1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/StackSafetyAnalysis.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/IRPrintingPasses.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/ModuleSummaryIndex.h" 35 #include "llvm/IR/Verifier.h" 36 #include "llvm/LTO/LTOBackend.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/SubtargetFeature.h" 39 #include "llvm/Passes/PassBuilder.h" 40 #include "llvm/Passes/PassPlugin.h" 41 #include "llvm/Passes/StandardInstrumentations.h" 42 #include "llvm/Support/BuryPointer.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/MemoryBuffer.h" 45 #include "llvm/Support/PrettyStackTrace.h" 46 #include "llvm/Support/TargetRegistry.h" 47 #include "llvm/Support/TimeProfiler.h" 48 #include "llvm/Support/Timer.h" 49 #include "llvm/Support/ToolOutputFile.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include "llvm/Target/TargetMachine.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Transforms/Coroutines.h" 54 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 55 #include "llvm/Transforms/Coroutines/CoroEarly.h" 56 #include "llvm/Transforms/Coroutines/CoroElide.h" 57 #include "llvm/Transforms/Coroutines/CoroSplit.h" 58 #include "llvm/Transforms/IPO.h" 59 #include "llvm/Transforms/IPO/AlwaysInliner.h" 60 #include "llvm/Transforms/IPO/LowerTypeTests.h" 61 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 62 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 63 #include "llvm/Transforms/InstCombine/InstCombine.h" 64 #include "llvm/Transforms/Instrumentation.h" 65 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 66 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 67 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 68 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 69 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 70 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 71 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 72 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 73 #include "llvm/Transforms/ObjCARC.h" 74 #include "llvm/Transforms/Scalar.h" 75 #include "llvm/Transforms/Scalar/GVN.h" 76 #include "llvm/Transforms/Utils.h" 77 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 78 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 79 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 80 #include "llvm/Transforms/Utils/SymbolRewriter.h" 81 #include "llvm/Transforms/Utils/UniqueInternalLinkageNames.h" 82 #include <memory> 83 using namespace clang; 84 using namespace llvm; 85 86 #define HANDLE_EXTENSION(Ext) \ 87 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 88 #include "llvm/Support/Extension.def" 89 90 namespace { 91 92 // Default filename used for profile generation. 93 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 94 95 class EmitAssemblyHelper { 96 DiagnosticsEngine &Diags; 97 const HeaderSearchOptions &HSOpts; 98 const CodeGenOptions &CodeGenOpts; 99 const clang::TargetOptions &TargetOpts; 100 const LangOptions &LangOpts; 101 Module *TheModule; 102 103 Timer CodeGenerationTime; 104 105 std::unique_ptr<raw_pwrite_stream> OS; 106 107 TargetIRAnalysis getTargetIRAnalysis() const { 108 if (TM) 109 return TM->getTargetIRAnalysis(); 110 111 return TargetIRAnalysis(); 112 } 113 114 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 115 116 /// Generates the TargetMachine. 117 /// Leaves TM unchanged if it is unable to create the target machine. 118 /// Some of our clang tests specify triples which are not built 119 /// into clang. This is okay because these tests check the generated 120 /// IR, and they require DataLayout which depends on the triple. 121 /// In this case, we allow this method to fail and not report an error. 122 /// When MustCreateTM is used, we print an error if we are unable to load 123 /// the requested target. 124 void CreateTargetMachine(bool MustCreateTM); 125 126 /// Add passes necessary to emit assembly or LLVM IR. 127 /// 128 /// \return True on success. 129 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 130 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 131 132 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 133 std::error_code EC; 134 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 135 llvm::sys::fs::OF_None); 136 if (EC) { 137 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 138 F.reset(); 139 } 140 return F; 141 } 142 143 public: 144 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 145 const HeaderSearchOptions &HeaderSearchOpts, 146 const CodeGenOptions &CGOpts, 147 const clang::TargetOptions &TOpts, 148 const LangOptions &LOpts, Module *M) 149 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 150 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 151 CodeGenerationTime("codegen", "Code Generation Time") {} 152 153 ~EmitAssemblyHelper() { 154 if (CodeGenOpts.DisableFree) 155 BuryPointer(std::move(TM)); 156 } 157 158 std::unique_ptr<TargetMachine> TM; 159 160 void EmitAssembly(BackendAction Action, 161 std::unique_ptr<raw_pwrite_stream> OS); 162 163 void EmitAssemblyWithNewPassManager(BackendAction Action, 164 std::unique_ptr<raw_pwrite_stream> OS); 165 }; 166 167 // We need this wrapper to access LangOpts and CGOpts from extension functions 168 // that we add to the PassManagerBuilder. 169 class PassManagerBuilderWrapper : public PassManagerBuilder { 170 public: 171 PassManagerBuilderWrapper(const Triple &TargetTriple, 172 const CodeGenOptions &CGOpts, 173 const LangOptions &LangOpts) 174 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 175 LangOpts(LangOpts) {} 176 const Triple &getTargetTriple() const { return TargetTriple; } 177 const CodeGenOptions &getCGOpts() const { return CGOpts; } 178 const LangOptions &getLangOpts() const { return LangOpts; } 179 180 private: 181 const Triple &TargetTriple; 182 const CodeGenOptions &CGOpts; 183 const LangOptions &LangOpts; 184 }; 185 } 186 187 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 188 if (Builder.OptLevel > 0) 189 PM.add(createObjCARCAPElimPass()); 190 } 191 192 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 193 if (Builder.OptLevel > 0) 194 PM.add(createObjCARCExpandPass()); 195 } 196 197 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 198 if (Builder.OptLevel > 0) 199 PM.add(createObjCARCOptPass()); 200 } 201 202 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 203 legacy::PassManagerBase &PM) { 204 PM.add(createAddDiscriminatorsPass()); 205 } 206 207 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 208 legacy::PassManagerBase &PM) { 209 PM.add(createBoundsCheckingLegacyPass()); 210 } 211 212 static SanitizerCoverageOptions 213 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 214 SanitizerCoverageOptions Opts; 215 Opts.CoverageType = 216 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 217 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 218 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 219 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 220 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 221 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 222 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 223 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 224 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 225 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 226 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 227 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 228 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 229 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 230 return Opts; 231 } 232 233 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 234 legacy::PassManagerBase &PM) { 235 const PassManagerBuilderWrapper &BuilderWrapper = 236 static_cast<const PassManagerBuilderWrapper &>(Builder); 237 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 238 auto Opts = getSancovOptsFromCGOpts(CGOpts); 239 PM.add(createModuleSanitizerCoverageLegacyPassPass( 240 Opts, CGOpts.SanitizeCoverageWhitelistFiles, 241 CGOpts.SanitizeCoverageBlacklistFiles)); 242 } 243 244 // Check if ASan should use GC-friendly instrumentation for globals. 