1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "clang/Lex/HeaderSearchOptions.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/ADT/StringSwitch.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/IRPrintingPasses.h" 31 #include "llvm/IR/LegacyPassManager.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSummaryIndex.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/LTO/LTOBackend.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/SubtargetFeature.h" 38 #include "llvm/Object/ModuleSummaryIndexObjectFile.h" 39 #include "llvm/Passes/PassBuilder.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/MemoryBuffer.h" 42 #include "llvm/Support/PrettyStackTrace.h" 43 #include "llvm/Support/TargetRegistry.h" 44 #include "llvm/Support/Timer.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include "llvm/Target/TargetSubtargetInfo.h" 49 #include "llvm/Transforms/Coroutines.h" 50 #include "llvm/Transforms/IPO.h" 51 #include "llvm/Transforms/IPO/AlwaysInliner.h" 52 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 53 #include "llvm/Transforms/Instrumentation.h" 54 #include "llvm/Transforms/ObjCARC.h" 55 #include "llvm/Transforms/Scalar.h" 56 #include "llvm/Transforms/Scalar/GVN.h" 57 #include "llvm/Transforms/Utils/SymbolRewriter.h" 58 #include <memory> 59 using namespace clang; 60 using namespace llvm; 61 62 namespace { 63 64 // Default filename used for profile generation. 65 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 66 67 class EmitAssemblyHelper { 68 DiagnosticsEngine &Diags; 69 const HeaderSearchOptions &HSOpts; 70 const CodeGenOptions &CodeGenOpts; 71 const clang::TargetOptions &TargetOpts; 72 const LangOptions &LangOpts; 73 Module *TheModule; 74 75 Timer CodeGenerationTime; 76 77 std::unique_ptr<raw_pwrite_stream> OS; 78 79 TargetIRAnalysis getTargetIRAnalysis() const { 80 if (TM) 81 return TM->getTargetIRAnalysis(); 82 83 return TargetIRAnalysis(); 84 } 85 86 /// Set LLVM command line options passed through -backend-option. 87 void setCommandLineOpts(); 88 89 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 90 91 /// Generates the TargetMachine. 92 /// Leaves TM unchanged if it is unable to create the target machine. 93 /// Some of our clang tests specify triples which are not built 94 /// into clang. This is okay because these tests check the generated 95 /// IR, and they require DataLayout which depends on the triple. 96 /// In this case, we allow this method to fail and not report an error. 97 /// When MustCreateTM is used, we print an error if we are unable to load 98 /// the requested target. 99 void CreateTargetMachine(bool MustCreateTM); 100 101 /// Add passes necessary to emit assembly or LLVM IR. 102 /// 103 /// \return True on success. 104 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 105 raw_pwrite_stream &OS); 106 107 public: 108 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 109 const HeaderSearchOptions &HeaderSearchOpts, 110 const CodeGenOptions &CGOpts, 111 const clang::TargetOptions &TOpts, 112 const LangOptions &LOpts, Module *M) 113 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 114 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 115 CodeGenerationTime("codegen", "Code Generation Time") {} 116 117 ~EmitAssemblyHelper() { 118 if (CodeGenOpts.DisableFree) 119 BuryPointer(std::move(TM)); 120 } 121 122 std::unique_ptr<TargetMachine> TM; 123 124 void EmitAssembly(BackendAction Action, 125 std::unique_ptr<raw_pwrite_stream> OS); 126 127 void EmitAssemblyWithNewPassManager(BackendAction Action, 128 std::unique_ptr<raw_pwrite_stream> OS); 129 }; 130 131 // We need this wrapper to access LangOpts and CGOpts from extension functions 132 // that we add to the PassManagerBuilder. 133 class PassManagerBuilderWrapper : public PassManagerBuilder { 134 public: 135 PassManagerBuilderWrapper(const CodeGenOptions &CGOpts, 136 const LangOptions &LangOpts) 137 : PassManagerBuilder(), CGOpts(CGOpts), LangOpts(LangOpts) {} 138 const CodeGenOptions &getCGOpts() const { return CGOpts; } 139 const LangOptions &getLangOpts() const { return LangOpts; } 140 private: 141 const CodeGenOptions &CGOpts; 142 const LangOptions &LangOpts; 143 }; 144 145 } 146 147 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 148 if (Builder.OptLevel > 0) 149 PM.add(createObjCARCAPElimPass()); 150 } 151 152 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 153 if (Builder.OptLevel > 0) 154 PM.add(createObjCARCExpandPass()); 155 } 156 157 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 158 if (Builder.OptLevel > 0) 159 PM.add(createObjCARCOptPass()); 160 } 161 162 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 163 legacy::PassManagerBase &PM) { 164 PM.add(createAddDiscriminatorsPass()); 165 } 166 167 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 168 legacy::PassManagerBase &PM) { 169 PM.add(createBoundsCheckingPass()); 170 } 171 172 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 173 