1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/StackSafetyAnalysis.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/Bitcode/BitcodeReader.h" 26 #include "llvm/Bitcode/BitcodeWriter.h" 27 #include "llvm/Bitcode/BitcodeWriterPass.h" 28 #include "llvm/CodeGen/RegAllocRegistry.h" 29 #include "llvm/CodeGen/SchedulerRegistry.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/IRPrintingPasses.h" 33 #include "llvm/IR/LegacyPassManager.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/ModuleSummaryIndex.h" 36 #include "llvm/IR/PassManager.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/LTO/LTOBackend.h" 39 #include "llvm/MC/MCAsmInfo.h" 40 #include "llvm/MC/SubtargetFeature.h" 41 #include "llvm/MC/TargetRegistry.h" 42 #include "llvm/Passes/PassBuilder.h" 43 #include "llvm/Passes/PassPlugin.h" 44 #include "llvm/Passes/StandardInstrumentations.h" 45 #include "llvm/Support/BuryPointer.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/MemoryBuffer.h" 48 #include "llvm/Support/PrettyStackTrace.h" 49 #include "llvm/Support/TimeProfiler.h" 50 #include "llvm/Support/Timer.h" 51 #include "llvm/Support/ToolOutputFile.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include "llvm/Target/TargetOptions.h" 55 #include "llvm/Transforms/Coroutines.h" 56 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 57 #include "llvm/Transforms/Coroutines/CoroEarly.h" 58 #include "llvm/Transforms/Coroutines/CoroElide.h" 59 #include "llvm/Transforms/Coroutines/CoroSplit.h" 60 #include "llvm/Transforms/IPO.h" 61 #include "llvm/Transforms/IPO/AlwaysInliner.h" 62 #include "llvm/Transforms/IPO/LowerTypeTests.h" 63 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 64 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 65 #include "llvm/Transforms/InstCombine/InstCombine.h" 66 #include "llvm/Transforms/Instrumentation.h" 67 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 68 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" 69 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 70 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 71 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 72 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 73 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 74 #include "llvm/Transforms/Instrumentation/MemProfiler.h" 75 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 76 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 77 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 78 #include "llvm/Transforms/ObjCARC.h" 79 #include "llvm/Transforms/Scalar.h" 80 #include "llvm/Transforms/Scalar/EarlyCSE.h" 81 #include "llvm/Transforms/Scalar/GVN.h" 82 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" 83 #include "llvm/Transforms/Utils.h" 84 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 85 #include "llvm/Transforms/Utils/Debugify.h" 86 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 87 #include "llvm/Transforms/Utils/ModuleUtils.h" 88 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 89 #include "llvm/Transforms/Utils/SymbolRewriter.h" 90 #include <memory> 91 using namespace clang; 92 using namespace llvm; 93 94 #define HANDLE_EXTENSION(Ext) \ 95 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 96 #include "llvm/Support/Extension.def" 97 98 namespace llvm { 99 extern cl::opt<bool> DebugInfoCorrelate; 100 } 101 102 namespace { 103 104 // Default filename used for profile generation. 105 std::string getDefaultProfileGenName() { 106 return DebugInfoCorrelate ? "default_%p.proflite" : "default_%m.profraw"; 107 } 108 109 class EmitAssemblyHelper { 110 DiagnosticsEngine &Diags; 111 const HeaderSearchOptions &HSOpts; 112 const CodeGenOptions &CodeGenOpts; 113 const clang::TargetOptions &TargetOpts; 114 const LangOptions &LangOpts; 115 Module *TheModule; 116 117 Timer CodeGenerationTime; 118 119 std::unique_ptr<raw_pwrite_stream> OS; 120 121 TargetIRAnalysis getTargetIRAnalysis() const { 122 if (TM) 123 return TM->getTargetIRAnalysis(); 124 125 return TargetIRAnalysis(); 126 } 127 128 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 129 130 /// Generates the TargetMachine. 131 /// Leaves TM unchanged if it is unable to create the target machine. 132 /// Some of our clang tests specify triples which are not built 133 /// into clang. This is okay because these tests check the generated 134 /// IR, and they require DataLayout which depends on the triple. 135 /// In this case, we allow this method to fail and not report an error. 136 /// When MustCreateTM is used, we print an error if we are unable to load 137 /// the requested target. 138 void CreateTargetMachine(bool MustCreateTM); 139 140 /// Add passes necessary to emit assembly or LLVM IR. 141 /// 142 /// \return True on success. 