245 // First of all, there is no point if -fdata-sections is off (expect for MachO, 246 // where this is not a factor). Also, on ELF this feature requires an assembler 247 // extension that only works with -integrated-as at the moment. 248 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 249 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 250 return false; 251 switch (T.getObjectFormat()) { 252 case Triple::MachO: 253 case Triple::COFF: 254 return true; 255 case Triple::ELF: 256 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 257 case Triple::XCOFF: 258 llvm::report_fatal_error("ASan not implemented for XCOFF."); 259 case Triple::Wasm: 260 case Triple::UnknownObjectFormat: 261 break; 262 } 263 return false; 264 } 265 266 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 267 legacy::PassManagerBase &PM) { 268 const PassManagerBuilderWrapper &BuilderWrapper = 269 static_cast<const PassManagerBuilderWrapper&>(Builder); 270 const Triple &T = BuilderWrapper.getTargetTriple(); 271 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 272 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 273 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 274 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 275 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 276 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 277 UseAfterScope)); 278 PM.add(createModuleAddressSanitizerLegacyPassPass( 279 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator)); 280 } 281 282 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 283 legacy::PassManagerBase &PM) { 284 PM.add(createAddressSanitizerFunctionPass( 285 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 286 PM.add(createModuleAddressSanitizerLegacyPassPass( 287 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 288 /*UseOdrIndicator*/ false)); 289 } 290 291 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 292 legacy::PassManagerBase &PM) { 293 const PassManagerBuilderWrapper &BuilderWrapper = 294 static_cast<const PassManagerBuilderWrapper &>(Builder); 295 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 296 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 297 PM.add( 298 createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover)); 299 } 300 301 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 302 legacy::PassManagerBase &PM) { 303 PM.add(createHWAddressSanitizerLegacyPassPass( 304 /*CompileKernel*/ true, /*Recover*/ true)); 305 } 306 307 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 308 legacy::PassManagerBase &PM, 309 bool CompileKernel) { 310 const PassManagerBuilderWrapper &BuilderWrapper = 311 static_cast<const PassManagerBuilderWrapper&>(Builder); 312 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 313 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 314 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 315 PM.add(createMemorySanitizerLegacyPassPass( 316 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 317 318 // MemorySanitizer inserts complex instrumentation that mostly follows 319 // the logic of the original code, but operates on "shadow" values. 320 // It can benefit from re-running some general purpose optimization passes. 321 if (Builder.OptLevel > 0) { 322 PM.add(createEarlyCSEPass()); 323 PM.add(createReassociatePass()); 324 PM.add(createLICMPass()); 325 PM.add(createGVNPass()); 326 PM.add(createInstructionCombiningPass()); 327 PM.add(createDeadStoreEliminationPass()); 328 } 329 } 330 331 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 332 legacy::PassManagerBase &PM) { 333 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 334 } 335 336 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 337 legacy::PassManagerBase &PM) { 338 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 339 } 340 341 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 342 legacy::PassManagerBase &PM) { 343 PM.add(createThreadSanitizerLegacyPassPass()); 344 } 345 346 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 347 legacy::PassManagerBase &PM) { 348 const PassManagerBuilderWrapper &BuilderWrapper = 349 static_cast<const PassManagerBuilderWrapper&>(Builder); 350 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 351 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 352 } 353 354 static void addMemTagOptimizationPasses(const PassManagerBuilder &Builder, 355 legacy::PassManagerBase &PM) { 356 PM.add(createStackSafetyGlobalInfoWrapperPass(/*SetMetadata=*/true)); 357 } 358 359 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 360 const CodeGenOptions &CodeGenOpts) { 361 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 362 363 switch (CodeGenOpts.getVecLib()) { 364 case CodeGenOptions::Accelerate: 365 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 366 break; 367 case CodeGenOptions::MASSV: 368 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 369 break; 370 case CodeGenOptions::SVML: 371 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 372 break; 373 default: 374 break; 375 } 376 return TLII; 377 } 378 379 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 380 legacy::PassManager *MPM) { 381 llvm::SymbolRewriter::RewriteDescriptorList DL; 382 383 llvm::SymbolRewriter::RewriteMapParser MapParser; 384 for (const auto &MapFile : Opts.RewriteMapFiles) 385 MapParser.parse(MapFile, &DL); 386 387 MPM->add(createRewriteSymbolsPass(DL)); 388 } 389 390 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 391 switch (CodeGenOpts.OptimizationLevel) { 392 default: 393 llvm_unreachable("Invalid optimization level!"); 394 case 0: 395 return CodeGenOpt::None; 396 case 1: 397 return CodeGenOpt::Less; 398 case 2: 399 return CodeGenOpt::Default; // O2/Os/Oz 400 case 3: 401 return CodeGenOpt::Aggressive; 402 } 403 } 404 405 static Optional<llvm::CodeModel::Model> 406 getCodeModel(const CodeGenOptions &CodeGenOpts) { 407 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 408 .Case("tiny", llvm::CodeModel::Tiny) 409 .Case("small", llvm::CodeModel::Small) 410 .Case("kernel", llvm::CodeModel::Kernel) 411 .Case("medium", llvm::CodeModel::Medium) 412 .Case("large", llvm::CodeModel::Large) 413 .Case("default", ~1u) 414 .Default(~0u); 415 assert(CodeModel != ~0u && "invalid code model!"); 416 if (CodeModel == ~1u) 417 return None; 418 return static_cast<llvm::CodeModel::Model>(CodeModel); 419 } 420 421 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 422 if (Action == Backend_EmitObj) 423 return CGFT_ObjectFile; 424 else if (Action == Backend_EmitMCNull) 425 return CGFT_Null; 426 else { 427 assert(Action == Backend_EmitAssembly && "Invalid action!"); 428 return CGFT_AssemblyFile; 429 } 430 } 431 432 static void initTargetOptions(llvm::TargetOptions &Options, 433 const CodeGenOptions &CodeGenOpts, 434 const clang::TargetOptions &TargetOpts, 435 const LangOptions &LangOpts, 436 const HeaderSearchOptions &HSOpts) { 437 Options.ThreadModel = 438 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 439 .Case("posix", llvm::ThreadModel::POSIX) 440 .Case("single", llvm::ThreadModel::Single); 441 442 // Set float ABI type. 443 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 444 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 445 "Invalid Floating Point ABI!"); 446 Options.FloatABIType = 447 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 448 .Case("soft", llvm::FloatABI::Soft) 449 .Case("softfp", llvm::FloatABI::Soft) 450 .Case("hard", llvm::FloatABI::Hard) 451 .Default(llvm::FloatABI::Default); 452 453 // Set FP fusion mode. 454 switch (LangOpts.getDefaultFPContractMode()) { 455 case LangOptions::FPM_Off: 456 // Preserve any contraction performed by the front-end. (Strict performs 457 // splitting of the muladd intrinsic in the backend.) 