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 221 UseAfterScope)); 222 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/false, Recover)); 223 } 224 225 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 226 legacy::PassManagerBase &PM) { 227 PM.add(createAddressSanitizerFunctionPass( 228 /*CompileKernel*/ true, 229 /*Recover*/ true, /*UseAfterScope*/ false)); 230 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/true, 231 /*Recover*/true)); 232 } 233 234 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 235 legacy::PassManagerBase &PM) { 236 const PassManagerBuilderWrapper &BuilderWrapper = 237 static_cast<const PassManagerBuilderWrapper&>(Builder); 238 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 239 PM.add(createMemorySanitizerPass(CGOpts.SanitizeMemoryTrackOrigins)); 240 241 // MemorySanitizer inserts complex instrumentation that mostly follows 242 // the logic of the original code, but operates on "shadow" values. 243 // It can benefit from re-running some general purpose optimization passes. 244 if (Builder.OptLevel > 0) { 245 PM.add(createEarlyCSEPass()); 246 PM.add(createReassociatePass()); 247 PM.add(createLICMPass()); 248 PM.add(createGVNPass()); 249 PM.add(createInstructionCombiningPass()); 250 PM.add(createDeadStoreEliminationPass()); 251 } 252 } 253 254 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 255 legacy::PassManagerBase &PM) { 256 PM.add(createThreadSanitizerPass()); 257 } 258 259 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 260 legacy::PassManagerBase &PM) { 261 const PassManagerBuilderWrapper &BuilderWrapper = 262 static_cast<const PassManagerBuilderWrapper&>(Builder); 263 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 264 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 265 } 266 267 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 268 legacy::PassManagerBase &PM) { 269 const PassManagerBuilderWrapper &BuilderWrapper = 270 static_cast<const PassManagerBuilderWrapper&>(Builder); 271 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 272 EfficiencySanitizerOptions Opts; 273 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 274 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 275 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 276 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 277 PM.add(createEfficiencySanitizerPass(Opts)); 278 } 279 280 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 281 const CodeGenOptions &CodeGenOpts) { 282 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 283 if (!CodeGenOpts.SimplifyLibCalls) 284 TLII->disableAllFunctions(); 285 else { 286 // Disable individual libc/libm calls in TargetLibraryInfo. 287 LibFunc::Func F; 288 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 289 if (TLII->getLibFunc(FuncName, F)) 290 TLII->setUnavailable(F); 291 } 292 293 switch (CodeGenOpts.getVecLib()) { 294 case CodeGenOptions::Accelerate: 295 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 296 break; 297 default: 298 break; 299 } 300 return TLII; 301 } 302 303 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 304 legacy::PassManager *MPM) { 305 llvm::SymbolRewriter::RewriteDescriptorList DL; 306 307 llvm::SymbolRewriter::RewriteMapParser MapParser; 308 for (const auto &MapFile : Opts.RewriteMapFiles) 309 MapParser.parse(MapFile, &DL); 310 311 MPM->add(createRewriteSymbolsPass(DL)); 312 } 313 314 void EmitAssemblyHelper::CreatePasses(ModuleSummaryIndex *ModuleSummary) { 315 if (CodeGenOpts.DisableLLVMPasses) 316 return; 317 318 unsigned OptLevel = CodeGenOpts.OptimizationLevel; 319 CodeGenOptions::InliningMethod Inlining = CodeGenOpts.getInlining(); 320 321 // Handle disabling of LLVM optimization, where we want to preserve the 322 // internal module before any optimization. 323 if (CodeGenOpts.DisableLLVMOpts) { 324 OptLevel = 0; 325 Inlining = CodeGenOpts.NoInlining; 326 } 327 328 PassManagerBuilderWrapper PMBuilder(CodeGenOpts, LangOpts); 329 330 // Figure out TargetLibraryInfo. 