143 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 144 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 145 146 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 147 std::error_code EC; 148 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 149 llvm::sys::fs::OF_None); 150 if (EC) { 151 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 152 F.reset(); 153 } 154 return F; 155 } 156 157 void 158 RunOptimizationPipeline(BackendAction Action, 159 std::unique_ptr<raw_pwrite_stream> &OS, 160 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS); 161 void RunCodegenPipeline(BackendAction Action, 162 std::unique_ptr<raw_pwrite_stream> &OS, 163 std::unique_ptr<llvm::ToolOutputFile> &DwoOS); 164 165 public: 166 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 167 const HeaderSearchOptions &HeaderSearchOpts, 168 const CodeGenOptions &CGOpts, 169 const clang::TargetOptions &TOpts, 170 const LangOptions &LOpts, Module *M) 171 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 172 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 173 CodeGenerationTime("codegen", "Code Generation Time") {} 174 175 ~EmitAssemblyHelper() { 176 if (CodeGenOpts.DisableFree) 177 BuryPointer(std::move(TM)); 178 } 179 180 std::unique_ptr<TargetMachine> TM; 181 182 // Emit output using the legacy pass manager for the optimization pipeline. 183 // This will be removed soon when using the legacy pass manager for the 184 // optimization pipeline is no longer supported. 185 void EmitAssemblyWithLegacyPassManager(BackendAction Action, 186 std::unique_ptr<raw_pwrite_stream> OS); 187 188 // Emit output using the new pass manager for the optimization pipeline. This 189 // is the default. 190 void EmitAssembly(BackendAction Action, 191 std::unique_ptr<raw_pwrite_stream> OS); 192 }; 193 194 // We need this wrapper to access LangOpts and CGOpts from extension functions 195 // that we add to the PassManagerBuilder. 196 class PassManagerBuilderWrapper : public PassManagerBuilder { 197 public: 198 PassManagerBuilderWrapper(const Triple &TargetTriple, 199 const CodeGenOptions &CGOpts, 200 const LangOptions &LangOpts) 201 : TargetTriple(TargetTriple), CGOpts(CGOpts), LangOpts(LangOpts) {} 202 const Triple &getTargetTriple() const { return TargetTriple; } 203 const CodeGenOptions &getCGOpts() const { return CGOpts; } 204 const LangOptions &getLangOpts() const { return LangOpts; } 205 206 private: 207 const Triple &TargetTriple; 208 const CodeGenOptions &CGOpts; 209 const LangOptions &LangOpts; 210 }; 211 } 212 213 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 214 if (Builder.OptLevel > 0) 215 PM.add(createObjCARCAPElimPass()); 216 } 217 218 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 219 if (Builder.OptLevel > 0) 220 PM.add(createObjCARCExpandPass()); 221 } 222 223 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 224 if (Builder.OptLevel > 0) 225 PM.add(createObjCARCOptPass()); 226 } 227 228 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 229 legacy::PassManagerBase &PM) { 230 PM.add(createAddDiscriminatorsPass()); 231 } 232 233 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 234 legacy::PassManagerBase &PM) { 235 PM.add(createBoundsCheckingLegacyPass()); 236 } 237 238 static SanitizerCoverageOptions 239 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 240 SanitizerCoverageOptions Opts; 241 Opts.CoverageType = 242 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 243 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 244 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 245 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 246 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 247 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 248 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 249 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 250 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 251 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 252 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 253 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 254 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 255 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 256 Opts.TraceLoads = CGOpts.SanitizeCoverageTraceLoads; 257 Opts.TraceStores = CGOpts.SanitizeCoverageTraceStores; 258 return Opts; 259 } 260 261 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 262 legacy::PassManagerBase &PM) { 263 const PassManagerBuilderWrapper &BuilderWrapper = 264 static_cast<const PassManagerBuilderWrapper &>(Builder); 265 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 266 auto Opts = getSancovOptsFromCGOpts(CGOpts); 267 PM.add(createModuleSanitizerCoverageLegacyPassPass( 268 Opts, CGOpts.SanitizeCoverageAllowlistFiles, 269 CGOpts.SanitizeCoverageIgnorelistFiles)); 270 } 271 272 // Check if ASan should use GC-friendly instrumentation for globals. 273 // First of all, there is no point if -fdata-sections is off (expect for MachO, 274 // where this is not a factor). Also, on ELF this feature requires an assembler 275 // extension that only works with -integrated-as at the moment. 