legacy::PassManagerBase &PM) { 174 const PassManagerBuilderWrapper &BuilderWrapper = 175 static_cast<const PassManagerBuilderWrapper&>(Builder); 176 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 177 SanitizerCoverageOptions Opts; 178 Opts.CoverageType = 179 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 180 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 181 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 182 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 183 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 184 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 185 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 186 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 187 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 188 PM.add(createSanitizerCoverageModulePass(Opts)); 189 } 190 191 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 192 legacy::PassManagerBase &PM) { 193 const PassManagerBuilderWrapper &BuilderWrapper = 194 static_cast<const PassManagerBuilderWrapper&>(Builder); 195 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 196 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 197 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 198 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 199 UseAfterScope)); 200 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/false, Recover)); 201 } 202 203 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 204 legacy::PassManagerBase &PM) { 205 PM.add(createAddressSanitizerFunctionPass( 206 /*CompileKernel*/ true, 207 /*Recover*/ true, /*UseAfterScope*/ false)); 208 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/true, 209 /*Recover*/true)); 210 } 211 212 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 213 legacy::PassManagerBase &PM) { 214 const PassManagerBuilderWrapper &BuilderWrapper = 215 static_cast<const PassManagerBuilderWrapper&>(Builder); 216 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 217 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 218 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 219 PM.add(createMemorySanitizerPass(TrackOrigins, Recover)); 220 221 // MemorySanitizer inserts complex instrumentation that mostly follows 222 // the logic of the original code, but operates on "shadow" values. 223 // It can benefit from re-running some general purpose optimization passes. 224 if (Builder.OptLevel > 0) { 225 PM.add(createEarlyCSEPass()); 226 PM.add(createReassociatePass()); 227 PM.add(createLICMPass()); 228 PM.add(createGVNPass()); 229 PM.add(createInstructionCombiningPass()); 230 PM.add(createDeadStoreEliminationPass()); 231 } 232 } 233 234 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 235 legacy::PassManagerBase &PM) { 236 PM.add(createThreadSanitizerPass()); 237 } 238 239 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 240 legacy::PassManagerBase &PM) { 241 const PassManagerBuilderWrapper &BuilderWrapper = 242 static_cast<const PassManagerBuilderWrapper&>(Builder); 243 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 244 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 245 } 246 247 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 248 legacy::PassManagerBase &PM) { 249 const PassManagerBuilderWrapper &BuilderWrapper = 250 static_cast<const PassManagerBuilderWrapper&>(Builder); 251 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 252 EfficiencySanitizerOptions Opts; 253 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 254 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 255 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 256 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 257 PM.add(createEfficiencySanitizerPass(Opts)); 258 } 259 260 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 261 const CodeGenOptions &CodeGenOpts) { 262 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 263 if (!CodeGenOpts.SimplifyLibCalls) 264 TLII->disableAllFunctions(); 265 else { 266 // Disable individual libc/libm calls in TargetLibraryInfo. 267 LibFunc F; 268 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 269 if (TLII->getLibFunc(FuncName, F)) 270 TLII->setUnavailable(F); 271 } 272 273 switch (CodeGenOpts.getVecLib()) { 274 case CodeGenOptions::Accelerate: 275 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 276 break; 277 case CodeGenOptions::SVML: 278 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 279 break; 280 default: 281 break; 282 } 283 return TLII; 284 } 285 286 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 287 legacy::PassManager *MPM) { 288 llvm::SymbolRewriter::RewriteDescriptorList DL; 289 290 llvm::SymbolRewriter::RewriteMapParser MapParser; 291 for (const auto &MapFile : Opts.RewriteMapFiles) 292 MapParser.parse(MapFile, &DL); 293 294 MPM->add(createRewriteSymbolsPass(DL)); 295 } 296 297 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 298 legacy::FunctionPassManager &FPM) { 299 // Handle disabling of all LLVM passes, where we want to preserve the 300 // internal module before any optimization. 