1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Bitcode/BitcodeReader.h" 24 #include "llvm/Bitcode/BitcodeWriter.h" 25 #include "llvm/Bitcode/BitcodeWriterPass.h" 26 #include "llvm/CodeGen/RegAllocRegistry.h" 27 #include "llvm/CodeGen/SchedulerRegistry.h" 28 #include "llvm/CodeGen/TargetSubtargetInfo.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/IRPrintingPasses.h" 31 #include "llvm/IR/LegacyPassManager.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSummaryIndex.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/LTO/LTOBackend.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/SubtargetFeature.h" 38 #include "llvm/Passes/PassBuilder.h" 39 #include "llvm/Passes/PassPlugin.h" 40 #include "llvm/Support/BuryPointer.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/MemoryBuffer.h" 43 #include "llvm/Support/PrettyStackTrace.h" 44 #include "llvm/Support/TargetRegistry.h" 45 #include "llvm/Support/TimeProfiler.h" 46 #include "llvm/Support/Timer.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include "llvm/Target/TargetOptions.h" 50 #include "llvm/Transforms/Coroutines.h" 51 #include "llvm/Transforms/IPO.h" 52 #include "llvm/Transforms/IPO/AlwaysInliner.h" 53 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 54 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 55 #include "llvm/Transforms/InstCombine/InstCombine.h" 56 #include "llvm/Transforms/Instrumentation.h" 57 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 58 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 59 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 60 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 61 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 62 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 63 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 64 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 65 #include "llvm/Transforms/ObjCARC.h" 66 #include "llvm/Transforms/Scalar.h" 67 #include "llvm/Transforms/Scalar/GVN.h" 68 #include "llvm/Transforms/Utils.h" 69 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 70 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 71 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 72 #include "llvm/Transforms/Utils/SymbolRewriter.h" 73 #include <memory> 74 using namespace clang; 75 using namespace llvm; 76 77 namespace { 78 79 // Default filename used for profile generation. 80 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 81 82 class EmitAssemblyHelper { 83 DiagnosticsEngine &Diags; 84 const HeaderSearchOptions &HSOpts; 85 const CodeGenOptions &CodeGenOpts; 86 const clang::TargetOptions &TargetOpts; 87 const LangOptions &LangOpts; 88 Module *TheModule; 89 90 Timer CodeGenerationTime; 91 92 std::unique_ptr<raw_pwrite_stream> OS; 93 94 TargetIRAnalysis getTargetIRAnalysis() const { 95 if (TM) 96 return TM->getTargetIRAnalysis(); 97 98 return TargetIRAnalysis(); 99 } 100 101 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 102 103 /// Generates the TargetMachine. 104 /// Leaves TM unchanged if it is unable to create the target machine. 105 /// Some of our clang tests specify triples which are not built 106 /// into clang. This is okay because these tests check the generated 107 /// IR, and they require DataLayout which depends on the triple. 108 /// In this case, we allow this method to fail and not report an error. 109 /// When MustCreateTM is used, we print an error if we are unable to load 110 /// the requested target. 111 void CreateTargetMachine(bool MustCreateTM); 112 113 /// Add passes necessary to emit assembly or LLVM IR. 114 /// 115 /// \return True on success. 116 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 117 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 118 119 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 120 std::error_code EC; 121 auto F = llvm::make_unique<llvm::ToolOutputFile>(Path, EC, 122 llvm::sys::fs::OF_None); 123 if (EC) { 124 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 125 F.reset(); 126 } 127 return F; 128 } 129 130 public: 131 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 132 const HeaderSearchOptions &HeaderSearchOpts, 133 const CodeGenOptions &CGOpts, 134 const clang::TargetOptions &TOpts, 135 const LangOptions &LOpts, Module *M) 136 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 137 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 138 CodeGenerationTime("codegen", "Code Generation Time") {} 139 140 ~EmitAssemblyHelper() { 141 if (CodeGenOpts.DisableFree) 142 BuryPointer(std::move(TM)); 143 } 144 145 std::unique_ptr<TargetMachine> TM; 146 147 void EmitAssembly(BackendAction Action, 148 std::unique_ptr<raw_pwrite_stream> OS); 149 150 void EmitAssemblyWithNewPassManager(BackendAction Action, 151 std::unique_ptr<raw_pwrite_stream> OS); 152 }; 153 154 // We need this wrapper to access LangOpts and CGOpts from extension functions 155 // that we add to the PassManagerBuilder. 156 class PassManagerBuilderWrapper : public PassManagerBuilder { 157 public: 158 PassManagerBuilderWrapper(const Triple &TargetTriple, 159 const CodeGenOptions &CGOpts, 160 const LangOptions &LangOpts) 161 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 162 LangOpts(LangOpts) {} 163 const Triple &getTargetTriple() const { return TargetTriple; } 164 const CodeGenOptions &getCGOpts() const { return CGOpts; } 165 const LangOptions &getLangOpts() const { return LangOpts; } 166 167 private: 168 const Triple &TargetTriple; 169 const CodeGenOptions &CGOpts; 170 const LangOptions &LangOpts; 171 }; 172 } 173 174 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 175 if (Builder.OptLevel > 0) 176 PM.add(createObjCARCAPElimPass()); 177 } 178 179 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 180 if (Builder.OptLevel > 0) 181 PM.add(createObjCARCExpandPass()); 182 } 183 184 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 185 if (Builder.OptLevel > 0) 186 PM.add(createObjCARCOptPass()); 187 } 188 189 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 190 legacy::PassManagerBase &PM) { 191 PM.add(createAddDiscriminatorsPass()); 192 } 193 194 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 195 legacy::PassManagerBase &PM) { 196 PM.add(createBoundsCheckingLegacyPass()); 197 } 198 199 static SanitizerCoverageOptions 200 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 201 SanitizerCoverageOptions Opts; 202 Opts.CoverageType = 203 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 204 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 205 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 206 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 207 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 208 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 209 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 210 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 211 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 212 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 213 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 214 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 215 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 216 return Opts; 217 } 218 219 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 220 legacy::PassManagerBase &PM) { 221 const PassManagerBuilderWrapper &BuilderWrapper = 222 static_cast<const PassManagerBuilderWrapper &>(Builder); 223 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 224 auto Opts = getSancovOptsFromCGOpts(CGOpts); 225 PM.add(createModuleSanitizerCoverageLegacyPassPass(Opts)); 226 PM.add(createSanitizerCoverageLegacyPassPass(Opts)); 227 } 228 229 // Check if ASan should use GC-friendly instrumentation for globals. 