276 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 277 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 278 return false; 279 switch (T.getObjectFormat()) { 280 case Triple::MachO: 281 case Triple::COFF: 282 return true; 283 case Triple::ELF: 284 return !CGOpts.DisableIntegratedAS; 285 case Triple::GOFF: 286 llvm::report_fatal_error("ASan not implemented for GOFF"); 287 case Triple::XCOFF: 288 llvm::report_fatal_error("ASan not implemented for XCOFF."); 289 case Triple::Wasm: 290 case Triple::DXContainer: 291 case Triple::UnknownObjectFormat: 292 break; 293 } 294 return false; 295 } 296 297 static void addMemProfilerPasses(const PassManagerBuilder &Builder, 298 legacy::PassManagerBase &PM) { 299 PM.add(createMemProfilerFunctionPass()); 300 PM.add(createModuleMemProfilerLegacyPassPass()); 301 } 302 303 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 304 legacy::PassManagerBase &PM) { 305 const PassManagerBuilderWrapper &BuilderWrapper = 306 static_cast<const PassManagerBuilderWrapper&>(Builder); 307 const Triple &T = BuilderWrapper.getTargetTriple(); 308 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 309 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 310 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 311 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 312 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 313 llvm::AsanDtorKind DestructorKind = CGOpts.getSanitizeAddressDtor(); 314 llvm::AsanDetectStackUseAfterReturnMode UseAfterReturn = 315 CGOpts.getSanitizeAddressUseAfterReturn(); 316 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 317 UseAfterScope, UseAfterReturn)); 318 PM.add(createModuleAddressSanitizerLegacyPassPass( 319 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator, 320 DestructorKind)); 321 } 322 323 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 324 legacy::PassManagerBase &PM) { 325 PM.add(createAddressSanitizerFunctionPass( 326 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false, 327 /*UseAfterReturn*/ llvm::AsanDetectStackUseAfterReturnMode::Never)); 328 PM.add(createModuleAddressSanitizerLegacyPassPass( 329 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 330 /*UseOdrIndicator*/ false)); 331 } 332 333 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 334 legacy::PassManagerBase &PM) { 335 const PassManagerBuilderWrapper &BuilderWrapper = 336 static_cast<const PassManagerBuilderWrapper &>(Builder); 337 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 338 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 339 PM.add(createHWAddressSanitizerLegacyPassPass( 340 /*CompileKernel*/ false, Recover, 341 /*DisableOptimization*/ CGOpts.OptimizationLevel == 0)); 342 } 343 344 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 345 legacy::PassManagerBase &PM) { 346 const PassManagerBuilderWrapper &BuilderWrapper = 347 static_cast<const PassManagerBuilderWrapper &>(Builder); 348 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 349 PM.add(createHWAddressSanitizerLegacyPassPass( 350 /*CompileKernel*/ true, /*Recover*/ true, 351 /*DisableOptimization*/ CGOpts.OptimizationLevel == 0)); 352 } 353 354 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 355 legacy::PassManagerBase &PM, 356 bool CompileKernel) { 357 const PassManagerBuilderWrapper &BuilderWrapper = 358 static_cast<const PassManagerBuilderWrapper&>(Builder); 359 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 360 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 361 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 362 PM.add(createMemorySanitizerLegacyPassPass( 363 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel, 364 CGOpts.SanitizeMemoryParamRetval != 0})); 365 366 // MemorySanitizer inserts complex instrumentation that mostly follows 367 // the logic of the original code, but operates on "shadow" values. 368 // It can benefit from re-running some general purpose optimization passes. 369 if (Builder.OptLevel > 0) { 370 PM.add(createEarlyCSEPass()); 371 PM.add(createReassociatePass()); 372 PM.add(createLICMPass()); 373 PM.add(createGVNPass()); 374 PM.add(createInstructionCombiningPass()); 375 PM.add(createDeadStoreEliminationPass()); 376 } 377 } 378 379 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 380 legacy::PassManagerBase &PM) { 381 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 382 } 383 384 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 385 legacy::PassManagerBase &PM) { 386 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 387 } 388 389 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 390 legacy::PassManagerBase &PM) { 391 PM.add(createThreadSanitizerLegacyPassPass()); 392 } 393 394 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 395 legacy::PassManagerBase &PM) { 396 const PassManagerBuilderWrapper &BuilderWrapper = 397 static_cast<const PassManagerBuilderWrapper&>(Builder); 398 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 399 PM.add(createDataFlowSanitizerLegacyPassPass(LangOpts.NoSanitizeFiles)); 400 } 401 402 static void addEntryExitInstrumentationPass(const PassManagerBuilder &Builder, 403 legacy::PassManagerBase &PM) { 404 PM.add(createEntryExitInstrumenterPass()); 405 } 406 407 static