301 if (CodeGenOpts.DisableLLVMPasses) 302 return; 303 304 PassManagerBuilderWrapper PMBuilder(CodeGenOpts, LangOpts); 305 306 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 307 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 308 // are inserted before PMBuilder ones - they'd get the default-constructed 309 // TLI with an unknown target otherwise. 310 Triple TargetTriple(TheModule->getTargetTriple()); 311 std::unique_ptr<TargetLibraryInfoImpl> TLII( 312 createTLII(TargetTriple, CodeGenOpts)); 313 314 // At O0 and O1 we only run the always inliner which is more efficient. At 315 // higher optimization levels we run the normal inliner. 316 if (CodeGenOpts.OptimizationLevel <= 1) { 317 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 318 !CodeGenOpts.DisableLifetimeMarkers); 319 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 320 } else { 321 PMBuilder.Inliner = createFunctionInliningPass( 322 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize); 323 } 324 325 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 326 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 327 PMBuilder.BBVectorize = CodeGenOpts.VectorizeBB; 328 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 329 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 330 331 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 332 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 333 PMBuilder.PrepareForThinLTO = CodeGenOpts.EmitSummaryIndex; 334 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 335 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 336 337 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 338 339 if (TM) 340 TM->adjustPassManager(PMBuilder); 341 342 if (CodeGenOpts.DebugInfoForProfiling || 343 !CodeGenOpts.SampleProfileFile.empty()) 344 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 345 addAddDiscriminatorsPass); 346 347 // In ObjC ARC mode, add the main ARC optimization passes. 348 if (LangOpts.ObjCAutoRefCount) { 349 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 350 addObjCARCExpandPass); 351 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 352 addObjCARCAPElimPass); 353 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 354 addObjCARCOptPass); 355 } 356 357 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 358 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 359 addBoundsCheckingPass); 360 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 361 addBoundsCheckingPass); 362 } 363 364 if (CodeGenOpts.SanitizeCoverageType || 365 CodeGenOpts.SanitizeCoverageIndirectCalls || 366 CodeGenOpts.SanitizeCoverageTraceCmp) { 367 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 368 addSanitizerCoveragePass); 369 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 370 addSanitizerCoveragePass); 371 } 372 373 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 374 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 375 addAddressSanitizerPasses); 376 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 377 addAddressSanitizerPasses); 378 } 379 380 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 381 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 382 addKernelAddressSanitizerPasses); 383 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 384 addKernelAddressSanitizerPasses); 385 } 386 387 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 388 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 389 addMemorySanitizerPass); 390 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 391 addMemorySanitizerPass); 392 } 393 394 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 395 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 396 addThreadSanitizerPass); 397 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 398 addThreadSanitizerPass); 399 } 400 401 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 402 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 403 addDataFlowSanitizerPass); 404 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 405 addDataFlowSanitizerPass); 406 } 407 408 if (LangOpts.CoroutinesTS) 409 addCoroutinePassesToExtensionPoints(PMBuilder); 410 411 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 412 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 413 addEfficiencySanitizerPass); 414 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 415 addEfficiencySanitizerPass); 416 } 417 418 // Set up the per-function pass manager. 419 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 420 if (CodeGenOpts.VerifyModule) 421 FPM.add(createVerifierPass()); 422 423 // Set up the per-module pass manager. 424 if (!CodeGenOpts.RewriteMapFiles.empty()) 425 addSymbolRewriterPass(CodeGenOpts, &MPM); 426 427 if (!CodeGenOpts.DisableGCov && 428 (CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)) { 429 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 430 // LLVM's -default-gcov-version flag is set to something invalid. 