458 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 459 break; 460 case LangOptions::FPM_On: 461 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 462 break; 463 case LangOptions::FPM_Fast: 464 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 465 break; 466 } 467 468 Options.UseInitArray = CodeGenOpts.UseInitArray; 469 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 470 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 471 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 472 473 // Set EABI version. 474 Options.EABIVersion = TargetOpts.EABIVersion; 475 476 if (LangOpts.SjLjExceptions) 477 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 478 if (LangOpts.SEHExceptions) 479 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 480 if (LangOpts.DWARFExceptions) 481 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 482 if (LangOpts.WasmExceptions) 483 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 484 485 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 486 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 487 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 488 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 489 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 490 Options.FunctionSections = CodeGenOpts.FunctionSections; 491 Options.DataSections = CodeGenOpts.DataSections; 492 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 493 Options.TLSSize = CodeGenOpts.TLSSize; 494 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 495 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 496 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 497 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 498 Options.EmitAddrsig = CodeGenOpts.Addrsig; 499 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 500 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 501 502 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 503 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 504 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 505 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 506 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 507 Options.MCOptions.MCIncrementalLinkerCompatible = 508 CodeGenOpts.IncrementalLinkerCompatible; 509 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 510 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 511 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 512 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 513 Options.MCOptions.ABIName = TargetOpts.ABI; 514 for (const auto &Entry : HSOpts.UserEntries) 515 if (!Entry.IsFramework && 516 (Entry.Group == frontend::IncludeDirGroup::Quoted || 517 Entry.Group == frontend::IncludeDirGroup::Angled || 518 Entry.Group == frontend::IncludeDirGroup::System)) 519 Options.MCOptions.IASSearchPaths.push_back( 520 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 521 } 522 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 523 if (CodeGenOpts.DisableGCov) 524 return None; 525 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 526 return None; 527 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 528 // LLVM's -default-gcov-version flag is set to something invalid. 529 GCOVOptions Options; 530 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 531 Options.EmitData = CodeGenOpts.EmitGcovArcs; 532 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 533 Options.NoRedZone = CodeGenOpts.DisableRedZone; 534 Options.Filter = CodeGenOpts.ProfileFilterFiles; 535 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 536 return Options; 537 } 538 539 static Optional<InstrProfOptions> 540 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 541 const LangOptions &LangOpts) { 542 if (!CodeGenOpts.hasProfileClangInstr()) 543 return None; 544 InstrProfOptions Options; 545 Options.NoRedZone = CodeGenOpts.DisableRedZone; 546 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 547 548 // TODO: Surface the option to emit atomic profile counter increments at 549 // the driver level. 550 Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread); 551 return Options; 552 } 553 554 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 555 legacy::FunctionPassManager &FPM) { 556 // Handle disabling of all LLVM passes, where we want to preserve the 557 // internal module before any optimization. 558 if (CodeGenOpts.DisableLLVMPasses) 559 return; 560 561 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 562 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 563 // are inserted before PMBuilder ones - they'd get the default-constructed 564 // TLI with an unknown target otherwise. 565 Triple TargetTriple(TheModule->getTargetTriple()); 566 std::unique_ptr<TargetLibraryInfoImpl> TLII( 567 createTLII(TargetTriple, CodeGenOpts)); 568 569 // If we reached here with a non-empty index file name, then the index file 570 // was empty and we are not performing ThinLTO backend compilation (used in 571 // testing in a distributed build environment). Drop any the type test 572 // assume sequences inserted for whole program vtables so that codegen doesn't 573 // complain. 574 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 575 MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr, 576 /*ImportSummary=*/nullptr, 577 /*DropTypeTests=*/true)); 578 579 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 580 581 // At O0 and O1 we only run the always inliner which is more efficient. At 582 // higher optimization levels we run the normal inliner. 583 if (CodeGenOpts.OptimizationLevel <= 1) { 584 bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 && 585 !CodeGenOpts.DisableLifetimeMarkers) || 586 LangOpts.Coroutines); 587 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 588 } else { 589 // We do not want to inline hot callsites for SamplePGO module-summary build 590 // because profile annotation will happen again in ThinLTO backend, and we 591 // want the IR of the hot path to match the profile. 592 PMBuilder.Inliner = createFunctionInliningPass( 593 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 594 (!CodeGenOpts.SampleProfileFile.empty() && 595 CodeGenOpts.PrepareForThinLTO)); 596 } 597 598 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 599 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 600 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 601 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 602 603 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 604 // Loop interleaving in the loop vectorizer has historically been set to be 605 // enabled when loop unrolling is enabled. 606 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 607 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 608 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 609 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 610 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 611 612 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 613 614 if (TM) 615 TM->adjustPassManager(PMBuilder); 616 617 if (CodeGenOpts.DebugInfoForProfiling || 618 !CodeGenOpts.SampleProfileFile.empty()) 619 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 620 addAddDiscriminatorsPass); 621 622 // In ObjC ARC mode, add the main ARC optimization passes. 