331 Triple TargetTriple(TheModule->getTargetTriple()); 332 PMBuilder.LibraryInfo = createTLII(TargetTriple, CodeGenOpts); 333 334 switch (Inlining) { 335 case CodeGenOptions::NoInlining: 336 break; 337 case CodeGenOptions::NormalInlining: 338 case CodeGenOptions::OnlyHintInlining: { 339 PMBuilder.Inliner = 340 createFunctionInliningPass(OptLevel, CodeGenOpts.OptimizeSize); 341 break; 342 } 343 case CodeGenOptions::OnlyAlwaysInlining: 344 // Respect always_inline. 345 if (OptLevel == 0) 346 // Do not insert lifetime intrinsics at -O0. 347 PMBuilder.Inliner = createAlwaysInlinerPass(false); 348 else 349 PMBuilder.Inliner = createAlwaysInlinerPass(); 350 break; 351 } 352 353 PMBuilder.OptLevel = OptLevel; 354 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 355 PMBuilder.BBVectorize = CodeGenOpts.VectorizeBB; 356 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 357 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 358 359 PMBuilder.DisableUnitAtATime = !CodeGenOpts.UnitAtATime; 360 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 361 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 362 PMBuilder.PrepareForThinLTO = CodeGenOpts.EmitSummaryIndex; 363 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 364 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 365 366 legacy::PassManager *MPM = getPerModulePasses(); 367 368 // If we are performing a ThinLTO importing compile, invoke the LTO 369 // pipeline and pass down the in-memory module summary index. 370 if (ModuleSummary) { 371 PMBuilder.ModuleSummary = ModuleSummary; 372 PMBuilder.populateThinLTOPassManager(*MPM); 373 return; 374 } 375 376 // Add target-specific passes that need to run as early as possible. 377 if (TM) 378 PMBuilder.addExtension( 379 PassManagerBuilder::EP_EarlyAsPossible, 380 [&](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 381 TM->addEarlyAsPossiblePasses(PM); 382 }); 383 384 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 385 addAddDiscriminatorsPass); 386 387 // In ObjC ARC mode, add the main ARC optimization passes. 388 if (LangOpts.ObjCAutoRefCount) { 389 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 390 addObjCARCExpandPass); 391 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 392 addObjCARCAPElimPass); 393 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 394 addObjCARCOptPass); 395 } 396 397 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 398 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 399 addBoundsCheckingPass); 400 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 401 addBoundsCheckingPass); 402 } 403 404 if (CodeGenOpts.SanitizeCoverageType || 405 CodeGenOpts.SanitizeCoverageIndirectCalls || 406 CodeGenOpts.SanitizeCoverageTraceCmp) { 407 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 408 addSanitizerCoveragePass); 409 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 410 addSanitizerCoveragePass); 411 } 412 413 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 414 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 415 addAddressSanitizerPasses); 416 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 417 addAddressSanitizerPasses); 418 } 419 420 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 421 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 422 addKernelAddressSanitizerPasses); 423 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 424 addKernelAddressSanitizerPasses); 425 } 426 427 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 428 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 429 addMemorySanitizerPass); 430 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 431 addMemorySanitizerPass); 432 } 433 434 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 435 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 436 addThreadSanitizerPass); 437 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 438 addThreadSanitizerPass); 439 } 440 441 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 442 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 443 addDataFlowSanitizerPass); 444 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 445 addDataFlowSanitizerPass); 446 } 447 448 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 449 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 450 addEfficiencySanitizerPass); 451 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 452 addEfficiencySanitizerPass); 453 } 454 455 // Set up the per-function pass manager. 