230 // First of all, there is no point if -fdata-sections is off (expect for MachO, 231 // where this is not a factor). Also, on ELF this feature requires an assembler 232 // extension that only works with -integrated-as at the moment. 233 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 234 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 235 return false; 236 switch (T.getObjectFormat()) { 237 case Triple::MachO: 238 case Triple::COFF: 239 return true; 240 case Triple::ELF: 241 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 242 case Triple::XCOFF: 243 llvm::report_fatal_error("ASan not implemented for XCOFF."); 244 case Triple::Wasm: 245 case Triple::UnknownObjectFormat: 246 break; 247 } 248 return false; 249 } 250 251 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 252 legacy::PassManagerBase &PM) { 253 const PassManagerBuilderWrapper &BuilderWrapper = 254 static_cast<const PassManagerBuilderWrapper&>(Builder); 255 const Triple &T = BuilderWrapper.getTargetTriple(); 256 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 257 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 258 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 259 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 260 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 261 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 262 UseAfterScope)); 263 PM.add(createModuleAddressSanitizerLegacyPassPass( 264 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator)); 265 } 266 267 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 268 legacy::PassManagerBase &PM) { 269 PM.add(createAddressSanitizerFunctionPass( 270 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 271 PM.add(createModuleAddressSanitizerLegacyPassPass( 272 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 273 /*UseOdrIndicator*/ false)); 274 } 275 276 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 277 legacy::PassManagerBase &PM) { 278 const PassManagerBuilderWrapper &BuilderWrapper = 279 static_cast<const PassManagerBuilderWrapper &>(Builder); 280 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 281 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 282 PM.add( 283 createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover)); 284 } 285 286 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 287 legacy::PassManagerBase &PM) { 288 PM.add(createHWAddressSanitizerLegacyPassPass( 289 /*CompileKernel*/ true, /*Recover*/ true)); 290 } 291 292 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 293 legacy::PassManagerBase &PM, 294 bool CompileKernel) { 295 const PassManagerBuilderWrapper &BuilderWrapper = 296 static_cast<const PassManagerBuilderWrapper&>(Builder); 297 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 298 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 299 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 300 PM.add(createMemorySanitizerLegacyPassPass( 301 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 302 303 // MemorySanitizer inserts complex instrumentation that mostly follows 304 // the logic of the original code, but operates on "shadow" values. 305 // It can benefit from re-running some general purpose optimization passes. 306 if (Builder.OptLevel > 0) { 307 PM.add(createEarlyCSEPass()); 308 PM.add(createReassociatePass()); 309 PM.add(createLICMPass()); 310 PM.add(createGVNPass()); 311 PM.add(createInstructionCombiningPass()); 312 PM.add(createDeadStoreEliminationPass()); 313 } 314 } 315 316 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 317 legacy::PassManagerBase &PM) { 318 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 319 } 320 321 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 322 legacy::PassManagerBase &PM) { 323 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 324 } 325 326 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 327 legacy::PassManagerBase &PM) { 328 PM.add(createThreadSanitizerLegacyPassPass()); 329 } 330 331 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 332 legacy::PassManagerBase &PM) { 333 const PassManagerBuilderWrapper &BuilderWrapper = 334 static_cast<const PassManagerBuilderWrapper&>(Builder); 335 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 336 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 337 } 338 339 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 340 const CodeGenOptions &CodeGenOpts) { 341 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 342 if (!CodeGenOpts.SimplifyLibCalls) 343 TLII->disableAllFunctions(); 344 else { 345 // Disable individual libc/libm calls in TargetLibraryInfo. 346 LibFunc F; 347 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 348 if (TLII->getLibFunc(FuncName, F)) 349 TLII->setUnavailable(F); 350 } 351 352 switch (CodeGenOpts.getVecLib()) { 353 case CodeGenOptions::Accelerate: 354 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 355 break; 356 case CodeGenOptions::MASSV: 357 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 358 break; 359 case CodeGenOptions::SVML: 360 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 361 break; 362 default: 363 break; 364 } 365 return TLII; 366 } 367 368 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 369 legacy::PassManager *MPM) { 370 llvm::SymbolRewriter::RewriteDescriptorList DL; 371 372 llvm::SymbolRewriter::RewriteMapParser MapParser; 373 for (const auto &MapFile : Opts.RewriteMapFiles) 374 MapParser.parse(MapFile, &DL); 375 376 MPM->add(createRewriteSymbolsPass(DL)); 377 } 378 379 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 380 switch (CodeGenOpts.OptimizationLevel) { 381 default: 382 llvm_unreachable("Invalid optimization level!"); 383 case 0: 384 return CodeGenOpt::None; 385 case 1: 386 return CodeGenOpt::Less; 387 case 2: 388 return CodeGenOpt::Default; // O2/Os/Oz 389 case 3: 390 return CodeGenOpt::Aggressive; 391 } 392 } 393 394 static Optional<llvm::CodeModel::Model> 395 getCodeModel(const CodeGenOptions &CodeGenOpts) { 396 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 397 .Case("tiny", llvm::CodeModel::Tiny) 398 .Case("small", llvm::CodeModel::Small) 399 .Case("kernel", llvm::CodeModel::Kernel) 400 .Case("medium", llvm::CodeModel::Medium) 401 .Case("large", llvm::CodeModel::Large) 402 .Case("default", ~1u) 403 .Default(~0u); 404 assert(CodeModel != ~0u && "invalid code model!"); 405 if (CodeModel == ~1u) 406 return None; 407 return static_cast<llvm::CodeModel::Model>(CodeModel); 408 } 409 410 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 411 if (Action == Backend_EmitObj) 412 return TargetMachine::CGFT_ObjectFile; 413 else if (Action == Backend_EmitMCNull) 414 return TargetMachine::CGFT_Null; 415 else { 416 assert(Action == Backend_EmitAssembly && "Invalid action!"); 417 return TargetMachine::CGFT_AssemblyFile; 418 } 419 } 420 421 static void initTargetOptions(llvm::TargetOptions &Options, 422 const CodeGenOptions &CodeGenOpts, 423 const clang::TargetOptions &TargetOpts, 424 const LangOptions &LangOpts, 425 const HeaderSearchOptions &HSOpts) { 426 Options.ThreadModel = 427 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 428 .Case("posix", llvm::ThreadModel::POSIX) 429 .Case("single", llvm::ThreadModel::Single); 430 431 // Set float ABI type. 432 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 433 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 434 "Invalid Floating Point ABI!"); 435 Options.FloatABIType = 436 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 437 .Case("soft", llvm::FloatABI::Soft) 438 .Case("softfp", llvm::FloatABI::Soft) 439 .Case("hard", llvm::FloatABI::Hard) 440 .Default(llvm::FloatABI::Default); 441 442 // Set FP fusion mode. 443 switch (LangOpts.getDefaultFPContractMode()) { 444 case LangOptions::FPC_Off: 445 // Preserve any contraction performed by the front-end. (Strict performs 446 // splitting of the muladd intrinsic in the backend.) 