623 if (LangOpts.ObjCAutoRefCount) { 624 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 625 addObjCARCExpandPass); 626 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 627 addObjCARCAPElimPass); 628 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 629 addObjCARCOptPass); 630 } 631 632 if (LangOpts.Coroutines) 633 addCoroutinePassesToExtensionPoints(PMBuilder); 634 635 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 636 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 637 addBoundsCheckingPass); 638 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 639 addBoundsCheckingPass); 640 } 641 642 if (CodeGenOpts.SanitizeCoverageType || 643 CodeGenOpts.SanitizeCoverageIndirectCalls || 644 CodeGenOpts.SanitizeCoverageTraceCmp) { 645 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 646 addSanitizerCoveragePass); 647 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 648 addSanitizerCoveragePass); 649 } 650 651 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 652 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 653 addAddressSanitizerPasses); 654 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 655 addAddressSanitizerPasses); 656 } 657 658 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 659 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 660 addKernelAddressSanitizerPasses); 661 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 662 addKernelAddressSanitizerPasses); 663 } 664 665 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 666 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 667 addHWAddressSanitizerPasses); 668 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 669 addHWAddressSanitizerPasses); 670 } 671 672 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 673 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 674 addKernelHWAddressSanitizerPasses); 675 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 676 addKernelHWAddressSanitizerPasses); 677 } 678 679 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 680 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 681 addMemorySanitizerPass); 682 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 683 addMemorySanitizerPass); 684 } 685 686 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 687 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 688 addKernelMemorySanitizerPass); 689 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 690 addKernelMemorySanitizerPass); 691 } 692 693 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 694 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 695 addThreadSanitizerPass); 696 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 697 addThreadSanitizerPass); 698 } 699 700 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 701 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 702 addDataFlowSanitizerPass); 703 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 704 addDataFlowSanitizerPass); 705 } 706 707 if (LangOpts.Sanitize.has(SanitizerKind::MemTag)) { 708 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 709 addMemTagOptimizationPasses); 710 } 711 712 // Set up the per-function pass manager. 713 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 714 if (CodeGenOpts.VerifyModule) 715 FPM.add(createVerifierPass()); 716 717 // Set up the per-module pass manager. 718 if (!CodeGenOpts.RewriteMapFiles.empty()) 719 addSymbolRewriterPass(CodeGenOpts, &MPM); 720 721 // Add UniqueInternalLinkageNames Pass which renames internal linkage symbols 722 // with unique names. 723 if (CodeGenOpts.UniqueInternalLinkageNames) { 724 MPM.add(createUniqueInternalLinkageNamesPass()); 725 } 726 727 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 728 MPM.add(createGCOVProfilerPass(*Options)); 729 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 730 MPM.add(createStripSymbolsPass(true)); 731 } 732 733 if (Optional<InstrProfOptions> Options = 734 getInstrProfOptions(CodeGenOpts, LangOpts)) 735 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 736 737 bool hasIRInstr = false; 738 if (CodeGenOpts.hasProfileIRInstr()) { 739 PMBuilder.EnablePGOInstrGen = true; 740 hasIRInstr = true; 741 } 742 if (CodeGenOpts.hasProfileCSIRInstr()) { 743 assert(!CodeGenOpts.hasProfileCSIRUse() && 744 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 745 "same time"); 746 assert(!hasIRInstr && 747 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 748 "same time"); 749 PMBuilder.EnablePGOCSInstrGen = true; 750 hasIRInstr = true; 751 } 752 if (hasIRInstr) { 753 if (!CodeGenOpts.InstrProfileOutput.empty()) 754 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 755 else 756 PMBuilder.PGOInstrGen = std::string(DefaultProfileGenName); 757 } 758 if (CodeGenOpts.hasProfileIRUse()) { 759 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 760 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 761 } 762 763 if (!CodeGenOpts.SampleProfileFile.empty()) 764 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 765 766 PMBuilder.populateFunctionPassManager(FPM); 767 PMBuilder.populateModulePassManager(MPM); 768 } 769 770 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 771 SmallVector<const char *, 16> BackendArgs; 772 BackendArgs.push_back("clang"); // Fake program name. 773 if (!CodeGenOpts.DebugPass.empty()) { 774 BackendArgs.push_back("-debug-pass"); 775 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 776 } 777 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 778 BackendArgs.push_back("-limit-float-precision"); 779 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 780 } 781 BackendArgs.push_back(nullptr); 782 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 783 BackendArgs.data()); 784 } 785 786 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 787 // Create the TargetMachine for generating code. 788 std::string Error; 789 std::string Triple = TheModule->getTargetTriple(); 790 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 791 if (!TheTarget) { 792 if (MustCreateTM) 793 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 794 return; 795 } 796 797 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 798 std::string FeaturesStr = 799 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 800 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 801 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 802 803 llvm::TargetOptions Options; 804 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 805 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 806 Options, RM, CM, OptLevel)); 807 } 808 809 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 810 BackendAction Action, 811 raw_pwrite_stream &OS, 812 raw_pwrite_stream *DwoOS) { 813 // Add LibraryInfo. 814 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 815 std::unique_ptr<TargetLibraryInfoImpl> TLII( 816 createTLII(TargetTriple, CodeGenOpts)); 817 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 818 819 // Normal mode, emit a .s or .o file by running the code generator. Note, 820 // this also adds codegenerator level optimization passes. 821 CodeGenFileType CGFT = getCodeGenFileType(Action); 822 823 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 824 // "codegen" passes so that it isn't run multiple times when there is 825 // inlining happening. 