431 GCOVOptions Options; 432 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 433 Options.EmitData = CodeGenOpts.EmitGcovArcs; 434 memcpy(Options.Version, CodeGenOpts.CoverageVersion, 4); 435 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 436 Options.NoRedZone = CodeGenOpts.DisableRedZone; 437 Options.FunctionNamesInData = 438 !CodeGenOpts.CoverageNoFunctionNamesInData; 439 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 440 MPM.add(createGCOVProfilerPass(Options)); 441 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 442 MPM.add(createStripSymbolsPass(true)); 443 } 444 445 if (CodeGenOpts.hasProfileClangInstr()) { 446 InstrProfOptions Options; 447 Options.NoRedZone = CodeGenOpts.DisableRedZone; 448 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 449 MPM.add(createInstrProfilingLegacyPass(Options)); 450 } 451 if (CodeGenOpts.hasProfileIRInstr()) { 452 PMBuilder.EnablePGOInstrGen = true; 453 if (!CodeGenOpts.InstrProfileOutput.empty()) 454 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 455 else 456 PMBuilder.PGOInstrGen = DefaultProfileGenName; 457 } 458 if (CodeGenOpts.hasProfileIRUse()) 459 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 460 461 if (!CodeGenOpts.SampleProfileFile.empty()) 462 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 463 464 PMBuilder.populateFunctionPassManager(FPM); 465 PMBuilder.populateModulePassManager(MPM); 466 } 467 468 void EmitAssemblyHelper::setCommandLineOpts() { 469 SmallVector<const char *, 16> BackendArgs; 470 BackendArgs.push_back("clang"); // Fake program name. 471 if (!CodeGenOpts.DebugPass.empty()) { 472 BackendArgs.push_back("-debug-pass"); 473 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 474 } 475 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 476 BackendArgs.push_back("-limit-float-precision"); 477 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 478 } 479 for (const std::string &BackendOption : CodeGenOpts.BackendOptions) 480 BackendArgs.push_back(BackendOption.c_str()); 481 BackendArgs.push_back(nullptr); 482 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 483 BackendArgs.data()); 484 } 485 486 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 487 // Create the TargetMachine for generating code. 488 std::string Error; 489 std::string Triple = TheModule->getTargetTriple(); 490 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 491 if (!TheTarget) { 492 if (MustCreateTM) 493 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 494 return; 495 } 496 497 unsigned CodeModel = 498 llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 499 .Case("small", llvm::CodeModel::Small) 500 .Case("kernel", llvm::CodeModel::Kernel) 501 .Case("medium", llvm::CodeModel::Medium) 502 .Case("large", llvm::CodeModel::Large) 503 .Case("default", llvm::CodeModel::Default) 504 .Default(~0u); 505 assert(CodeModel != ~0u && "invalid code model!"); 506 llvm::CodeModel::Model CM = static_cast<llvm::CodeModel::Model>(CodeModel); 507 508 std::string FeaturesStr = 509 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 510 511 // Keep this synced with the equivalent code in tools/driver/cc1as_main.cpp. 512 llvm::Optional<llvm::Reloc::Model> RM; 513 RM = llvm::StringSwitch<llvm::Reloc::Model>(CodeGenOpts.RelocationModel) 514 .Case("static", llvm::Reloc::Static) 515 .Case("pic", llvm::Reloc::PIC_) 516 .Case("ropi", llvm::Reloc::ROPI) 517 .Case("rwpi", llvm::Reloc::RWPI) 518 .Case("ropi-rwpi", llvm::Reloc::ROPI_RWPI) 519 .Case("dynamic-no-pic", llvm::Reloc::DynamicNoPIC); 520 assert(RM.hasValue() && "invalid PIC model!"); 521 522 CodeGenOpt::Level OptLevel; 523 switch (CodeGenOpts.OptimizationLevel) { 524 default: 525 llvm_unreachable("Invalid optimization level!"); 526 case 0: 527 OptLevel = CodeGenOpt::None; 528 break; 529 case 1: 530 OptLevel = CodeGenOpt::Less; 531 break; 532 case 2: 533 OptLevel = CodeGenOpt::Default; 534 break; // O2/Os/Oz 535 case 3: 536 OptLevel = CodeGenOpt::Aggressive; 537 break; 538 } 539 540 llvm::TargetOptions Options; 541 542 Options.ThreadModel = 543 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 544 .Case("posix", llvm::ThreadModel::POSIX) 545 .Case("single", llvm::ThreadModel::Single); 546 547 // Set float ABI type. 548 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 549 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 550 "Invalid Floating Point ABI!"); 551 Options.FloatABIType = 552 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 553 .Case("soft", llvm::FloatABI::Soft) 554 .Case("softfp", llvm::FloatABI::Soft) 555 .Case("hard", llvm::FloatABI::Hard) 556 .Default(llvm::FloatABI::Default); 557 558 // Set FP fusion mode. 559 switch (CodeGenOpts.getFPContractMode()) { 560 case CodeGenOptions::FPC_Off: 561 Options.AllowFPOpFusion = llvm::FPOpFusion::Strict; 562 break; 563 case CodeGenOptions::FPC_On: 564 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 565 break; 566 case CodeGenOptions::FPC_Fast: 567 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 568 break; 569 } 570 571 Options.UseInitArray = CodeGenOpts.UseInitArray; 572 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 573 Options.CompressDebugSections = CodeGenOpts.CompressDebugSections; 574 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 575 576 // Set EABI version. 