447 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 448 break; 449 case LangOptions::FPC_On: 450 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 451 break; 452 case LangOptions::FPC_Fast: 453 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 454 break; 455 } 456 457 Options.UseInitArray = CodeGenOpts.UseInitArray; 458 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 459 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 460 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 461 462 // Set EABI version. 463 Options.EABIVersion = TargetOpts.EABIVersion; 464 465 if (LangOpts.SjLjExceptions) 466 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 467 if (LangOpts.SEHExceptions) 468 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 469 if (LangOpts.DWARFExceptions) 470 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 471 472 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 473 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 474 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 475 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 476 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 477 Options.FunctionSections = CodeGenOpts.FunctionSections; 478 Options.DataSections = CodeGenOpts.DataSections; 479 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 480 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 481 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 482 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 483 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 484 Options.EmitAddrsig = CodeGenOpts.Addrsig; 485 Options.EnableDebugEntryValues = CodeGenOpts.EnableDebugEntryValues; 486 487 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 488 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 489 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 490 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 491 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 492 Options.MCOptions.MCIncrementalLinkerCompatible = 493 CodeGenOpts.IncrementalLinkerCompatible; 494 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 495 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 496 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 497 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 498 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 499 Options.MCOptions.ABIName = TargetOpts.ABI; 500 for (const auto &Entry : HSOpts.UserEntries) 501 if (!Entry.IsFramework && 502 (Entry.Group == frontend::IncludeDirGroup::Quoted || 503 Entry.Group == frontend::IncludeDirGroup::Angled || 504 Entry.Group == frontend::IncludeDirGroup::System)) 505 Options.MCOptions.IASSearchPaths.push_back( 506 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 507 } 508 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 509 if (CodeGenOpts.DisableGCov) 510 return None; 511 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 512 return None; 513 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 514 // LLVM's -default-gcov-version flag is set to something invalid. 515 GCOVOptions Options; 516 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 517 Options.EmitData = CodeGenOpts.EmitGcovArcs; 518 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 519 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 520 Options.NoRedZone = CodeGenOpts.DisableRedZone; 521 Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData; 522 Options.Filter = CodeGenOpts.ProfileFilterFiles; 523 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 524 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 525 return Options; 526 } 527 528 static Optional<InstrProfOptions> 529 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 530 const LangOptions &LangOpts) { 531 if (!CodeGenOpts.hasProfileClangInstr()) 532 return None; 533 InstrProfOptions Options; 534 Options.NoRedZone = CodeGenOpts.DisableRedZone; 535 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 536 537 // TODO: Surface the option to emit atomic profile counter increments at 538 // the driver level. 539 Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread); 540 return Options; 541 } 542 543 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 544 legacy::FunctionPassManager &FPM) { 545 // Handle disabling of all LLVM passes, where we want to preserve the 546 // internal module before any optimization. 547 if (CodeGenOpts.DisableLLVMPasses) 548 return; 549 550 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 551 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 552 // are inserted before PMBuilder ones - they'd get the default-constructed 553 // TLI with an unknown target otherwise. 554 Triple TargetTriple(TheModule->getTargetTriple()); 555 std::unique_ptr<TargetLibraryInfoImpl> TLII( 556 createTLII(TargetTriple, CodeGenOpts)); 557 558 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 559 560 // At O0 and O1 we only run the always inliner which is more efficient. At 561 // higher optimization levels we run the normal inliner. 562 if (CodeGenOpts.OptimizationLevel <= 1) { 563 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 564 !CodeGenOpts.DisableLifetimeMarkers); 565 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 566 } else { 567 // We do not want to inline hot callsites for SamplePGO module-summary build 568 // because profile annotation will happen again in ThinLTO backend, and we 569 // want the IR of the hot path to match the profile. 570 PMBuilder.Inliner = createFunctionInliningPass( 571 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 572 (!CodeGenOpts.SampleProfileFile.empty() && 573 CodeGenOpts.PrepareForThinLTO)); 574 } 575 576 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 577 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 578 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 579 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 580 581 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 582 // Loop interleaving in the loop vectorizer has historically been set to be 583 // enabled when loop unrolling is enabled. 584 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 585 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 586 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 587 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 588 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 589 590 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 591 592 if (TM) 593 TM->adjustPassManager(PMBuilder); 594 595 if (CodeGenOpts.DebugInfoForProfiling || 596 !CodeGenOpts.SampleProfileFile.empty()) 597 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 598 addAddDiscriminatorsPass); 599 600 // In ObjC ARC mode, add the main ARC optimization passes. 