void 408 addPostInlineEntryExitInstrumentationPass(const PassManagerBuilder &Builder, 409 legacy::PassManagerBase &PM) { 410 PM.add(createPostInlineEntryExitInstrumenterPass()); 411 } 412 413 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 414 const CodeGenOptions &CodeGenOpts) { 415 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 416 417 switch (CodeGenOpts.getVecLib()) { 418 case CodeGenOptions::Accelerate: 419 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 420 break; 421 case CodeGenOptions::LIBMVEC: 422 switch(TargetTriple.getArch()) { 423 default: 424 break; 425 case llvm::Triple::x86_64: 426 TLII->addVectorizableFunctionsFromVecLib 427 (TargetLibraryInfoImpl::LIBMVEC_X86); 428 break; 429 } 430 break; 431 case CodeGenOptions::MASSV: 432 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 433 break; 434 case CodeGenOptions::SVML: 435 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 436 break; 437 case CodeGenOptions::Darwin_libsystem_m: 438 TLII->addVectorizableFunctionsFromVecLib( 439 TargetLibraryInfoImpl::DarwinLibSystemM); 440 break; 441 default: 442 break; 443 } 444 return TLII; 445 } 446 447 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 448 legacy::PassManager *MPM) { 449 llvm::SymbolRewriter::RewriteDescriptorList DL; 450 451 llvm::SymbolRewriter::RewriteMapParser MapParser; 452 for (const auto &MapFile : Opts.RewriteMapFiles) 453 MapParser.parse(MapFile, &DL); 454 455 MPM->add(createRewriteSymbolsPass(DL)); 456 } 457 458 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 459 switch (CodeGenOpts.OptimizationLevel) { 460 default: 461 llvm_unreachable("Invalid optimization level!"); 462 case 0: 463 return CodeGenOpt::None; 464 case 1: 465 return CodeGenOpt::Less; 466 case 2: 467 return CodeGenOpt::Default; // O2/Os/Oz 468 case 3: 469 return CodeGenOpt::Aggressive; 470 } 471 } 472 473 static Optional<llvm::CodeModel::Model> 474 getCodeModel(const CodeGenOptions &CodeGenOpts) { 475 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 476 .Case("tiny", llvm::CodeModel::Tiny) 477 .Case("small", llvm::CodeModel::Small) 478 .Case("kernel", llvm::CodeModel::Kernel) 479 .Case("medium", llvm::CodeModel::Medium) 480 .Case("large", llvm::CodeModel::Large) 481 .Case("default", ~1u) 482 .Default(~0u); 483 assert(CodeModel != ~0u && "invalid code model!"); 484 if (CodeModel == ~1u) 485 return None; 486 return static_cast<llvm::CodeModel::Model>(CodeModel); 487 } 488 489 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 490 if (Action == Backend_EmitObj) 491 return CGFT_ObjectFile; 492 else if (Action == Backend_EmitMCNull) 493 return CGFT_Null; 494 else { 495 assert(Action == Backend_EmitAssembly && "Invalid action!"); 496 return CGFT_AssemblyFile; 497 } 498 } 499 500 static bool actionRequiresCodeGen(BackendAction Action) { 501 return Action != Backend_EmitNothing && Action != Backend_EmitBC && 502 Action != Backend_EmitLL; 503 } 504 505 static bool initTargetOptions(DiagnosticsEngine &Diags, 506 llvm::TargetOptions &Options, 507 const CodeGenOptions &CodeGenOpts, 508 const clang::TargetOptions &TargetOpts, 509 const LangOptions &LangOpts, 510 const HeaderSearchOptions &HSOpts) { 511 switch (LangOpts.getThreadModel()) { 512 case LangOptions::ThreadModelKind::POSIX: 513 Options.ThreadModel = llvm::ThreadModel::POSIX; 514 break; 515 case LangOptions::ThreadModelKind::Single: 516 Options.ThreadModel = llvm::ThreadModel::Single; 517 break; 518 } 519 520 // Set float ABI type. 521 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 522 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 523 "Invalid Floating Point ABI!"); 524 Options.FloatABIType = 525 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 526 .Case("soft", llvm::FloatABI::Soft) 527 .Case("softfp", llvm::FloatABI::Soft) 528 .Case("hard", llvm::FloatABI::Hard) 529 .Default(llvm::FloatABI::Default); 530 531 // Set FP fusion mode. 532 switch (LangOpts.getDefaultFPContractMode()) { 533 case LangOptions::FPM_Off: 534 // Preserve any contraction performed by the front-end. (Strict performs 535 // splitting of the muladd intrinsic in the backend.) 536 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 537 break; 538 case LangOptions::FPM_On: 539 case LangOptions::FPM_FastHonorPragmas: 540 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 541 break; 542 case LangOptions::FPM_Fast: 543 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 544 break; 545 } 546 547 Options.BinutilsVersion = 548 llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion); 549 Options.UseInitArray = CodeGenOpts.UseInitArray; 550 Options.LowerGlobalDtorsViaCxaAtExit = 551 CodeGenOpts.RegisterGlobalDtorsWithAtExit; 552 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 553 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 554 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 555 556 // Set EABI version. 