577 Options.EABIVersion = llvm::StringSwitch<llvm::EABI>(TargetOpts.EABIVersion) 578 .Case("4", llvm::EABI::EABI4) 579 .Case("5", llvm::EABI::EABI5) 580 .Case("gnu", llvm::EABI::GNU) 581 .Default(llvm::EABI::Default); 582 583 if (LangOpts.SjLjExceptions) 584 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 585 586 Options.LessPreciseFPMADOption = CodeGenOpts.LessPreciseFPMAD; 587 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 588 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 589 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 590 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 591 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 592 Options.FunctionSections = CodeGenOpts.FunctionSections; 593 Options.DataSections = CodeGenOpts.DataSections; 594 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 595 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 596 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 597 598 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 599 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 600 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 601 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 602 Options.MCOptions.MCIncrementalLinkerCompatible = 603 CodeGenOpts.IncrementalLinkerCompatible; 604 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 605 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 606 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 607 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 608 Options.MCOptions.ABIName = TargetOpts.ABI; 609 for (const auto &Entry : HSOpts.UserEntries) 610 if (!Entry.IsFramework && 611 (Entry.Group == frontend::IncludeDirGroup::Quoted || 612 Entry.Group == frontend::IncludeDirGroup::Angled || 613 Entry.Group == frontend::IncludeDirGroup::System)) 614 Options.MCOptions.IASSearchPaths.push_back( 615 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 616 617 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 618 Options, RM, CM, OptLevel)); 619 } 620 621 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 622 BackendAction Action, 623 raw_pwrite_stream &OS) { 624 // Add LibraryInfo. 625 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 626 std::unique_ptr<TargetLibraryInfoImpl> TLII( 627 createTLII(TargetTriple, CodeGenOpts)); 628 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 629 630 // Normal mode, emit a .s or .o file by running the code generator. Note, 631 // this also adds codegenerator level optimization passes. 632 TargetMachine::CodeGenFileType CGFT = TargetMachine::CGFT_AssemblyFile; 633 if (Action == Backend_EmitObj) 634 CGFT = TargetMachine::CGFT_ObjectFile; 635 else if (Action == Backend_EmitMCNull) 636 CGFT = TargetMachine::CGFT_Null; 637 else 638 assert(Action == Backend_EmitAssembly && "Invalid action!"); 639 640 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 641 // "codegen" passes so that it isn't run multiple times when there is 642 // inlining happening. 643 if (CodeGenOpts.OptimizationLevel > 0) 644 CodeGenPasses.add(createObjCARCContractPass()); 645 646 if (TM->addPassesToEmitFile(CodeGenPasses, OS, CGFT, 647 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 648 Diags.Report(diag::err_fe_unable_to_interface_with_target); 649 return false; 650 } 651 652 return true; 653 } 654 655 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 656 std::unique_ptr<raw_pwrite_stream> OS) { 657 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 658 659 setCommandLineOpts(); 660 661 bool UsesCodeGen = (Action != Backend_EmitNothing && 662 Action != Backend_EmitBC && 663 Action != Backend_EmitLL); 664 CreateTargetMachine(UsesCodeGen); 665 666 if (UsesCodeGen && !TM) 667 return; 668 if (TM) 669 TheModule->setDataLayout(TM->createDataLayout()); 670 671 legacy::PassManager PerModulePasses; 672 PerModulePasses.add( 673 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 674 675 legacy::FunctionPassManager PerFunctionPasses(TheModule); 676 PerFunctionPasses.add( 677 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 678 679 CreatePasses(PerModulePasses, PerFunctionPasses); 680 681 legacy::PassManager CodeGenPasses; 682 CodeGenPasses.add( 683 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 684 685 switch (Action) { 686 case Backend_EmitNothing: 687 break; 688 689 case Backend_EmitBC: 690 if (CodeGenOpts.EmitSummaryIndex) 691 PerModulePasses.add(createWriteThinLTOBitcodePass(*OS)); 692 else 693 PerModulePasses.add( 694 createBitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists)); 695 break; 696 697 case Backend_EmitLL: 698 PerModulePasses.add( 699 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 700 break; 701 702 default: 703 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 704 return; 705 } 706 707 // Before executing passes, print the final values of the LLVM options. 