601 if (LangOpts.ObjCAutoRefCount) { 602 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 603 addObjCARCExpandPass); 604 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 605 addObjCARCAPElimPass); 606 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 607 addObjCARCOptPass); 608 } 609 610 if (LangOpts.Coroutines) 611 addCoroutinePassesToExtensionPoints(PMBuilder); 612 613 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 614 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 615 addBoundsCheckingPass); 616 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 617 addBoundsCheckingPass); 618 } 619 620 if (CodeGenOpts.SanitizeCoverageType || 621 CodeGenOpts.SanitizeCoverageIndirectCalls || 622 CodeGenOpts.SanitizeCoverageTraceCmp) { 623 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 624 addSanitizerCoveragePass); 625 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 626 addSanitizerCoveragePass); 627 } 628 629 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 630 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 631 addAddressSanitizerPasses); 632 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 633 addAddressSanitizerPasses); 634 } 635 636 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 637 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 638 addKernelAddressSanitizerPasses); 639 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 640 addKernelAddressSanitizerPasses); 641 } 642 643 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 644 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 645 addHWAddressSanitizerPasses); 646 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 647 addHWAddressSanitizerPasses); 648 } 649 650 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 651 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 652 addKernelHWAddressSanitizerPasses); 653 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 654 addKernelHWAddressSanitizerPasses); 655 } 656 657 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 658 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 659 addMemorySanitizerPass); 660 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 661 addMemorySanitizerPass); 662 } 663 664 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 665 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 666 addKernelMemorySanitizerPass); 667 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 668 addKernelMemorySanitizerPass); 669 } 670 671 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 672 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 673 addThreadSanitizerPass); 674 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 675 addThreadSanitizerPass); 676 } 677 678 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 679 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 680 addDataFlowSanitizerPass); 681 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 682 addDataFlowSanitizerPass); 683 } 684 685 // Set up the per-function pass manager. 686 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 687 if (CodeGenOpts.VerifyModule) 688 FPM.add(createVerifierPass()); 689 690 // Set up the per-module pass manager. 691 if (!CodeGenOpts.RewriteMapFiles.empty()) 692 addSymbolRewriterPass(CodeGenOpts, &MPM); 693 694 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 695 MPM.add(createGCOVProfilerPass(*Options)); 696 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 697 MPM.add(createStripSymbolsPass(true)); 698 } 699 700 if (Optional<InstrProfOptions> Options = 701 getInstrProfOptions(CodeGenOpts, LangOpts)) 702 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 703 704 bool hasIRInstr = false; 705 if (CodeGenOpts.hasProfileIRInstr()) { 706 PMBuilder.EnablePGOInstrGen = true; 707 hasIRInstr = true; 708 } 709 if (CodeGenOpts.hasProfileCSIRInstr()) { 710 assert(!CodeGenOpts.hasProfileCSIRUse() && 711 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 712 "same time"); 713 assert(!hasIRInstr && 714 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 715 "same time"); 716 PMBuilder.EnablePGOCSInstrGen = true; 717 hasIRInstr = true; 718 } 719 if (hasIRInstr) { 720 if (!CodeGenOpts.InstrProfileOutput.empty()) 721 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 722 else 723 PMBuilder.PGOInstrGen = DefaultProfileGenName; 724 } 725 if (CodeGenOpts.hasProfileIRUse()) { 726 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 727 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 728 } 729 730 if (!CodeGenOpts.SampleProfileFile.empty()) 731 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 732 733 PMBuilder.populateFunctionPassManager(FPM); 734 PMBuilder.populateModulePassManager(MPM); 735 } 736 737 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 738 SmallVector<const char *, 16> BackendArgs; 739 BackendArgs.push_back("clang"); // Fake program name. 740 if (!CodeGenOpts.DebugPass.empty()) { 741 BackendArgs.push_back("-debug-pass"); 742 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 743 } 744 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 745 BackendArgs.push_back("-limit-float-precision"); 746 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 747 } 748 BackendArgs.push_back(nullptr); 749 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 750 BackendArgs.data()); 751 } 752 753 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 754 // Create the TargetMachine for generating code. 755 std::string Error; 756 std::string Triple = TheModule->getTargetTriple(); 757 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 758 if (!TheTarget) { 759 if (MustCreateTM) 760 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 761 return; 762 } 763 764 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 765 std::string FeaturesStr = 766 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 767 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 768 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 769 770 llvm::TargetOptions Options; 771 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 772 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 773 Options, RM, CM, OptLevel)); 774 } 775 776 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 777 BackendAction Action, 778 raw_pwrite_stream &OS, 779 raw_pwrite_stream *DwoOS) { 780 // Add LibraryInfo. 781 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 782 std::unique_ptr<TargetLibraryInfoImpl> TLII( 783 createTLII(TargetTriple, CodeGenOpts)); 784 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 785 786 // Normal mode, emit a .s or .o file by running the code generator. Note, 787 // this also adds codegenerator level optimization passes. 788 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 789 790 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 791 // "codegen" passes so that it isn't run multiple times when there is 792 // inlining happening. 793 if (CodeGenOpts.OptimizationLevel > 0) 794 CodeGenPasses.add(createObjCARCContractPass()); 795 796 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 797 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 798 Diags.Report(diag::err_fe_unable_to_interface_with_target); 799 return false; 800 } 801 802 return true; 803 } 804 805 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 806 std::unique_ptr<raw_pwrite_stream> OS) { 807 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 808 809 setCommandLineOpts(CodeGenOpts); 810 811 bool UsesCodeGen = (Action != Backend_EmitNothing && 812 Action != Backend_EmitBC && 813 Action != Backend_EmitLL); 814 CreateTargetMachine(UsesCodeGen); 815 816 if (UsesCodeGen && !TM) 817 return; 818 if (TM) 819 TheModule->setDataLayout(TM->createDataLayout()); 820 821 legacy::PassManager PerModulePasses; 822 PerModulePasses.add( 823 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 824 825 legacy::FunctionPassManager PerFunctionPasses(TheModule); 826 PerFunctionPasses.add( 827 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 828 829 CreatePasses(PerModulePasses, PerFunctionPasses); 830 831 legacy::PassManager CodeGenPasses; 832 CodeGenPasses.add( 833 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 834 835 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 836 837 switch (Action) { 838 case Backend_EmitNothing: 839 break; 