557 Options.EABIVersion = TargetOpts.EABIVersion; 558 559 if (LangOpts.hasSjLjExceptions()) 560 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 561 if (LangOpts.hasSEHExceptions()) 562 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 563 if (LangOpts.hasDWARFExceptions()) 564 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 565 if (LangOpts.hasWasmExceptions()) 566 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 567 568 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 569 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 570 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 571 Options.UnsafeFPMath = LangOpts.UnsafeFPMath; 572 Options.ApproxFuncFPMath = LangOpts.ApproxFunc; 573 574 Options.BBSections = 575 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 576 .Case("all", llvm::BasicBlockSection::All) 577 .Case("labels", llvm::BasicBlockSection::Labels) 578 .StartsWith("list=", llvm::BasicBlockSection::List) 579 .Case("none", llvm::BasicBlockSection::None) 580 .Default(llvm::BasicBlockSection::None); 581 582 if (Options.BBSections == llvm::BasicBlockSection::List) { 583 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 584 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 585 if (!MBOrErr) { 586 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 587 << MBOrErr.getError().message(); 588 return false; 589 } 590 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 591 } 592 593 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions; 594 Options.FunctionSections = CodeGenOpts.FunctionSections; 595 Options.DataSections = CodeGenOpts.DataSections; 596 Options.IgnoreXCOFFVisibility = LangOpts.IgnoreXCOFFVisibility; 597 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 598 Options.UniqueBasicBlockSectionNames = 599 CodeGenOpts.UniqueBasicBlockSectionNames; 600 Options.TLSSize = CodeGenOpts.TLSSize; 601 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 602 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 603 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 604 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 605 Options.StackUsageOutput = CodeGenOpts.StackUsageOutput; 606 Options.EmitAddrsig = CodeGenOpts.Addrsig; 607 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 608 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 609 Options.EnableAIXExtendedAltivecABI = CodeGenOpts.EnableAIXExtendedAltivecABI; 610 Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex; 611 Options.LoopAlignment = CodeGenOpts.LoopAlignment; 612 Options.DebugStrictDwarf = CodeGenOpts.DebugStrictDwarf; 613 Options.ObjectFilenameForDebug = CodeGenOpts.ObjectFilenameForDebug; 614 Options.Hotpatch = CodeGenOpts.HotPatch; 615 Options.JMCInstrument = CodeGenOpts.JMCInstrument; 616 617 switch (CodeGenOpts.getSwiftAsyncFramePointer()) { 618 case CodeGenOptions::SwiftAsyncFramePointerKind::Auto: 619 Options.SwiftAsyncFramePointer = 620 SwiftAsyncFramePointerMode::DeploymentBased; 621 break; 622 623 case CodeGenOptions::SwiftAsyncFramePointerKind::Always: 624 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Always; 625 break; 626 627 case CodeGenOptions::SwiftAsyncFramePointerKind::Never: 628 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Never; 629 break; 630 } 631 632 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 633 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 634 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 635 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 636 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 637 Options.MCOptions.MCIncrementalLinkerCompatible = 638 CodeGenOpts.IncrementalLinkerCompatible; 639 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 640 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 641 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 642 Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64; 643 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 644 Options.MCOptions.ABIName = TargetOpts.ABI; 645 for (const auto &Entry : HSOpts.UserEntries) 646 if (!Entry.IsFramework && 647 (Entry.Group == frontend::IncludeDirGroup::Quoted || 648 Entry.Group == frontend::IncludeDirGroup::Angled || 649 Entry.Group == frontend::IncludeDirGroup::System)) 650 Options.MCOptions.IASSearchPaths.push_back( 651 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 652 Options.MCOptions.Argv0 = CodeGenOpts.Argv0; 653 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; 654 Options.MisExpect = CodeGenOpts.MisExpect; 655 656 return true; 657 } 658 659 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts, 660 const LangOptions &LangOpts) { 661 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 662 return None; 663 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 664 // LLVM's -default-gcov-version flag is set to something invalid. 