456 legacy::FunctionPassManager *FPM = getPerFunctionPasses(); 457 if (CodeGenOpts.VerifyModule) 458 FPM->add(createVerifierPass()); 459 460 // Set up the per-module pass manager. 461 if (!CodeGenOpts.RewriteMapFiles.empty()) 462 addSymbolRewriterPass(CodeGenOpts, MPM); 463 464 if (!CodeGenOpts.DisableGCov && 465 (CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)) { 466 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 467 // LLVM's -default-gcov-version flag is set to something invalid. 468 GCOVOptions Options; 469 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 470 Options.EmitData = CodeGenOpts.EmitGcovArcs; 471 memcpy(Options.Version, CodeGenOpts.CoverageVersion, 4); 472 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 473 Options.NoRedZone = CodeGenOpts.DisableRedZone; 474 Options.FunctionNamesInData = 475 !CodeGenOpts.CoverageNoFunctionNamesInData; 476 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 477 MPM->add(createGCOVProfilerPass(Options)); 478 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 479 MPM->add(createStripSymbolsPass(true)); 480 } 481 482 if (CodeGenOpts.hasProfileClangInstr()) { 483 InstrProfOptions Options; 484 Options.NoRedZone = CodeGenOpts.DisableRedZone; 485 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 486 MPM->add(createInstrProfilingLegacyPass(Options)); 487 } 488 if (CodeGenOpts.hasProfileIRInstr()) { 489 if (!CodeGenOpts.InstrProfileOutput.empty()) 490 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 491 else 492 PMBuilder.PGOInstrGen = "default.profraw"; 493 } 494 if (CodeGenOpts.hasProfileIRUse()) 495 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 496 497 if (!CodeGenOpts.SampleProfileFile.empty()) { 498 MPM->add(createPruneEHPass()); 499 MPM->add(createSampleProfileLoaderPass(CodeGenOpts.SampleProfileFile)); 500 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 501 addCleanupPassesForSampleProfiler); 502 } 503 504 PMBuilder.populateFunctionPassManager(*FPM); 505 PMBuilder.populateModulePassManager(*MPM); 506 } 507 508 void EmitAssemblyHelper::setCommandLineOpts() { 509 SmallVector<const char *, 16> BackendArgs; 510 BackendArgs.push_back("clang"); // Fake program name. 511 if (!CodeGenOpts.DebugPass.empty()) { 512 BackendArgs.push_back("-debug-pass"); 513 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 514 } 515 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 516 BackendArgs.push_back("-limit-float-precision"); 517 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 518 } 519 for (const std::string &BackendOption : CodeGenOpts.BackendOptions) 520 BackendArgs.push_back(BackendOption.c_str()); 521 BackendArgs.push_back(nullptr); 522 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 523 BackendArgs.data()); 524 } 525 526 TargetMachine *EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 527 // Create the TargetMachine for generating code. 528 std::string Error; 529 std::string Triple = TheModule->getTargetTriple(); 530 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 531 if (!TheTarget) { 532 if (MustCreateTM) 533 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 534 return nullptr; 535 } 536 537 unsigned CodeModel = 538 llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 539 .Case("small", llvm::CodeModel::Small) 540 .Case("kernel", llvm::CodeModel::Kernel) 541 .Case("medium", llvm::CodeModel::Medium) 542 .Case("large", llvm::CodeModel::Large) 543 .Case("default", llvm::CodeModel::Default) 544 .Default(~0u); 545 assert(CodeModel != ~0u && "invalid code model!"); 546 llvm::CodeModel::Model CM = static_cast<llvm::CodeModel::Model>(CodeModel); 547 548 std::string FeaturesStr = 549 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 550 551 // Keep this synced with the equivalent code in tools/driver/cc1as_main.cpp. 552 llvm::Optional<llvm::Reloc::Model> RM; 553 if (CodeGenOpts.RelocationModel == "static") { 554 RM = llvm::Reloc::Static; 555 } else if (CodeGenOpts.RelocationModel == "pic") { 556 RM = llvm::Reloc::PIC_; 557 } else { 558 assert(CodeGenOpts.RelocationModel == "dynamic-no-pic" && 559 "Invalid PIC model!"); 560 RM = llvm::Reloc::DynamicNoPIC; 561 } 562 563 CodeGenOpt::Level OptLevel = CodeGenOpt::Default; 564 switch (CodeGenOpts.OptimizationLevel) { 565 default: break; 566 case 0: OptLevel = CodeGenOpt::None; break; 567 case 3: OptLevel = CodeGenOpt::Aggressive; break; 568 } 569 570 llvm::TargetOptions Options; 571 572 if (!TargetOpts.Reciprocals.empty()) 573 Options.Reciprocals = TargetRecip(TargetOpts.Reciprocals); 574 575 Options.ThreadModel = 576 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 577 .Case("posix", llvm::ThreadModel::POSIX) 578 .Case("single", llvm::ThreadModel::Single); 579 580 // Set float ABI type. 581 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 582 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 583 "Invalid Floating Point ABI!"); 584 Options.FloatABIType = 585 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 586 .Case("soft", llvm::FloatABI::Soft) 587 .Case("softfp", llvm::FloatABI::Soft) 588 .Case("hard", llvm::FloatABI::Hard) 589 .Default(llvm::FloatABI::Default); 590 591 // Set FP fusion mode. 592 switch (CodeGenOpts.getFPContractMode()) { 593 case CodeGenOptions::FPC_Off: 594 Options.AllowFPOpFusion = llvm::FPOpFusion::Strict; 595 break; 596 case CodeGenOptions::FPC_On: 597 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 598 break; 599 case CodeGenOptions::FPC_Fast: 600 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 601 break; 602 } 603 604 Options.UseInitArray = CodeGenOpts.UseInitArray; 605 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 606 Options.CompressDebugSections = CodeGenOpts.CompressDebugSections; 607 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 608 609 // Set EABI version. 610 Options.EABIVersion = llvm::StringSwitch<llvm::EABI>(TargetOpts.EABIVersion) 611 .Case("4", llvm::EABI::EABI4) 612 .Case("5", llvm::EABI::EABI5) 613 .Case("gnu", llvm::EABI::GNU) 614 .Default(llvm::EABI::Default); 615 616 if (LangOpts.SjLjExceptions) 617 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 618 619 Options.LessPreciseFPMADOption = CodeGenOpts.LessPreciseFPMAD; 620 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 621 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 622 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 623 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 624 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 625 Options.FunctionSections = CodeGenOpts.FunctionSections; 626 Options.DataSections = CodeGenOpts.DataSections; 627 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 628 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 629 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 630 631 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 632 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 633 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 634 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 635 Options.MCOptions.MCIncrementalLinkerCompatible = 636 CodeGenOpts.IncrementalLinkerCompatible; 637 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 638 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 639 Options.MCOptions.ABIName = TargetOpts.ABI; 640 641 TargetMachine *TM = TheTarget->createTargetMachine(Triple, TargetOpts.CPU, 642 FeaturesStr, Options, 643 RM, CM, OptLevel); 644 645 return TM; 646 } 647 648 bool EmitAssemblyHelper::AddEmitPasses(BackendAction Action, 649 raw_pwrite_stream &OS) { 650 651 // Create the code generator passes. 652 legacy::PassManager *PM = getCodeGenPasses(); 653 654 // Add LibraryInfo. 655 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 656 std::unique_ptr<TargetLibraryInfoImpl> TLII( 657 createTLII(TargetTriple, CodeGenOpts)); 658 PM->add(new TargetLibraryInfoWrapperPass(*TLII)); 659 660 // Normal mode, emit a .s or .o file by running the code generator. Note, 661 // this also adds codegenerator level optimization passes. 