840 841 case Backend_EmitBC: 842 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 843 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 844 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 845 if (!ThinLinkOS) 846 return; 847 } 848 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 849 CodeGenOpts.EnableSplitLTOUnit); 850 PerModulePasses.add(createWriteThinLTOBitcodePass( 851 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 852 } else { 853 // Emit a module summary by default for Regular LTO except for ld64 854 // targets 855 bool EmitLTOSummary = 856 (CodeGenOpts.PrepareForLTO && 857 !CodeGenOpts.DisableLLVMPasses && 858 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 859 llvm::Triple::Apple); 860 if (EmitLTOSummary) { 861 if (!TheModule->getModuleFlag("ThinLTO")) 862 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 863 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 864 uint32_t(1)); 865 } 866 867 PerModulePasses.add(createBitcodeWriterPass( 868 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 869 } 870 break; 871 872 case Backend_EmitLL: 873 PerModulePasses.add( 874 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 875 break; 876 877 default: 878 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 879 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 880 if (!DwoOS) 881 return; 882 } 883 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 884 DwoOS ? &DwoOS->os() : nullptr)) 885 return; 886 } 887 888 // Before executing passes, print the final values of the LLVM options. 889 cl::PrintOptionValues(); 890 891 // Run passes. For now we do all passes at once, but eventually we 892 // would like to have the option of streaming code generation. 893 894 { 895 PrettyStackTraceString CrashInfo("Per-function optimization"); 896 897 PerFunctionPasses.doInitialization(); 898 for (Function &F : *TheModule) 899 if (!F.isDeclaration()) 900 PerFunctionPasses.run(F); 901 PerFunctionPasses.doFinalization(); 902 } 903 904 { 905 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 906 PerModulePasses.run(*TheModule); 907 } 908 909 { 910 PrettyStackTraceString CrashInfo("Code generation"); 911 CodeGenPasses.run(*TheModule); 912 } 913 914 if (ThinLinkOS) 915 ThinLinkOS->keep(); 916 if (DwoOS) 917 DwoOS->keep(); 918 } 919 920 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 921 switch (Opts.OptimizationLevel) { 922 default: 923 llvm_unreachable("Invalid optimization level!"); 924 925 case 1: 926 return PassBuilder::O1; 927 928 case 2: 929 switch (Opts.OptimizeSize) { 930 default: 931 llvm_unreachable("Invalid optimization level for size!"); 932 933 case 0: 934 return PassBuilder::O2; 935 936 case 1: 937 return PassBuilder::Os; 938 939 case 2: 940 return PassBuilder::Oz; 941 } 942 943 case 3: 944 return PassBuilder::O3; 945 } 946 } 947 948 static void addSanitizersAtO0(ModulePassManager &MPM, 949 const Triple &TargetTriple, 950 const LangOptions &LangOpts, 951 const CodeGenOptions &CodeGenOpts) { 952 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 953 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 954 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 955 MPM.addPass(createModuleToFunctionPassAdaptor(AddressSanitizerPass( 956 CompileKernel, Recover, CodeGenOpts.SanitizeAddressUseAfterScope))); 957 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 958 MPM.addPass( 959 ModuleAddressSanitizerPass(CompileKernel, Recover, ModuleUseAfterScope, 960 CodeGenOpts.SanitizeAddressUseOdrIndicator)); 961 }; 962 963 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 964 ASanPass(SanitizerKind::Address, /*CompileKernel=*/false); 965 } 966 967 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 968 ASanPass(SanitizerKind::KernelAddress, /*CompileKernel=*/true); 969 } 970 971 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 972 MPM.addPass(createModuleToFunctionPassAdaptor(MemorySanitizerPass({}))); 973 } 974 975 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 976 MPM.addPass(createModuleToFunctionPassAdaptor( 977 MemorySanitizerPass({0, false, /*Kernel=*/true}))); 978 } 979 980 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 981 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 982 } 983 } 984 985 /// A clean version of `EmitAssembly` that uses the new pass manager. 986 /// 987 /// Not all features are currently supported in this system, but where 988 /// necessary it falls back to the legacy pass manager to at least provide 989 /// basic functionality. 990 /// 991 /// This API is planned to have its functionality finished and then to replace 992 /// `EmitAssembly` at some point in the future when the default switches. 993 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 994 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 995 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 996 setCommandLineOpts(CodeGenOpts); 997 998 bool RequiresCodeGen = (Action != Backend_EmitNothing && 999 Action != Backend_EmitBC && 1000 Action != Backend_EmitLL); 1001 CreateTargetMachine(RequiresCodeGen); 1002 1003 if (RequiresCodeGen && !TM) 1004 return; 1005 if (TM) 1006 TheModule->setDataLayout(TM->createDataLayout()); 1007 1008 Optional<PGOOptions> PGOOpt; 1009 1010 if (CodeGenOpts.hasProfileIRInstr()) 1011 // -fprofile-generate. 1012 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1013 ? DefaultProfileGenName 1014 : CodeGenOpts.InstrProfileOutput, 1015 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1016 CodeGenOpts.DebugInfoForProfiling); 1017 else if (CodeGenOpts.hasProfileIRUse()) { 1018 // -fprofile-use. 1019 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1020 : PGOOptions::NoCSAction; 1021 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1022 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1023 CSAction, CodeGenOpts.DebugInfoForProfiling); 1024 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1025 // -fprofile-sample-use 1026 PGOOpt = 1027 PGOOptions(CodeGenOpts.SampleProfileFile, "", 1028 CodeGenOpts.ProfileRemappingFile, PGOOptions::SampleUse, 1029 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling); 1030 else if (CodeGenOpts.DebugInfoForProfiling) 1031 // -fdebug-info-for-profiling 1032 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1033 PGOOptions::NoCSAction, true); 1034 1035 // Check to see if we want to generate a CS profile. 1036 if (CodeGenOpts.hasProfileCSIRInstr()) { 1037 assert(!CodeGenOpts.hasProfileCSIRUse() && 1038 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1039 "the same time"); 1040 if (PGOOpt.hasValue()) { 1041 assert(PGOOpt->Action != PGOOptions::IRInstr && 1042 PGOOpt->Action != PGOOptions::SampleUse && 1043 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1044 " pass"); 1045 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1046 ? DefaultProfileGenName 1047 : CodeGenOpts.InstrProfileOutput; 1048 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1049 } else 1050 PGOOpt = PGOOptions("", 1051 CodeGenOpts.InstrProfileOutput.empty() 1052 ? DefaultProfileGenName 1053 : CodeGenOpts.InstrProfileOutput, 1054 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1055 CodeGenOpts.DebugInfoForProfiling); 1056 } 1057 1058 PipelineTuningOptions PTO; 1059 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1060 // For historical reasons, loop interleaving is set to mirror setting for loop 1061 // unrolling. 