665 GCOVOptions Options; 666 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 667 Options.EmitData = CodeGenOpts.EmitGcovArcs; 668 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 669 Options.NoRedZone = CodeGenOpts.DisableRedZone; 670 Options.Filter = CodeGenOpts.ProfileFilterFiles; 671 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 672 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 673 return Options; 674 } 675 676 static Optional<InstrProfOptions> 677 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 678 const LangOptions &LangOpts) { 679 if (!CodeGenOpts.hasProfileClangInstr()) 680 return None; 681 InstrProfOptions Options; 682 Options.NoRedZone = CodeGenOpts.DisableRedZone; 683 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 684 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 685 return Options; 686 } 687 688 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 689 legacy::FunctionPassManager &FPM) { 690 // Handle disabling of all LLVM passes, where we want to preserve the 691 // internal module before any optimization. 692 if (CodeGenOpts.DisableLLVMPasses) 693 return; 694 695 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 696 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 697 // are inserted before PMBuilder ones - they'd get the default-constructed 698 // TLI with an unknown target otherwise. 699 Triple TargetTriple(TheModule->getTargetTriple()); 700 std::unique_ptr<TargetLibraryInfoImpl> TLII( 701 createTLII(TargetTriple, CodeGenOpts)); 702 703 // If we reached here with a non-empty index file name, then the index file 704 // was empty and we are not performing ThinLTO backend compilation (used in 705 // testing in a distributed build environment). Drop any the type test 706 // assume sequences inserted for whole program vtables so that codegen doesn't 707 // complain. 708 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 709 MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr, 710 /*ImportSummary=*/nullptr, 711 /*DropTypeTests=*/true)); 712 713 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 714 715 // At O0 and O1 we only run the always inliner which is more efficient. At 716 // higher optimization levels we run the normal inliner. 717 if (CodeGenOpts.OptimizationLevel <= 1) { 718 bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 && 719 !CodeGenOpts.DisableLifetimeMarkers) || 720 LangOpts.Coroutines); 721 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 722 } else { 723 // We do not want to inline hot callsites for SamplePGO module-summary build 724 // because profile annotation will happen again in ThinLTO backend, and we 725 // want the IR of the hot path to match the profile. 726 PMBuilder.Inliner = createFunctionInliningPass( 727 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 728 (!CodeGenOpts.SampleProfileFile.empty() && 729 CodeGenOpts.PrepareForThinLTO)); 730 } 731 732 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 733 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 734 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 735 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 736 // Only enable CGProfilePass when using integrated assembler, since 737 // non-integrated assemblers don't recognize .cgprofile section. 738 PMBuilder.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 739 740 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 741 // Loop interleaving in the loop vectorizer has historically been set to be 742 // enabled when loop unrolling is enabled. 743 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 744 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 745 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 746 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 747 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 748 749 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 750 751 if (TM) 752 TM->adjustPassManager(PMBuilder); 753 754 if (CodeGenOpts.DebugInfoForProfiling || 755 !CodeGenOpts.SampleProfileFile.empty()) 756 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 757 addAddDiscriminatorsPass); 758 759 // In ObjC ARC mode, add the main ARC optimization passes. 760 if (LangOpts.ObjCAutoRefCount) { 761 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 762 addObjCARCExpandPass); 763 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 764 addObjCARCAPElimPass); 765 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 766 addObjCARCOptPass); 767 } 768 769 if (LangOpts.Coroutines) 770 addCoroutinePassesToExtensionPoints(PMBuilder); 771 772 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 773 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 774 addMemProfilerPasses); 775 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 776 addMemProfilerPasses); 777 } 778 779 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 780 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 781 addBoundsCheckingPass); 782 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 783 addBoundsCheckingPass); 784 } 785 786 if (CodeGenOpts.hasSanitizeCoverage()) { 787 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 788 addSanitizerCoveragePass); 789 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 790 addSanitizerCoveragePass); 791 } 792 793 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 794 