826 if (CodeGenOpts.OptimizationLevel > 0) 827 CodeGenPasses.add(createObjCARCContractPass()); 828 829 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 830 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 831 Diags.Report(diag::err_fe_unable_to_interface_with_target); 832 return false; 833 } 834 835 return true; 836 } 837 838 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 839 std::unique_ptr<raw_pwrite_stream> OS) { 840 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 841 842 setCommandLineOpts(CodeGenOpts); 843 844 bool UsesCodeGen = (Action != Backend_EmitNothing && 845 Action != Backend_EmitBC && 846 Action != Backend_EmitLL); 847 CreateTargetMachine(UsesCodeGen); 848 849 if (UsesCodeGen && !TM) 850 return; 851 if (TM) 852 TheModule->setDataLayout(TM->createDataLayout()); 853 854 legacy::PassManager PerModulePasses; 855 PerModulePasses.add( 856 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 857 858 legacy::FunctionPassManager PerFunctionPasses(TheModule); 859 PerFunctionPasses.add( 860 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 861 862 CreatePasses(PerModulePasses, PerFunctionPasses); 863 864 legacy::PassManager CodeGenPasses; 865 CodeGenPasses.add( 866 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 867 868 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 869 870 switch (Action) { 871 case Backend_EmitNothing: 872 break; 873 874 case Backend_EmitBC: 875 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 876 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 877 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 878 if (!ThinLinkOS) 879 return; 880 } 881 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 882 CodeGenOpts.EnableSplitLTOUnit); 883 PerModulePasses.add(createWriteThinLTOBitcodePass( 884 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 885 } else { 886 // Emit a module summary by default for Regular LTO except for ld64 887 // targets 888 bool EmitLTOSummary = 889 (CodeGenOpts.PrepareForLTO && 890 !CodeGenOpts.DisableLLVMPasses && 891 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 892 llvm::Triple::Apple); 893 if (EmitLTOSummary) { 894 if (!TheModule->getModuleFlag("ThinLTO")) 895 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 896 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 897 uint32_t(1)); 898 } 899 900 PerModulePasses.add(createBitcodeWriterPass( 901 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 902 } 903 break; 904 905 case Backend_EmitLL: 906 PerModulePasses.add( 907 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 908 break; 909 910 default: 911 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 912 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 913 if (!DwoOS) 914 return; 915 } 916 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 917 DwoOS ? &DwoOS->os() : nullptr)) 918 return; 919 } 920 921 // Before executing passes, print the final values of the LLVM options. 922 cl::PrintOptionValues(); 923 924 // Run passes. For now we do all passes at once, but eventually we 925 // would like to have the option of streaming code generation. 926 927 { 928 PrettyStackTraceString CrashInfo("Per-function optimization"); 929 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 930 931 PerFunctionPasses.doInitialization(); 932 for (Function &F : *TheModule) 933 if (!F.isDeclaration()) 934 PerFunctionPasses.run(F); 935 PerFunctionPasses.doFinalization(); 936 } 937 938 { 939 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 940 llvm::TimeTraceScope TimeScope("PerModulePasses"); 941 PerModulePasses.run(*TheModule); 942 } 943 944 { 945 PrettyStackTraceString CrashInfo("Code generation"); 946 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 947 CodeGenPasses.run(*TheModule); 948 } 949 950 if (ThinLinkOS) 951 ThinLinkOS->keep(); 952 if (DwoOS) 953 DwoOS->keep(); 954 } 955 956 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 957 switch (Opts.OptimizationLevel) { 958 default: 959 llvm_unreachable("Invalid optimization level!"); 960 961 case 1: 962 return PassBuilder::OptimizationLevel::O1; 963 964 case 2: 965 switch (Opts.OptimizeSize) { 966 default: 967 llvm_unreachable("Invalid optimization level for size!"); 968 969 case 0: 970 return PassBuilder::OptimizationLevel::O2; 971 972 case 1: 973 return PassBuilder::OptimizationLevel::Os; 974 975 case 2: 976 return PassBuilder::OptimizationLevel::Oz; 977 } 978 979 case 3: 980 return PassBuilder::OptimizationLevel::O3; 981 } 982 } 983 984 static void addCoroutinePassesAtO0(ModulePassManager &MPM, 985 const LangOptions &LangOpts, 986 const CodeGenOptions &CodeGenOpts) { 987 if (!LangOpts.Coroutines) 988 return; 989 990 MPM.addPass(createModuleToFunctionPassAdaptor(CoroEarlyPass())); 991 992 CGSCCPassManager CGPM(CodeGenOpts.DebugPassManager); 993 CGPM.addPass(CoroSplitPass()); 994 CGPM.addPass(createCGSCCToFunctionPassAdaptor(CoroElidePass())); 995 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM))); 996 997 MPM.addPass(createModuleToFunctionPassAdaptor(CoroCleanupPass())); 998 } 999 1000 static void addSanitizersAtO0(ModulePassManager &MPM, 1001 const Triple &TargetTriple, 1002 const LangOptions &LangOpts, 1003 const CodeGenOptions &CodeGenOpts) { 1004 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1005 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1006 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1007 MPM.addPass(createModuleToFunctionPassAdaptor(AddressSanitizerPass( 1008 CompileKernel, Recover, CodeGenOpts.SanitizeAddressUseAfterScope))); 1009 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1010 MPM.addPass( 1011 ModuleAddressSanitizerPass(CompileKernel, Recover, ModuleUseAfterScope, 1012 CodeGenOpts.SanitizeAddressUseOdrIndicator)); 1013 }; 1014 1015 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1016 ASanPass(SanitizerKind::Address, /*CompileKernel=*/false); 1017 } 1018 1019 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 1020 ASanPass(SanitizerKind::KernelAddress, /*CompileKernel=*/true); 1021 } 1022 1023 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 1024 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Memory); 1025 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1026 MPM.addPass(MemorySanitizerPass({TrackOrigins, Recover, false})); 1027 MPM.addPass(createModuleToFunctionPassAdaptor( 1028 MemorySanitizerPass({TrackOrigins, Recover, false}))); 1029 } 1030 1031 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 1032 MPM.addPass(createModuleToFunctionPassAdaptor( 1033 MemorySanitizerPass({0, false, /*Kernel=*/true}))); 1034 } 1035 1036 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1037 MPM.addPass(ThreadSanitizerPass()); 1038 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1039 } 1040 } 1041 1042 /// A clean version of `EmitAssembly` that uses the new pass manager. 1043 /// 1044 /// Not all features are currently supported in this system, but where 1045 /// necessary it falls back to the legacy pass manager to at least provide 1046 /// basic functionality. 1047 /// 1048 /// This API is planned to have its functionality finished and then to replace 1049 /// `EmitAssembly` at some point in the future when the default switches. 1050 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 1051 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 1052 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 1053 setCommandLineOpts(CodeGenOpts); 1054 1055 bool RequiresCodeGen = (Action != Backend_EmitNothing && 1056 Action != Backend_EmitBC && 1057 Action != Backend_EmitLL); 1058 CreateTargetMachine(RequiresCodeGen); 1059 1060 if (RequiresCodeGen && !TM) 1061 return; 1062 if (TM) 1063 TheModule->setDataLayout(TM->createDataLayout()); 1064 1065 Optional<PGOOptions> PGOOpt; 1066 1067 if (CodeGenOpts.hasProfileIRInstr()) 1068 // -fprofile-generate. 