708 cl::PrintOptionValues(); 709 710 // Run passes. For now we do all passes at once, but eventually we 711 // would like to have the option of streaming code generation. 712 713 { 714 PrettyStackTraceString CrashInfo("Per-function optimization"); 715 716 PerFunctionPasses.doInitialization(); 717 for (Function &F : *TheModule) 718 if (!F.isDeclaration()) 719 PerFunctionPasses.run(F); 720 PerFunctionPasses.doFinalization(); 721 } 722 723 { 724 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 725 PerModulePasses.run(*TheModule); 726 } 727 728 { 729 PrettyStackTraceString CrashInfo("Code generation"); 730 CodeGenPasses.run(*TheModule); 731 } 732 } 733 734 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 735 switch (Opts.OptimizationLevel) { 736 default: 737 llvm_unreachable("Invalid optimization level!"); 738 739 case 1: 740 return PassBuilder::O1; 741 742 case 2: 743 switch (Opts.OptimizeSize) { 744 default: 745 llvm_unreachable("Invalide optimization level for size!"); 746 747 case 0: 748 return PassBuilder::O2; 749 750 case 1: 751 return PassBuilder::Os; 752 753 case 2: 754 return PassBuilder::Oz; 755 } 756 757 case 3: 758 return PassBuilder::O3; 759 } 760 } 761 762 /// A clean version of `EmitAssembly` that uses the new pass manager. 763 /// 764 /// Not all features are currently supported in this system, but where 765 /// necessary it falls back to the legacy pass manager to at least provide 766 /// basic functionality. 767 /// 768 /// This API is planned to have its functionality finished and then to replace 769 /// `EmitAssembly` at some point in the future when the default switches. 770 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 771 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 772 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 773 setCommandLineOpts(); 774 775 // The new pass manager always makes a target machine available to passes 776 // during construction. 777 CreateTargetMachine(/*MustCreateTM*/ true); 778 if (!TM) 779 // This will already be diagnosed, just bail. 780 return; 781 TheModule->setDataLayout(TM->createDataLayout()); 782 783 PGOOptions PGOOpt; 784 785 // -fprofile-generate. 786 PGOOpt.RunProfileGen = CodeGenOpts.hasProfileIRInstr(); 787 if (PGOOpt.RunProfileGen) 788 PGOOpt.ProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() ? 789 DefaultProfileGenName : CodeGenOpts.InstrProfileOutput; 790 791 // -fprofile-use. 792 if (CodeGenOpts.hasProfileIRUse()) 793 PGOOpt.ProfileUseFile = CodeGenOpts.ProfileInstrumentUsePath; 794 795 // Only pass a PGO options struct if -fprofile-generate or 796 // -fprofile-use were passed on the cmdline. 797 PassBuilder PB(TM.get(), 798 (PGOOpt.RunProfileGen || 799 !PGOOpt.ProfileUseFile.empty()) ? 800 Optional<PGOOptions>(PGOOpt) : None); 801 802 LoopAnalysisManager LAM; 803 FunctionAnalysisManager FAM; 804 CGSCCAnalysisManager CGAM; 805 ModuleAnalysisManager MAM; 806 807 // Register the AA manager first so that our version is the one used. 808 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 809 810 // Register all the basic analyses with the managers. 811 PB.registerModuleAnalyses(MAM); 812 PB.registerCGSCCAnalyses(CGAM); 813 PB.registerFunctionAnalyses(FAM); 814 PB.registerLoopAnalyses(LAM); 815 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 816 817 ModulePassManager MPM; 818 819 if (!CodeGenOpts.DisableLLVMPasses) { 820 if (CodeGenOpts.OptimizationLevel == 0) { 821 // Build a minimal pipeline based on the semantics required by Clang, 822 // which is just that always inlining occurs. 823 MPM.addPass(AlwaysInlinerPass()); 824 } else { 825 // Otherwise, use the default pass pipeline. We also have to map our 826 // optimization levels into one of the distinct levels used to configure 827 // the pipeline. 828 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 829 830 MPM = PB.buildPerModuleDefaultPipeline(Level); 831 } 832 } 833 834 // FIXME: We still use the legacy pass manager to do code generation. We 835 // create that pass manager here and use it as needed below. 836 legacy::PassManager CodeGenPasses; 837 bool NeedCodeGen = false; 838 839 // Append any output we need to the pass manager. 840 switch (Action) { 841 case Backend_EmitNothing: 842 break; 843 844 case Backend_EmitBC: 845 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 846 CodeGenOpts.EmitSummaryIndex, 847 CodeGenOpts.EmitSummaryIndex)); 848 break; 849 850 case Backend_EmitLL: 851 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 852 break; 853 854 case Backend_EmitAssembly: 855 case Backend_EmitMCNull: 856 case Backend_EmitObj: 857 NeedCodeGen = true; 858 CodeGenPasses.add( 859 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 860 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 861 // FIXME: Should we handle this error differently? 