662 TargetMachine::CodeGenFileType CGFT = TargetMachine::CGFT_AssemblyFile; 663 if (Action == Backend_EmitObj) 664 CGFT = TargetMachine::CGFT_ObjectFile; 665 else if (Action == Backend_EmitMCNull) 666 CGFT = TargetMachine::CGFT_Null; 667 else 668 assert(Action == Backend_EmitAssembly && "Invalid action!"); 669 670 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 671 // "codegen" passes so that it isn't run multiple times when there is 672 // inlining happening. 673 if (CodeGenOpts.OptimizationLevel > 0) 674 PM->add(createObjCARCContractPass()); 675 676 if (TM->addPassesToEmitFile(*PM, OS, CGFT, 677 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 678 Diags.Report(diag::err_fe_unable_to_interface_with_target); 679 return false; 680 } 681 682 return true; 683 } 684 685 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 686 raw_pwrite_stream *OS) { 687 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 688 689 setCommandLineOpts(); 690 691 bool UsesCodeGen = (Action != Backend_EmitNothing && 692 Action != Backend_EmitBC && 693 Action != Backend_EmitLL); 694 if (!TM) 695 TM.reset(CreateTargetMachine(UsesCodeGen)); 696 697 if (UsesCodeGen && !TM) 698 return; 699 if (TM) 700 TheModule->setDataLayout(TM->createDataLayout()); 701 702 // If we are performing a ThinLTO importing compile, load the function 703 // index into memory and pass it into CreatePasses, which will add it 704 // to the PassManagerBuilder and invoke LTO passes. 705 std::unique_ptr<ModuleSummaryIndex> ModuleSummary; 706 if (!CodeGenOpts.ThinLTOIndexFile.empty()) { 707 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 708 llvm::getModuleSummaryIndexForFile( 709 CodeGenOpts.ThinLTOIndexFile, [&](const DiagnosticInfo &DI) { 710 TheModule->getContext().diagnose(DI); 711 }); 712 if (std::error_code EC = IndexOrErr.getError()) { 713 std::string Error = EC.message(); 714 errs() << "Error loading index file '" << CodeGenOpts.ThinLTOIndexFile 715 << "': " << Error << "\n"; 716 return; 717 } 718 ModuleSummary = std::move(IndexOrErr.get()); 719 assert(ModuleSummary && "Expected non-empty module summary index"); 720 } 721 722 CreatePasses(ModuleSummary.get()); 723 724 switch (Action) { 725 case Backend_EmitNothing: 726 break; 727 728 case Backend_EmitBC: 729 getPerModulePasses()->add(createBitcodeWriterPass( 730 *OS, CodeGenOpts.EmitLLVMUseLists, CodeGenOpts.EmitSummaryIndex, 731 CodeGenOpts.EmitSummaryIndex)); 732 break; 733 734 case Backend_EmitLL: 735 getPerModulePasses()->add( 736 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 737 break; 738 739 default: 740 if (!AddEmitPasses(Action, *OS)) 741 return; 742 } 743 744 // Before executing passes, print the final values of the LLVM options. 745 cl::PrintOptionValues(); 746 747 // Run passes. For now we do all passes at once, but eventually we 748 // would like to have the option of streaming code generation. 749 750 if (PerFunctionPasses) { 751 PrettyStackTraceString CrashInfo("Per-function optimization"); 752 753 PerFunctionPasses->doInitialization(); 754 for (Function &F : *TheModule) 755 if (!F.isDeclaration()) 756 PerFunctionPasses->run(F); 757 PerFunctionPasses->doFinalization(); 758 } 759 760 if (PerModulePasses) { 761 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 762 PerModulePasses->run(*TheModule); 763 } 764 765 if (CodeGenPasses) { 766 PrettyStackTraceString CrashInfo("Code generation"); 767 CodeGenPasses->run(*TheModule); 768 } 769 } 770 771 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 772 const CodeGenOptions &CGOpts, 773 const clang::TargetOptions &TOpts, 774 const LangOptions &LOpts, const llvm::DataLayout &TDesc, 775 Module *M, BackendAction Action, 776 raw_pwrite_stream *OS) { 777 EmitAssemblyHelper AsmHelper(Diags, CGOpts, TOpts, LOpts, M); 778 779 AsmHelper.EmitAssembly(Action, OS); 780 781 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 782 // DataLayout. 