1069 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1070 ? std::string(DefaultProfileGenName) 1071 : CodeGenOpts.InstrProfileOutput, 1072 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1073 CodeGenOpts.DebugInfoForProfiling); 1074 else if (CodeGenOpts.hasProfileIRUse()) { 1075 // -fprofile-use. 1076 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1077 : PGOOptions::NoCSAction; 1078 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1079 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1080 CSAction, CodeGenOpts.DebugInfoForProfiling); 1081 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1082 // -fprofile-sample-use 1083 PGOOpt = 1084 PGOOptions(CodeGenOpts.SampleProfileFile, "", 1085 CodeGenOpts.ProfileRemappingFile, PGOOptions::SampleUse, 1086 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling); 1087 else if (CodeGenOpts.DebugInfoForProfiling) 1088 // -fdebug-info-for-profiling 1089 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1090 PGOOptions::NoCSAction, true); 1091 1092 // Check to see if we want to generate a CS profile. 1093 if (CodeGenOpts.hasProfileCSIRInstr()) { 1094 assert(!CodeGenOpts.hasProfileCSIRUse() && 1095 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1096 "the same time"); 1097 if (PGOOpt.hasValue()) { 1098 assert(PGOOpt->Action != PGOOptions::IRInstr && 1099 PGOOpt->Action != PGOOptions::SampleUse && 1100 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1101 " pass"); 1102 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1103 ? std::string(DefaultProfileGenName) 1104 : CodeGenOpts.InstrProfileOutput; 1105 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1106 } else 1107 PGOOpt = PGOOptions("", 1108 CodeGenOpts.InstrProfileOutput.empty() 1109 ? std::string(DefaultProfileGenName) 1110 : CodeGenOpts.InstrProfileOutput, 1111 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1112 CodeGenOpts.DebugInfoForProfiling); 1113 } 1114 1115 PipelineTuningOptions PTO; 1116 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1117 // For historical reasons, loop interleaving is set to mirror setting for loop 1118 // unrolling. 1119 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1120 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1121 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1122 PTO.CallGraphProfile = CodeGenOpts.CallGraphProfile; 1123 PTO.Coroutines = LangOpts.Coroutines; 1124 1125 PassInstrumentationCallbacks PIC; 1126 StandardInstrumentations SI; 1127 SI.registerCallbacks(PIC); 1128 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 1129 1130 // Attempt to load pass plugins and register their callbacks with PB. 1131 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1132 auto PassPlugin = PassPlugin::Load(PluginFN); 1133 if (PassPlugin) { 1134 PassPlugin->registerPassBuilderCallbacks(PB); 1135 } else { 1136 Diags.Report(diag::err_fe_unable_to_load_plugin) 1137 << PluginFN << toString(PassPlugin.takeError()); 1138 } 1139 } 1140 #define HANDLE_EXTENSION(Ext) \ 1141 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 1142 #include "llvm/Support/Extension.def" 1143 1144 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 1145 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 1146 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 1147 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 1148 1149 // Register the AA manager first so that our version is the one used. 1150 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1151 1152 // Register the target library analysis directly and give it a customized 1153 // preset TLI. 1154 Triple TargetTriple(TheModule->getTargetTriple()); 1155 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1156 createTLII(TargetTriple, CodeGenOpts)); 1157 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1158 1159 // Register all the basic analyses with the managers. 1160 PB.registerModuleAnalyses(MAM); 1161 PB.registerCGSCCAnalyses(CGAM); 1162 PB.registerFunctionAnalyses(FAM); 1163 PB.registerLoopAnalyses(LAM); 1164 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1165 1166 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 1167 1168 if (!CodeGenOpts.DisableLLVMPasses) { 1169 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1170 bool IsLTO = CodeGenOpts.PrepareForLTO; 1171 1172 if (CodeGenOpts.OptimizationLevel == 0) { 1173 // If we reached here with a non-empty index file name, then the index 1174 // file was empty and we are not performing ThinLTO backend compilation 1175 // (used in testing in a distributed build environment). Drop any the type 1176 // test assume sequences inserted for whole program vtables so that 1177 // codegen doesn't complain. 1178 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 1179 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1180 /*ImportSummary=*/nullptr, 1181 /*DropTypeTests=*/true)); 1182 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1183 MPM.addPass(GCOVProfilerPass(*Options)); 1184 if (Optional<InstrProfOptions> Options = 1185 getInstrProfOptions(CodeGenOpts, LangOpts)) 1186 MPM.addPass(InstrProfiling(*Options, false)); 1187 1188 // Build a minimal pipeline based on the semantics required by Clang, 1189 // which is just that always inlining occurs. Further, disable generating 1190 // lifetime intrinsics to avoid enabling further optimizations during 1191 // code generation. 1192 // However, we need to insert lifetime intrinsics to avoid invalid access 1193 // caused by multithreaded coroutines. 1194 MPM.addPass( 1195 AlwaysInlinerPass(/*InsertLifetimeIntrinsics=*/LangOpts.Coroutines)); 1196 1197 // At -O0, we can still do PGO. Add all the requested passes for 1198 // instrumentation PGO, if requested. 1199 if (PGOOpt && (PGOOpt->Action == PGOOptions::IRInstr || 1200 PGOOpt->Action == PGOOptions::IRUse)) 1201 PB.addPGOInstrPassesForO0( 1202 MPM, CodeGenOpts.DebugPassManager, 1203 /* RunProfileGen */ (PGOOpt->Action == PGOOptions::IRInstr), 1204 /* IsCS */ false, PGOOpt->ProfileFile, 1205 PGOOpt->ProfileRemappingFile); 1206 1207 // At -O0 we directly run necessary sanitizer passes. 1208 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1209 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 1210 1211 // Add UniqueInternalLinkageNames Pass which renames internal linkage 1212 // symbols with unique names. 1213 if (CodeGenOpts.UniqueInternalLinkageNames) { 1214 MPM.addPass(UniqueInternalLinkageNamesPass()); 1215 } 1216 1217 // Lastly, add semantically necessary passes for LTO. 1218 if (IsLTO || IsThinLTO) { 1219 MPM.addPass(CanonicalizeAliasesPass()); 1220 MPM.addPass(NameAnonGlobalPass()); 1221 } 1222 } else { 1223 // Map our optimization levels into one of the distinct levels used to 1224 // configure the pipeline. 1225 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1226 1227 // If we reached here with a non-empty index file name, then the index 1228 // file was empty and we are not performing ThinLTO backend compilation 1229 // (used in testing in a distributed build environment). Drop any the type 1230 // test assume sequences inserted for whole program vtables so that 1231 // codegen doesn't complain. 1232 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 1233 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1234 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1235 /*ImportSummary=*/nullptr, 1236 /*DropTypeTests=*/true)); 1237 }); 1238 1239 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1240 MPM.addPass(createModuleToFunctionPassAdaptor( 1241 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1242 }); 1243 1244 // Register callbacks to schedule sanitizer passes at the appropriate part of 1245 // the pipeline. 