1062 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1063 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1064 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1065 1066 PassBuilder PB(TM.get(), PTO, PGOOpt); 1067 1068 // Attempt to load pass plugins and register their callbacks with PB. 1069 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1070 auto PassPlugin = PassPlugin::Load(PluginFN); 1071 if (PassPlugin) { 1072 PassPlugin->registerPassBuilderCallbacks(PB); 1073 } else { 1074 Diags.Report(diag::err_fe_unable_to_load_plugin) 1075 << PluginFN << toString(PassPlugin.takeError()); 1076 } 1077 } 1078 1079 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 1080 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 1081 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 1082 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 1083 1084 // Register the AA manager first so that our version is the one used. 1085 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1086 1087 // Register the target library analysis directly and give it a customized 1088 // preset TLI. 1089 Triple TargetTriple(TheModule->getTargetTriple()); 1090 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1091 createTLII(TargetTriple, CodeGenOpts)); 1092 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1093 MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1094 1095 // Register all the basic analyses with the managers. 1096 PB.registerModuleAnalyses(MAM); 1097 PB.registerCGSCCAnalyses(CGAM); 1098 PB.registerFunctionAnalyses(FAM); 1099 PB.registerLoopAnalyses(LAM); 1100 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1101 1102 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 1103 1104 if (!CodeGenOpts.DisableLLVMPasses) { 1105 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1106 bool IsLTO = CodeGenOpts.PrepareForLTO; 1107 1108 if (CodeGenOpts.OptimizationLevel == 0) { 1109 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1110 MPM.addPass(GCOVProfilerPass(*Options)); 1111 if (Optional<InstrProfOptions> Options = 1112 getInstrProfOptions(CodeGenOpts, LangOpts)) 1113 MPM.addPass(InstrProfiling(*Options, false)); 1114 1115 // Build a minimal pipeline based on the semantics required by Clang, 1116 // which is just that always inlining occurs. Further, disable generating 1117 // lifetime intrinsics to avoid enabling further optimizations during 1118 // code generation. 1119 MPM.addPass(AlwaysInlinerPass(/*InsertLifetimeIntrinsics=*/false)); 1120 1121 // At -O0, we can still do PGO. Add all the requested passes for 1122 // instrumentation PGO, if requested. 1123 if (PGOOpt && (PGOOpt->Action == PGOOptions::IRInstr || 1124 PGOOpt->Action == PGOOptions::IRUse)) 1125 PB.addPGOInstrPassesForO0( 1126 MPM, CodeGenOpts.DebugPassManager, 1127 /* RunProfileGen */ (PGOOpt->Action == PGOOptions::IRInstr), 1128 /* IsCS */ false, PGOOpt->ProfileFile, 1129 PGOOpt->ProfileRemappingFile); 1130 1131 // At -O0 we directly run necessary sanitizer passes. 1132 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1133 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 1134 1135 // Lastly, add semantically necessary passes for LTO. 1136 if (IsLTO || IsThinLTO) { 1137 MPM.addPass(CanonicalizeAliasesPass()); 1138 MPM.addPass(NameAnonGlobalPass()); 1139 } 1140 } else { 1141 // Map our optimization levels into one of the distinct levels used to 1142 // configure the pipeline. 1143 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1144 1145 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1146 MPM.addPass(createModuleToFunctionPassAdaptor( 1147 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1148 }); 1149 1150 if (CodeGenOpts.SanitizeCoverageType || 1151 CodeGenOpts.SanitizeCoverageIndirectCalls || 1152 CodeGenOpts.SanitizeCoverageTraceCmp) { 1153 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1154 PB.registerPipelineStartEPCallback( 1155 [SancovOpts](ModulePassManager &MPM) { 1156 MPM.addPass(ModuleSanitizerCoveragePass(SancovOpts)); 1157 }); 1158 PB.registerOptimizerLastEPCallback( 1159 [SancovOpts](FunctionPassManager &FPM, 1160 PassBuilder::OptimizationLevel Level) { 1161 FPM.addPass(SanitizerCoveragePass(SancovOpts)); 1162 }); 1163 } 1164 1165 // Register callbacks to schedule sanitizer passes at the appropriate part of 1166 // the pipeline. 1167 // FIXME: either handle asan/the remaining sanitizers or error out 1168 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1169 PB.registerScalarOptimizerLateEPCallback( 1170 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1171 FPM.addPass(BoundsCheckingPass()); 1172 }); 1173 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 1174 PB.registerOptimizerLastEPCallback( 1175 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1176 FPM.addPass(MemorySanitizerPass({})); 1177 }); 1178 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) 1179 PB.registerOptimizerLastEPCallback( 1180 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1181 FPM.addPass(ThreadSanitizerPass()); 1182 }); 1183 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1184 PB.registerPipelineStartEPCallback([&](ModulePassManager &MPM) { 1185 MPM.addPass( 1186 RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1187 }); 1188 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address); 1189 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1190 PB.registerOptimizerLastEPCallback( 1191 [Recover, UseAfterScope](FunctionPassManager &FPM, 1192 PassBuilder::OptimizationLevel Level) { 1193 FPM.addPass(AddressSanitizerPass( 1194 /*CompileKernel=*/false, Recover, UseAfterScope)); 1195 }); 1196 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1197 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1198 PB.registerPipelineStartEPCallback( 1199 [Recover, ModuleUseAfterScope, 1200 UseOdrIndicator](ModulePassManager &MPM) { 1201 MPM.addPass(ModuleAddressSanitizerPass( 1202 /*CompileKernel=*/false, Recover, ModuleUseAfterScope, 1203 UseOdrIndicator)); 1204 }); 1205 } 1206 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1207 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1208 MPM.addPass(GCOVProfilerPass(*Options)); 1209 }); 1210 if (Optional<InstrProfOptions> Options = 1211 getInstrProfOptions(CodeGenOpts, LangOpts)) 1212 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1213 MPM.addPass(InstrProfiling(*Options, false)); 1214 }); 1215 1216 if (IsThinLTO) { 1217 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 1218 Level, CodeGenOpts.DebugPassManager); 1219 MPM.addPass(CanonicalizeAliasesPass()); 1220 MPM.addPass(NameAnonGlobalPass()); 1221 } else if (IsLTO) { 1222 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 1223 CodeGenOpts.DebugPassManager); 1224 MPM.addPass(CanonicalizeAliasesPass()); 1225 MPM.addPass(NameAnonGlobalPass()); 1226 } else { 1227 MPM = PB.buildPerModuleDefaultPipeline(Level, 1228 CodeGenOpts.DebugPassManager); 1229 } 1230 } 1231 1232 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 1233 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 1234 MPM.addPass(HWAddressSanitizerPass( 1235 /*CompileKernel=*/false, Recover)); 1236 } 1237 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 1238 MPM.addPass(HWAddressSanitizerPass( 1239 /*CompileKernel=*/true, /*Recover=*/true)); 1240 } 1241 1242 if (CodeGenOpts.OptimizationLevel == 0) { 1243 if (CodeGenOpts.SanitizeCoverageType || 1244 CodeGenOpts.SanitizeCoverageIndirectCalls || 1245 CodeGenOpts.SanitizeCoverageTraceCmp) { 1246 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1247 MPM.addPass(ModuleSanitizerCoveragePass(SancovOpts)); 1248 MPM.addPass(createModuleToFunctionPassAdaptor( 1249 SanitizerCoveragePass(SancovOpts))); 1250 } 1251 1252 addSanitizersAtO0(MPM, TargetTriple, LangOpts, CodeGenOpts); 1253 } 1254 } 1255 1256 // FIXME: We still use the legacy pass manager to do code generation. We 1257 // create that pass manager here and use it as needed below. 