862 return; 863 break; 864 } 865 866 // Before executing passes, print the final values of the LLVM options. 867 cl::PrintOptionValues(); 868 869 // Now that we have all of the passes ready, run them. 870 { 871 PrettyStackTraceString CrashInfo("Optimizer"); 872 MPM.run(*TheModule, MAM); 873 } 874 875 // Now if needed, run the legacy PM for codegen. 876 if (NeedCodeGen) { 877 PrettyStackTraceString CrashInfo("Code generation"); 878 CodeGenPasses.run(*TheModule); 879 } 880 } 881 882 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 883 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 884 if (!BMsOrErr) 885 return BMsOrErr.takeError(); 886 887 // The bitcode file may contain multiple modules, we want the one with a 888 // summary. 889 for (BitcodeModule &BM : *BMsOrErr) { 890 Expected<bool> HasSummary = BM.hasSummary(); 891 if (HasSummary && *HasSummary) 892 return BM; 893 } 894 895 return make_error<StringError>("Could not find module summary", 896 inconvertibleErrorCode()); 897 } 898 899 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 900 std::unique_ptr<raw_pwrite_stream> OS, 901 std::string SampleProfile) { 902 StringMap<std::map<GlobalValue::GUID, GlobalValueSummary *>> 903 ModuleToDefinedGVSummaries; 904 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 905 906 // We can simply import the values mentioned in the combined index, since 907 // we should only invoke this using the individual indexes written out 908 // via a WriteIndexesThinBackend. 909 FunctionImporter::ImportMapTy ImportList; 910 for (auto &GlobalList : *CombinedIndex) { 911 auto GUID = GlobalList.first; 912 assert(GlobalList.second.size() == 1 && 913 "Expected individual combined index to have one summary per GUID"); 914 auto &Summary = GlobalList.second[0]; 915 // Skip the summaries for the importing module. These are included to 916 // e.g. record required linkage changes. 917 if (Summary->modulePath() == M->getModuleIdentifier()) 918 continue; 919 // Doesn't matter what value we plug in to the map, just needs an entry 920 // to provoke importing by thinBackend. 921 ImportList[Summary->modulePath()][GUID] = 1; 922 } 923 924 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 925 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 926 927 for (auto &I : ImportList) { 928 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 929 llvm::MemoryBuffer::getFile(I.first()); 930 if (!MBOrErr) { 931 errs() << "Error loading imported file '" << I.first() 932 << "': " << MBOrErr.getError().message() << "\n"; 933 return; 934 } 935 936 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 937 if (!BMOrErr) { 938 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 939 errs() << "Error loading imported file '" << I.first() 940 << "': " << EIB.message() << '\n'; 941 }); 942 return; 943 } 944 ModuleMap.insert({I.first(), *BMOrErr}); 945 946 OwnedImports.push_back(std::move(*MBOrErr)); 947 } 948 auto AddStream = [&](size_t Task) { 949 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 950 }; 951 lto::Config Conf; 952 Conf.SampleProfile = SampleProfile; 953 if (Error E = thinBackend( 954 Conf, 0, AddStream, *M, *CombinedIndex, ImportList, 955 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 956 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 957 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 958 }); 959 } 960 } 961 962 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 963 const HeaderSearchOptions &HeaderOpts, 964 const CodeGenOptions &CGOpts, 965 const clang::TargetOptions &TOpts, 966 const LangOptions &LOpts, 967 const llvm::DataLayout &TDesc, Module *M, 968 BackendAction Action, 969 std::unique_ptr<raw_pwrite_stream> OS) { 970 if (!CGOpts.ThinLTOIndexFile.empty()) { 971 // If we are performing a ThinLTO importing compile, load the function index 972 // into memory and pass it into runThinLTOBackend, which will run the 973 // function importer and invoke LTO passes. 974 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 975 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile); 976 if (!IndexOrErr) { 977 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 978 "Error loading index file '" + 979 CGOpts.ThinLTOIndexFile + "': "); 980 return; 981 } 982 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 983 // A null CombinedIndex means we should skip ThinLTO compilation 984 // (LLVM will optionally ignore empty index files, returning null instead 985 // of an error). 986 bool DoThinLTOBackend = CombinedIndex != nullptr; 987 if (DoThinLTOBackend) { 988 runThinLTOBackend(CombinedIndex.get(), M, std::move(OS), 989 CGOpts.SampleProfileFile); 990 return; 991 } 992 } 993 994 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 995 996 if (CGOpts.ExperimentalNewPassManager) 997 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 998 else 999 AsmHelper.EmitAssembly(Action, std::move(OS)); 1000 1001 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1002 // DataLayout. 