1246 // FIXME: either handle asan/the remaining sanitizers or error out 1247 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1248 PB.registerScalarOptimizerLateEPCallback( 1249 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1250 FPM.addPass(BoundsCheckingPass()); 1251 }); 1252 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 1253 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1254 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Memory); 1255 PB.registerPipelineStartEPCallback( 1256 [TrackOrigins, Recover](ModulePassManager &MPM) { 1257 MPM.addPass(MemorySanitizerPass({TrackOrigins, Recover, false})); 1258 }); 1259 PB.registerOptimizerLastEPCallback( 1260 [TrackOrigins, Recover](FunctionPassManager &FPM, 1261 PassBuilder::OptimizationLevel Level) { 1262 FPM.addPass(MemorySanitizerPass({TrackOrigins, Recover, false})); 1263 }); 1264 } 1265 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1266 PB.registerPipelineStartEPCallback( 1267 [](ModulePassManager &MPM) { MPM.addPass(ThreadSanitizerPass()); }); 1268 PB.registerOptimizerLastEPCallback( 1269 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1270 FPM.addPass(ThreadSanitizerPass()); 1271 }); 1272 } 1273 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1274 PB.registerPipelineStartEPCallback([&](ModulePassManager &MPM) { 1275 MPM.addPass( 1276 RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1277 }); 1278 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address); 1279 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1280 PB.registerOptimizerLastEPCallback( 1281 [Recover, UseAfterScope](FunctionPassManager &FPM, 1282 PassBuilder::OptimizationLevel Level) { 1283 FPM.addPass(AddressSanitizerPass( 1284 /*CompileKernel=*/false, Recover, UseAfterScope)); 1285 }); 1286 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1287 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1288 PB.registerPipelineStartEPCallback( 1289 [Recover, ModuleUseAfterScope, 1290 UseOdrIndicator](ModulePassManager &MPM) { 1291 MPM.addPass(ModuleAddressSanitizerPass( 1292 /*CompileKernel=*/false, Recover, ModuleUseAfterScope, 1293 UseOdrIndicator)); 1294 }); 1295 } 1296 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1297 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1298 MPM.addPass(GCOVProfilerPass(*Options)); 1299 }); 1300 if (Optional<InstrProfOptions> Options = 1301 getInstrProfOptions(CodeGenOpts, LangOpts)) 1302 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1303 MPM.addPass(InstrProfiling(*Options, false)); 1304 }); 1305 1306 // Add UniqueInternalLinkageNames Pass which renames internal linkage 1307 // symbols with unique names. 1308 if (CodeGenOpts.UniqueInternalLinkageNames) { 1309 MPM.addPass(UniqueInternalLinkageNamesPass()); 1310 } 1311 1312 if (IsThinLTO) { 1313 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 1314 Level, CodeGenOpts.DebugPassManager); 1315 MPM.addPass(CanonicalizeAliasesPass()); 1316 MPM.addPass(NameAnonGlobalPass()); 1317 } else if (IsLTO) { 1318 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 1319 CodeGenOpts.DebugPassManager); 1320 MPM.addPass(CanonicalizeAliasesPass()); 1321 MPM.addPass(NameAnonGlobalPass()); 1322 } else { 1323 MPM = PB.buildPerModuleDefaultPipeline(Level, 1324 CodeGenOpts.DebugPassManager); 1325 } 1326 } 1327 1328 if (CodeGenOpts.SanitizeCoverageType || 1329 CodeGenOpts.SanitizeCoverageIndirectCalls || 1330 CodeGenOpts.SanitizeCoverageTraceCmp) { 1331 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1332 MPM.addPass(ModuleSanitizerCoveragePass( 1333 SancovOpts, CodeGenOpts.SanitizeCoverageWhitelistFiles, 1334 CodeGenOpts.SanitizeCoverageBlacklistFiles)); 1335 } 1336 1337 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 1338 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 1339 MPM.addPass(HWAddressSanitizerPass( 1340 /*CompileKernel=*/false, Recover)); 1341 } 1342 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 1343 MPM.addPass(HWAddressSanitizerPass( 1344 /*CompileKernel=*/true, /*Recover=*/true)); 1345 } 1346 1347 if (CodeGenOpts.OptimizationLevel > 0 && 1348 LangOpts.Sanitize.has(SanitizerKind::MemTag)) { 1349 MPM.addPass(StackSafetyGlobalAnnotatorPass()); 1350 } 1351 1352 if (CodeGenOpts.OptimizationLevel == 0) { 1353 addCoroutinePassesAtO0(MPM, LangOpts, CodeGenOpts); 1354 addSanitizersAtO0(MPM, TargetTriple, LangOpts, CodeGenOpts); 1355 } 1356 } 1357 1358 // FIXME: We still use the legacy pass manager to do code generation. We 1359 // create that pass manager here and use it as needed below. 1360 legacy::PassManager CodeGenPasses; 1361 bool NeedCodeGen = false; 1362 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1363 1364 // Append any output we need to the pass manager. 1365 switch (Action) { 1366 case Backend_EmitNothing: 1367 break; 1368 1369 case Backend_EmitBC: 1370 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1371 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1372 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1373 if (!ThinLinkOS) 1374 return; 1375 } 1376 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1377 CodeGenOpts.EnableSplitLTOUnit); 1378 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1379 : nullptr)); 1380 } else { 1381 // Emit a module summary by default for Regular LTO except for ld64 1382 // targets 1383 bool EmitLTOSummary = 1384 (CodeGenOpts.PrepareForLTO && 1385 !CodeGenOpts.DisableLLVMPasses && 1386 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1387 llvm::Triple::Apple); 1388 if (EmitLTOSummary) { 1389 if (!TheModule->getModuleFlag("ThinLTO")) 1390 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1391 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1392 uint32_t(1)); 1393 } 1394 MPM.addPass( 1395 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1396 } 1397 break; 1398 1399 case Backend_EmitLL: 1400 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1401 break; 1402 1403 case Backend_EmitAssembly: 1404 case Backend_EmitMCNull: 1405 case Backend_EmitObj: 1406 NeedCodeGen = true; 1407 CodeGenPasses.add( 1408 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1409 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1410 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1411 if (!DwoOS) 1412 return; 1413 } 1414 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1415 DwoOS ? &DwoOS->os() : nullptr)) 1416 // FIXME: Should we handle this error differently? 1417 return; 1418 break; 1419 } 1420 1421 // Before executing passes, print the final values of the LLVM options. 1422 cl::PrintOptionValues(); 1423 1424 // Now that we have all of the passes ready, run them. 1425 { 1426 PrettyStackTraceString CrashInfo("Optimizer"); 1427 MPM.run(*TheModule, MAM); 1428 } 1429 1430 // Now if needed, run the legacy PM for codegen. 1431 if (NeedCodeGen) { 1432 PrettyStackTraceString CrashInfo("Code generation"); 1433 CodeGenPasses.run(*TheModule); 1434 } 1435 1436 if (ThinLinkOS) 1437 ThinLinkOS->keep(); 1438 if (DwoOS) 1439 DwoOS->keep(); 1440 } 1441 1442 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1443 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1444 if (!BMsOrErr) 1445 return BMsOrErr.takeError(); 1446 1447 // The bitcode file may contain multiple modules, we want the one that is 1448 // marked as being the ThinLTO module. 1449 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1450 return *Bm; 1451 1452 return make_error<StringError>("Could not find module summary", 1453 inconvertibleErrorCode()); 1454 } 1455 1456 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1457 for (BitcodeModule &BM : BMs) { 1458 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1459 if (LTOInfo && LTOInfo->IsThinLTO) 1460 return &BM; 1461 } 1462 return nullptr; 1463 } 1464 1465 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1466 const HeaderSearchOptions &HeaderOpts, 1467 const CodeGenOptions &CGOpts, 1468 const clang::TargetOptions &TOpts, 1469 const LangOptions &LOpts, 1470 std::unique_ptr<raw_pwrite_stream> OS, 1471 std::string SampleProfile, 1472 std::string ProfileRemapping, 1473 BackendAction Action) { 1474 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1475 ModuleToDefinedGVSummaries; 1476 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1477 1478 setCommandLineOpts(CGOpts); 1479 1480 // We can simply import the values mentioned in the combined index, since 1481 // we should only invoke this using the individual indexes written out 1482 // via a WriteIndexesThinBackend. 