1258 legacy::PassManager CodeGenPasses; 1259 bool NeedCodeGen = false; 1260 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1261 1262 // Append any output we need to the pass manager. 1263 switch (Action) { 1264 case Backend_EmitNothing: 1265 break; 1266 1267 case Backend_EmitBC: 1268 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1269 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1270 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1271 if (!ThinLinkOS) 1272 return; 1273 } 1274 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1275 CodeGenOpts.EnableSplitLTOUnit); 1276 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1277 : nullptr)); 1278 } else { 1279 // Emit a module summary by default for Regular LTO except for ld64 1280 // targets 1281 bool EmitLTOSummary = 1282 (CodeGenOpts.PrepareForLTO && 1283 !CodeGenOpts.DisableLLVMPasses && 1284 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1285 llvm::Triple::Apple); 1286 if (EmitLTOSummary) { 1287 if (!TheModule->getModuleFlag("ThinLTO")) 1288 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1289 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1290 CodeGenOpts.EnableSplitLTOUnit); 1291 } 1292 MPM.addPass( 1293 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1294 } 1295 break; 1296 1297 case Backend_EmitLL: 1298 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1299 break; 1300 1301 case Backend_EmitAssembly: 1302 case Backend_EmitMCNull: 1303 case Backend_EmitObj: 1304 NeedCodeGen = true; 1305 CodeGenPasses.add( 1306 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1307 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1308 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1309 if (!DwoOS) 1310 return; 1311 } 1312 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1313 DwoOS ? &DwoOS->os() : nullptr)) 1314 // FIXME: Should we handle this error differently? 1315 return; 1316 break; 1317 } 1318 1319 // Before executing passes, print the final values of the LLVM options. 1320 cl::PrintOptionValues(); 1321 1322 // Now that we have all of the passes ready, run them. 1323 { 1324 PrettyStackTraceString CrashInfo("Optimizer"); 1325 MPM.run(*TheModule, MAM); 1326 } 1327 1328 // Now if needed, run the legacy PM for codegen. 1329 if (NeedCodeGen) { 1330 PrettyStackTraceString CrashInfo("Code generation"); 1331 CodeGenPasses.run(*TheModule); 1332 } 1333 1334 if (ThinLinkOS) 1335 ThinLinkOS->keep(); 1336 if (DwoOS) 1337 DwoOS->keep(); 1338 } 1339 1340 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1341 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1342 if (!BMsOrErr) 1343 return BMsOrErr.takeError(); 1344 1345 // The bitcode file may contain multiple modules, we want the one that is 1346 // marked as being the ThinLTO module. 1347 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1348 return *Bm; 1349 1350 return make_error<StringError>("Could not find module summary", 1351 inconvertibleErrorCode()); 1352 } 1353 1354 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1355 for (BitcodeModule &BM : BMs) { 1356 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1357 if (LTOInfo && LTOInfo->IsThinLTO) 1358 return &BM; 1359 } 1360 return nullptr; 1361 } 1362 1363 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1364 const HeaderSearchOptions &HeaderOpts, 1365 const CodeGenOptions &CGOpts, 1366 const clang::TargetOptions &TOpts, 1367 const LangOptions &LOpts, 1368 std::unique_ptr<raw_pwrite_stream> OS, 1369 std::string SampleProfile, 1370 std::string ProfileRemapping, 1371 BackendAction Action) { 1372 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1373 ModuleToDefinedGVSummaries; 1374 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1375 1376 setCommandLineOpts(CGOpts); 1377 1378 // We can simply import the values mentioned in the combined index, since 1379 // we should only invoke this using the individual indexes written out 1380 // via a WriteIndexesThinBackend. 1381 FunctionImporter::ImportMapTy ImportList; 1382 for (auto &GlobalList : *CombinedIndex) { 1383 // Ignore entries for undefined references. 1384 if (GlobalList.second.SummaryList.empty()) 1385 continue; 1386 1387 auto GUID = GlobalList.first; 1388 for (auto &Summary : GlobalList.second.SummaryList) { 1389 // Skip the summaries for the importing module. These are included to 1390 // e.g. record required linkage changes. 1391 if (Summary->modulePath() == M->getModuleIdentifier()) 1392 continue; 1393 // Add an entry to provoke importing by thinBackend. 1394 ImportList[Summary->modulePath()].insert(GUID); 1395 } 1396 } 1397 1398 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1399 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1400 1401 for (auto &I : ImportList) { 1402 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1403 llvm::MemoryBuffer::getFile(I.first()); 1404 if (!MBOrErr) { 1405 errs() << "Error loading imported file '" << I.first() 1406 << "': " << MBOrErr.getError().message() << "\n"; 1407 return; 1408 } 1409 1410 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1411 if (!BMOrErr) { 1412 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1413 errs() << "Error loading imported file '" << I.first() 1414 << "': " << EIB.message() << '\n'; 1415 }); 1416 return; 1417 } 1418 ModuleMap.insert({I.first(), *BMOrErr}); 1419 1420 OwnedImports.push_back(std::move(*MBOrErr)); 1421 } 1422 auto AddStream = [&](size_t Task) { 1423 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 1424 }; 1425 lto::Config Conf; 1426 if (CGOpts.SaveTempsFilePrefix != "") { 1427 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1428 /* UseInputModulePath */ false)) { 1429 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1430 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1431 << '\n'; 1432 }); 1433 } 1434 } 1435 Conf.CPU = TOpts.CPU; 1436 Conf.CodeModel = getCodeModel(CGOpts); 1437 Conf.MAttrs = TOpts.Features; 1438 Conf.RelocModel = CGOpts.RelocationModel; 1439 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1440 Conf.OptLevel = CGOpts.OptimizationLevel; 1441 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1442 Conf.SampleProfile = std::move(SampleProfile); 1443 1444 // Context sensitive profile. 1445 if (CGOpts.hasProfileCSIRInstr()) { 1446 Conf.RunCSIRInstr = true; 1447 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1448 } else if (CGOpts.hasProfileCSIRUse()) { 1449 Conf.RunCSIRInstr = false; 1450 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1451 } 1452 1453 Conf.ProfileRemapping = std::move(ProfileRemapping); 1454 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1455 Conf.DebugPassManager = CGOpts.DebugPassManager; 1456 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1457 Conf.RemarksFilename = CGOpts.OptRecordFile; 1458 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1459 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1460 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1461 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1462 switch (Action) { 1463 case Backend_EmitNothing: 1464 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1465 return false; 1466 }; 1467 break; 1468 case Backend_EmitLL: 1469 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1470 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1471 return false; 1472 }; 1473 break; 1474 case Backend_EmitBC: 1475 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1476 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1477 return false; 1478 }; 1479 break; 1480 default: 1481 Conf.CGFileType = getCodeGenFileType(Action); 1482 break; 1483 } 1484 if (Error E = thinBackend( 1485 Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1486 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1487 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1488 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1489 }); 1490 } 1491 } 1492 1493 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1494 const HeaderSearchOptions &HeaderOpts, 1495 const CodeGenOptions &CGOpts, 1496 const clang::TargetOptions &TOpts, 1497 const LangOptions &LOpts, 1498 const llvm::DataLayout &TDesc, Module *M, 1499 BackendAction Action, 1500 std::unique_ptr<raw_pwrite_stream> OS) { 1501 1502 llvm::TimeTraceScope TimeScope("Backend", StringRef("")); 1503 1504 std::unique_ptr<llvm::Module> EmptyModule; 1505 if (!CGOpts.ThinLTOIndexFile.empty()) { 1506 // If we are performing a ThinLTO importing compile, load the function index 1507 // into memory and pass it into runThinLTOBackend, which will run the 1508 // function importer and invoke LTO passes. 