1003 if (AsmHelper.TM) { 1004 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1005 if (DLDesc != TDesc.getStringRepresentation()) { 1006 unsigned DiagID = Diags.getCustomDiagID( 1007 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1008 "expected target description '%1'"); 1009 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1010 } 1011 } 1012 } 1013 1014 static const char* getSectionNameForBitcode(const Triple &T) { 1015 switch (T.getObjectFormat()) { 1016 case Triple::MachO: 1017 return "__LLVM,__bitcode"; 1018 case Triple::COFF: 1019 case Triple::ELF: 1020 case Triple::Wasm: 1021 case Triple::UnknownObjectFormat: 1022 return ".llvmbc"; 1023 } 1024 llvm_unreachable("Unimplemented ObjectFormatType"); 1025 } 1026 1027 static const char* getSectionNameForCommandline(const Triple &T) { 1028 switch (T.getObjectFormat()) { 1029 case Triple::MachO: 1030 return "__LLVM,__cmdline"; 1031 case Triple::COFF: 1032 case Triple::ELF: 1033 case Triple::Wasm: 1034 case Triple::UnknownObjectFormat: 1035 return ".llvmcmd"; 1036 } 1037 llvm_unreachable("Unimplemented ObjectFormatType"); 1038 } 1039 1040 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1041 // __LLVM,__bitcode section. 1042 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1043 llvm::MemoryBufferRef Buf) { 1044 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1045 return; 1046 1047 // Save llvm.compiler.used and remote it. 1048 SmallVector<Constant*, 2> UsedArray; 1049 SmallSet<GlobalValue*, 4> UsedGlobals; 1050 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1051 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1052 for (auto *GV : UsedGlobals) { 1053 if (GV->getName() != "llvm.embedded.module" && 1054 GV->getName() != "llvm.cmdline") 1055 UsedArray.push_back( 1056 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1057 } 1058 if (Used) 1059 Used->eraseFromParent(); 1060 1061 // Embed the bitcode for the llvm module. 1062 std::string Data; 1063 ArrayRef<uint8_t> ModuleData; 1064 Triple T(M->getTargetTriple()); 1065 // Create a constant that contains the bitcode. 1066 // In case of embedding a marker, ignore the input Buf and use the empty 1067 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1068 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1069 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1070 (const unsigned char *)Buf.getBufferEnd())) { 1071 // If the input is LLVM Assembly, bitcode is produced by serializing 1072 // the module. Use-lists order need to be perserved in this case. 1073 llvm::raw_string_ostream OS(Data); 1074 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 1075 ModuleData = 1076 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1077 } else 1078 // If the input is LLVM bitcode, write the input byte stream directly. 1079 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1080 Buf.getBufferSize()); 1081 } 1082 llvm::Constant *ModuleConstant = 1083 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1084 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1085 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1086 ModuleConstant); 1087 GV->setSection(getSectionNameForBitcode(T)); 1088 UsedArray.push_back( 1089 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1090 if (llvm::GlobalVariable *Old = 1091 M->getGlobalVariable("llvm.embedded.module", true)) { 1092 assert(Old->hasOneUse() && 1093 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1094 GV->takeName(Old); 1095 Old->eraseFromParent(); 1096 } else { 1097 GV->setName("llvm.embedded.module"); 1098 } 1099 1100 // Skip if only bitcode needs to be embedded. 1101 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1102 // Embed command-line options. 1103 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1104 CGOpts.CmdArgs.size()); 1105 llvm::Constant *CmdConstant = 1106 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1107 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1108 llvm::GlobalValue::PrivateLinkage, 1109 CmdConstant); 1110 GV->setSection(getSectionNameForCommandline(T)); 1111 UsedArray.push_back( 1112 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1113 if (llvm::GlobalVariable *Old = 1114 M->getGlobalVariable("llvm.cmdline", true)) { 1115 assert(Old->hasOneUse() && 1116 "llvm.cmdline can only be used once in llvm.compiler.used"); 1117 GV->takeName(Old); 1118 Old->eraseFromParent(); 1119 } else { 1120 GV->setName("llvm.cmdline"); 1121 } 1122 } 1123 1124 if (UsedArray.empty()) 1125 return; 1126 1127 // Recreate llvm.compiler.used. 1128 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1129 auto *NewUsed = new GlobalVariable( 1130 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1131 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1132 NewUsed->setSection("llvm.metadata"); 1133 } 1134