783 if (AsmHelper.TM) { 784 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 785 if (DLDesc != TDesc.getStringRepresentation()) { 786 unsigned DiagID = Diags.getCustomDiagID( 787 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 788 "expected target description '%1'"); 789 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 790 } 791 } 792 } 793 794 static const char* getSectionNameForBitcode(const Triple &T) { 795 switch (T.getObjectFormat()) { 796 case Triple::MachO: 797 return "__LLVM,__bitcode"; 798 case Triple::COFF: 799 case Triple::ELF: 800 case Triple::UnknownObjectFormat: 801 return ".llvmbc"; 802 } 803 llvm_unreachable("Unimplemented ObjectFormatType"); 804 } 805 806 static const char* getSectionNameForCommandline(const Triple &T) { 807 switch (T.getObjectFormat()) { 808 case Triple::MachO: 809 return "__LLVM,__cmdline"; 810 case Triple::COFF: 811 case Triple::ELF: 812 case Triple::UnknownObjectFormat: 813 return ".llvmcmd"; 814 } 815 llvm_unreachable("Unimplemented ObjectFormatType"); 816 } 817 818 // With -fembed-bitcode, save a copy of the llvm IR as data in the 819 // __LLVM,__bitcode section. 820 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 821 llvm::MemoryBufferRef Buf) { 822 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 823 return; 824 825 // Save llvm.compiler.used and remote it. 826 SmallVector<Constant*, 2> UsedArray; 827 SmallSet<GlobalValue*, 4> UsedGlobals; 828 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 829 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 830 for (auto *GV : UsedGlobals) { 831 if (GV->getName() != "llvm.embedded.module" && 832 GV->getName() != "llvm.cmdline") 833 UsedArray.push_back( 834 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 835 } 836 if (Used) 837 Used->eraseFromParent(); 838 839 // Embed the bitcode for the llvm module. 840 std::string Data; 841 ArrayRef<uint8_t> ModuleData; 842 Triple T(M->getTargetTriple()); 843 // Create a constant that contains the bitcode. 844 // In case of embedding a marker, ignore the input Buf and use the empty 845 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 846 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 847 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 848 (const unsigned char *)Buf.getBufferEnd())) { 849 // If the input is LLVM Assembly, bitcode is produced by serializing 850 // the module. Use-lists order need to be perserved in this case. 851 llvm::raw_string_ostream OS(Data); 852 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 853 ModuleData = 854 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 855 } else 856 // If the input is LLVM bitcode, write the input byte stream directly. 857 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 858 Buf.getBufferSize()); 859 } 860 llvm::Constant *ModuleConstant = 861 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 862 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 863 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 864 ModuleConstant); 865 GV->setSection(getSectionNameForBitcode(T)); 866 UsedArray.push_back( 867 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 868 if (llvm::GlobalVariable *Old = 869 M->getGlobalVariable("llvm.embedded.module", true)) { 870 assert(Old->hasOneUse() && 871 "llvm.embedded.module can only be used once in llvm.compiler.used"); 872 GV->takeName(Old); 873 Old->eraseFromParent(); 874 } else { 875 GV->setName("llvm.embedded.module"); 876 } 877 878 // Skip if only bitcode needs to be embedded. 879 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 880 // Embed command-line options. 881 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 882 CGOpts.CmdArgs.size()); 883 llvm::Constant *CmdConstant = 884 llvm::ConstantDataArray::get(M->getContext(), CmdData); 885 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 886 llvm::GlobalValue::PrivateLinkage, 887 CmdConstant); 888 GV->setSection(getSectionNameForCommandline(T)); 889 UsedArray.push_back( 890 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 891 if (llvm::GlobalVariable *Old = 892 M->getGlobalVariable("llvm.cmdline", true)) { 893 assert(Old->hasOneUse() && 894 "llvm.cmdline can only be used once in llvm.compiler.used"); 895 GV->takeName(Old); 896 Old->eraseFromParent(); 897 } else { 898 GV->setName("llvm.cmdline"); 899 } 900 } 901 902 if (UsedArray.empty()) 903 return; 904 905 // Recreate llvm.compiler.used. 906 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 907 auto *NewUsed = new GlobalVariable( 908 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 909 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 910 NewUsed->setSection("llvm.metadata"); 911 } 912