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 795 addAddressSanitizerPasses); 796 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 797 addAddressSanitizerPasses); 798 } 799 800 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 801 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 802 addKernelAddressSanitizerPasses); 803 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 804 addKernelAddressSanitizerPasses); 805 } 806 807 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 808 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 809 addHWAddressSanitizerPasses); 810 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 811 addHWAddressSanitizerPasses); 812 } 813 814 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 815 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 816 addKernelHWAddressSanitizerPasses); 817 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 818 addKernelHWAddressSanitizerPasses); 819 } 820 821 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 822 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 823 addMemorySanitizerPass); 824 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 825 addMemorySanitizerPass); 826 } 827 828 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 829 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 830 addKernelMemorySanitizerPass); 831 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 832 addKernelMemorySanitizerPass); 833 } 834 835 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 836 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 837 addThreadSanitizerPass); 838 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 839 addThreadSanitizerPass); 840 } 841 842 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 843 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 844 addDataFlowSanitizerPass); 845 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 846 addDataFlowSanitizerPass); 847 } 848 849 if (CodeGenOpts.InstrumentFunctions || 850 CodeGenOpts.InstrumentFunctionEntryBare || 851 CodeGenOpts.InstrumentFunctionsAfterInlining || 852 CodeGenOpts.InstrumentForProfiling) { 853 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 854 addEntryExitInstrumentationPass); 855 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 856 addEntryExitInstrumentationPass); 857 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 858 addPostInlineEntryExitInstrumentationPass); 859 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 860 addPostInlineEntryExitInstrumentationPass); 861 } 862 863 // Set up the per-function pass manager. 864 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 865 if (CodeGenOpts.VerifyModule) 866 FPM.add(createVerifierPass()); 867 868 // Set up the per-module pass manager. 869 if (!CodeGenOpts.RewriteMapFiles.empty()) 870 addSymbolRewriterPass(CodeGenOpts, &MPM); 871 872 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) { 873 MPM.add(createGCOVProfilerPass(*Options)); 874 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 875 MPM.add(createStripSymbolsPass(true)); 876 } 877 878 if (Optional<InstrProfOptions> Options = 879 getInstrProfOptions(CodeGenOpts, LangOpts)) 880 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 881 882 bool hasIRInstr = false; 883 if (CodeGenOpts.hasProfileIRInstr()) { 884 PMBuilder.EnablePGOInstrGen = true; 885 hasIRInstr = true; 886 } 887 if (CodeGenOpts.hasProfileCSIRInstr()) { 888 assert(!CodeGenOpts.hasProfileCSIRUse() && 889 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 890 "same time"); 891 assert(!hasIRInstr && 892 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 893 "same time"); 894 PMBuilder.EnablePGOCSInstrGen = true; 895 hasIRInstr = true; 896 } 897 if (hasIRInstr) { 898 if (!CodeGenOpts.InstrProfileOutput.empty()) 899 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 900 else 901 PMBuilder.PGOInstrGen = getDefaultProfileGenName(); 902 } 903 if (CodeGenOpts.hasProfileIRUse()) { 904 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 905 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 906 } 907 908 if (!CodeGenOpts.SampleProfileFile.empty()) 909 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 910 911 PMBuilder.populateFunctionPassManager(FPM); 912 PMBuilder.populateModulePassManager(MPM); 913 } 914 915 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 916 SmallVector<const char *, 16> BackendArgs; 917 BackendArgs.push_back("clang"); // Fake program name. 918 if (!CodeGenOpts.DebugPass.empty()) { 919 BackendArgs.push_back("-debug-pass"); 920 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 921 } 922 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 923 BackendArgs.push_back("-limit-float-precision"); 924 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 925 } 926 // Check for the default "clang" invocation that won't set any cl::opt values. 927 // Skip trying to parse the command line invocation to avoid the issues 928 // described below. 