1509 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1510 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1511 /*IgnoreEmptyThinLTOIndexFile*/true); 1512 if (!IndexOrErr) { 1513 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1514 "Error loading index file '" + 1515 CGOpts.ThinLTOIndexFile + "': "); 1516 return; 1517 } 1518 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1519 // A null CombinedIndex means we should skip ThinLTO compilation 1520 // (LLVM will optionally ignore empty index files, returning null instead 1521 // of an error). 1522 if (CombinedIndex) { 1523 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1524 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1525 LOpts, std::move(OS), CGOpts.SampleProfileFile, 1526 CGOpts.ProfileRemappingFile, Action); 1527 return; 1528 } 1529 // Distributed indexing detected that nothing from the module is needed 1530 // for the final linking. So we can skip the compilation. We sill need to 1531 // output an empty object file to make sure that a linker does not fail 1532 // trying to read it. Also for some features, like CFI, we must skip 1533 // the compilation as CombinedIndex does not contain all required 1534 // information. 1535 EmptyModule = llvm::make_unique<llvm::Module>("empty", M->getContext()); 1536 EmptyModule->setTargetTriple(M->getTargetTriple()); 1537 M = EmptyModule.get(); 1538 } 1539 } 1540 1541 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1542 1543 if (CGOpts.ExperimentalNewPassManager) 1544 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1545 else 1546 AsmHelper.EmitAssembly(Action, std::move(OS)); 1547 1548 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1549 // DataLayout. 1550 if (AsmHelper.TM) { 1551 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1552 if (DLDesc != TDesc.getStringRepresentation()) { 1553 unsigned DiagID = Diags.getCustomDiagID( 1554 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1555 "expected target description '%1'"); 1556 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1557 } 1558 } 1559 } 1560 1561 static const char* getSectionNameForBitcode(const Triple &T) { 1562 switch (T.getObjectFormat()) { 1563 case Triple::MachO: 1564 return "__LLVM,__bitcode"; 1565 case Triple::COFF: 1566 case Triple::ELF: 1567 case Triple::Wasm: 1568 case Triple::UnknownObjectFormat: 1569 return ".llvmbc"; 1570 case Triple::XCOFF: 1571 llvm_unreachable("XCOFF is not yet implemented"); 1572 break; 1573 } 1574 llvm_unreachable("Unimplemented ObjectFormatType"); 1575 } 1576 1577 static const char* getSectionNameForCommandline(const Triple &T) { 1578 switch (T.getObjectFormat()) { 1579 case Triple::MachO: 1580 return "__LLVM,__cmdline"; 1581 case Triple::COFF: 1582 case Triple::ELF: 1583 case Triple::Wasm: 1584 case Triple::UnknownObjectFormat: 1585 return ".llvmcmd"; 1586 case Triple::XCOFF: 1587 llvm_unreachable("XCOFF is not yet implemented"); 1588 break; 1589 } 1590 llvm_unreachable("Unimplemented ObjectFormatType"); 1591 } 1592 1593 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1594 // __LLVM,__bitcode section. 1595 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1596 llvm::MemoryBufferRef Buf) { 1597 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1598 return; 1599 1600 // Save llvm.compiler.used and remote it. 1601 SmallVector<Constant*, 2> UsedArray; 1602 SmallPtrSet<GlobalValue*, 4> UsedGlobals; 1603 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1604 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1605 for (auto *GV : UsedGlobals) { 1606 if (GV->getName() != "llvm.embedded.module" && 1607 GV->getName() != "llvm.cmdline") 1608 UsedArray.push_back( 1609 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1610 } 1611 if (Used) 1612 Used->eraseFromParent(); 1613 1614 // Embed the bitcode for the llvm module. 1615 std::string Data; 1616 ArrayRef<uint8_t> ModuleData; 1617 Triple T(M->getTargetTriple()); 1618 // Create a constant that contains the bitcode. 1619 // In case of embedding a marker, ignore the input Buf and use the empty 1620 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1621 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1622 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1623 (const unsigned char *)Buf.getBufferEnd())) { 1624 // If the input is LLVM Assembly, bitcode is produced by serializing 1625 // the module. Use-lists order need to be perserved in this case. 1626 llvm::raw_string_ostream OS(Data); 1627 llvm::WriteBitcodeToFile(*M, OS, /* ShouldPreserveUseListOrder */ true); 1628 ModuleData = 1629 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1630 } else 1631 // If the input is LLVM bitcode, write the input byte stream directly. 1632 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1633 Buf.getBufferSize()); 1634 } 1635 llvm::Constant *ModuleConstant = 1636 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1637 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1638 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1639 ModuleConstant); 1640 GV->setSection(getSectionNameForBitcode(T)); 1641 UsedArray.push_back( 1642 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1643 if (llvm::GlobalVariable *Old = 1644 M->getGlobalVariable("llvm.embedded.module", true)) { 1645 assert(Old->hasOneUse() && 1646 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1647 GV->takeName(Old); 1648 Old->eraseFromParent(); 1649 } else { 1650 GV->setName("llvm.embedded.module"); 1651 } 1652 1653 // Skip if only bitcode needs to be embedded. 1654 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1655 // Embed command-line options. 1656 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1657 CGOpts.CmdArgs.size()); 1658 llvm::Constant *CmdConstant = 1659 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1660 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1661 llvm::GlobalValue::PrivateLinkage, 1662 CmdConstant); 1663 GV->setSection(getSectionNameForCommandline(T)); 1664 UsedArray.push_back( 1665 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1666 if (llvm::GlobalVariable *Old = 1667 M->getGlobalVariable("llvm.cmdline", true)) { 1668 assert(Old->hasOneUse() && 1669 "llvm.cmdline can only be used once in llvm.compiler.used"); 1670 GV->takeName(Old); 1671 Old->eraseFromParent(); 1672 } else { 1673 GV->setName("llvm.cmdline"); 1674 } 1675 } 1676 1677 if (UsedArray.empty()) 1678 return; 1679 1680 // Recreate llvm.compiler.used. 1681 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1682 auto *NewUsed = new GlobalVariable( 1683 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1684 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1685 NewUsed->setSection("llvm.metadata"); 1686 } 1687