1483 FunctionImporter::ImportMapTy ImportList; 1484 for (auto &GlobalList : *CombinedIndex) { 1485 // Ignore entries for undefined references. 1486 if (GlobalList.second.SummaryList.empty()) 1487 continue; 1488 1489 auto GUID = GlobalList.first; 1490 for (auto &Summary : GlobalList.second.SummaryList) { 1491 // Skip the summaries for the importing module. These are included to 1492 // e.g. record required linkage changes. 1493 if (Summary->modulePath() == M->getModuleIdentifier()) 1494 continue; 1495 // Add an entry to provoke importing by thinBackend. 1496 ImportList[Summary->modulePath()].insert(GUID); 1497 } 1498 } 1499 1500 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1501 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1502 1503 for (auto &I : ImportList) { 1504 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1505 llvm::MemoryBuffer::getFile(I.first()); 1506 if (!MBOrErr) { 1507 errs() << "Error loading imported file '" << I.first() 1508 << "': " << MBOrErr.getError().message() << "\n"; 1509 return; 1510 } 1511 1512 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1513 if (!BMOrErr) { 1514 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1515 errs() << "Error loading imported file '" << I.first() 1516 << "': " << EIB.message() << '\n'; 1517 }); 1518 return; 1519 } 1520 ModuleMap.insert({I.first(), *BMOrErr}); 1521 1522 OwnedImports.push_back(std::move(*MBOrErr)); 1523 } 1524 auto AddStream = [&](size_t Task) { 1525 return std::make_unique<lto::NativeObjectStream>(std::move(OS)); 1526 }; 1527 lto::Config Conf; 1528 if (CGOpts.SaveTempsFilePrefix != "") { 1529 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1530 /* UseInputModulePath */ false)) { 1531 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1532 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1533 << '\n'; 1534 }); 1535 } 1536 } 1537 Conf.CPU = TOpts.CPU; 1538 Conf.CodeModel = getCodeModel(CGOpts); 1539 Conf.MAttrs = TOpts.Features; 1540 Conf.RelocModel = CGOpts.RelocationModel; 1541 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1542 Conf.OptLevel = CGOpts.OptimizationLevel; 1543 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1544 Conf.SampleProfile = std::move(SampleProfile); 1545 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1546 // For historical reasons, loop interleaving is set to mirror setting for loop 1547 // unrolling. 1548 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1549 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1550 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1551 Conf.PTO.CallGraphProfile = CGOpts.CallGraphProfile; 1552 1553 // Context sensitive profile. 1554 if (CGOpts.hasProfileCSIRInstr()) { 1555 Conf.RunCSIRInstr = true; 1556 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1557 } else if (CGOpts.hasProfileCSIRUse()) { 1558 Conf.RunCSIRInstr = false; 1559 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1560 } 1561 1562 Conf.ProfileRemapping = std::move(ProfileRemapping); 1563 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1564 Conf.DebugPassManager = CGOpts.DebugPassManager; 1565 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1566 Conf.RemarksFilename = CGOpts.OptRecordFile; 1567 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1568 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1569 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1570 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1571 switch (Action) { 1572 case Backend_EmitNothing: 1573 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1574 return false; 1575 }; 1576 break; 1577 case Backend_EmitLL: 1578 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1579 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1580 return false; 1581 }; 1582 break; 1583 case Backend_EmitBC: 1584 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1585 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1586 return false; 1587 }; 1588 break; 1589 default: 1590 Conf.CGFileType = getCodeGenFileType(Action); 1591 break; 1592 } 1593 if (Error E = thinBackend( 1594 Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1595 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1596 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1597 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1598 }); 1599 } 1600 } 1601 1602 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1603 const HeaderSearchOptions &HeaderOpts, 1604 const CodeGenOptions &CGOpts, 1605 const clang::TargetOptions &TOpts, 1606 const LangOptions &LOpts, 1607 const llvm::DataLayout &TDesc, Module *M, 1608 BackendAction Action, 1609 std::unique_ptr<raw_pwrite_stream> OS) { 1610 1611 llvm::TimeTraceScope TimeScope("Backend"); 1612 1613 std::unique_ptr<llvm::Module> EmptyModule; 1614 if (!CGOpts.ThinLTOIndexFile.empty()) { 1615 // If we are performing a ThinLTO importing compile, load the function index 1616 // into memory and pass it into runThinLTOBackend, which will run the 1617 // function importer and invoke LTO passes. 1618 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1619 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1620 /*IgnoreEmptyThinLTOIndexFile*/true); 1621 if (!IndexOrErr) { 1622 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1623 "Error loading index file '" + 1624 CGOpts.ThinLTOIndexFile + "': "); 1625 return; 1626 } 1627 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1628 // A null CombinedIndex means we should skip ThinLTO compilation 1629 // (LLVM will optionally ignore empty index files, returning null instead 1630 // of an error). 1631 if (CombinedIndex) { 1632 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1633 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1634 LOpts, std::move(OS), CGOpts.SampleProfileFile, 1635 CGOpts.ProfileRemappingFile, Action); 1636 return; 1637 } 1638 // Distributed indexing detected that nothing from the module is needed 1639 // for the final linking. So we can skip the compilation. We sill need to 1640 // output an empty object file to make sure that a linker does not fail 1641 // trying to read it. Also for some features, like CFI, we must skip 1642 // the compilation as CombinedIndex does not contain all required 1643 // information. 1644 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1645 EmptyModule->setTargetTriple(M->getTargetTriple()); 1646 M = EmptyModule.get(); 1647 } 1648 } 1649 1650 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1651 1652 if (CGOpts.ExperimentalNewPassManager) 1653 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1654 else 1655 AsmHelper.EmitAssembly(Action, std::move(OS)); 1656 1657 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1658 // DataLayout. 1659 if (AsmHelper.TM) { 1660 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1661 if (DLDesc != TDesc.getStringRepresentation()) { 1662 unsigned DiagID = Diags.getCustomDiagID( 1663 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1664 "expected target description '%1'"); 1665 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1666 } 1667 } 1668 } 1669 1670 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1671 // __LLVM,__bitcode section. 1672 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1673 llvm::MemoryBufferRef Buf) { 1674 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1675 return; 1676 llvm::EmbedBitcodeInModule( 1677 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1678 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1679 &CGOpts.CmdArgs); 1680 } 1681