929 if (BackendArgs.size() == 1) 930 return; 931 BackendArgs.push_back(nullptr); 932 // FIXME: The command line parser below is not thread-safe and shares a global 933 // state, so this call might crash or overwrite the options of another Clang 934 // instance in the same process. 935 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 936 BackendArgs.data()); 937 } 938 939 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 940 // Create the TargetMachine for generating code. 941 std::string Error; 942 std::string Triple = TheModule->getTargetTriple(); 943 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 944 if (!TheTarget) { 945 if (MustCreateTM) 946 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 947 return; 948 } 949 950 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 951 std::string FeaturesStr = 952 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 953 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 954 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 955 956 llvm::TargetOptions Options; 957 if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, 958 HSOpts)) 959 return; 960 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 961 Options, RM, CM, OptLevel)); 962 } 963 964 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 965 BackendAction Action, 966 raw_pwrite_stream &OS, 967 raw_pwrite_stream *DwoOS) { 968 // Add LibraryInfo. 969 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 970 std::unique_ptr<TargetLibraryInfoImpl> TLII( 971 createTLII(TargetTriple, CodeGenOpts)); 972 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 973 974 // Normal mode, emit a .s or .o file by running the code generator. Note, 975 // this also adds codegenerator level optimization passes. 976 CodeGenFileType CGFT = getCodeGenFileType(Action); 977 978 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 979 // "codegen" passes so that it isn't run multiple times when there is 980 // inlining happening. 981 if (CodeGenOpts.OptimizationLevel > 0) 982 CodeGenPasses.add(createObjCARCContractPass()); 983 984 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 985 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 986 Diags.Report(diag::err_fe_unable_to_interface_with_target); 987 return false; 988 } 989 990 return true; 991 } 992 993 void EmitAssemblyHelper::EmitAssemblyWithLegacyPassManager( 994 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 995 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 996 997 setCommandLineOpts(CodeGenOpts); 998 999 bool UsesCodeGen = actionRequiresCodeGen(Action); 1000 CreateTargetMachine(UsesCodeGen); 1001 1002 if (UsesCodeGen && !TM) 1003 return; 1004 if (TM) 1005 TheModule->setDataLayout(TM->createDataLayout()); 1006 1007 DebugifyCustomPassManager PerModulePasses; 1008 DebugInfoPerPass DebugInfoBeforePass; 1009 if (CodeGenOpts.EnableDIPreservationVerify) { 1010 PerModulePasses.setDebugifyMode(DebugifyMode::OriginalDebugInfo); 1011 PerModulePasses.setDebugInfoBeforePass(DebugInfoBeforePass); 1012 1013 if (!CodeGenOpts.DIBugsReportFilePath.empty()) 1014 PerModulePasses.setOrigDIVerifyBugsReportFilePath( 1015 CodeGenOpts.DIBugsReportFilePath); 1016 } 1017 PerModulePasses.add( 1018 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1019 1020 legacy::FunctionPassManager PerFunctionPasses(TheModule); 1021 PerFunctionPasses.add( 1022 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1023 1024 CreatePasses(PerModulePasses, PerFunctionPasses); 1025 1026 // Add a verifier pass if requested. We don't have to do this if the action 1027 // requires code generation because there will already be a verifier pass in 1028 // the code-generation pipeline. 1029 if (!UsesCodeGen && CodeGenOpts.VerifyModule) 1030 PerModulePasses.add(createVerifierPass()); 1031 1032 legacy::PassManager CodeGenPasses; 1033 CodeGenPasses.add( 1034 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1035 1036 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1037 1038 switch (Action) { 1039 case Backend_EmitNothing: 1040 break; 1041 1042 case Backend_EmitBC: 1043 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1044 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1045 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1046 if (!ThinLinkOS) 1047 return; 1048 } 1049 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1050 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1051 CodeGenOpts.EnableSplitLTOUnit); 1052 PerModulePasses.add(createWriteThinLTOBitcodePass( 1053 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 1054 } else { 1055 // Emit a module summary by default for Regular LTO except for ld64 1056 // targets 1057 bool EmitLTOSummary = 1058 (CodeGenOpts.PrepareForLTO && 1059 !CodeGenOpts.DisableLLVMPasses && 1060 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1061 llvm::Triple::Apple); 1062 if (EmitLTOSummary) { 1063 if (!TheModule->getModuleFlag("ThinLTO")) 1064 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1065 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1066 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1067 uint32_t(1)); 1068 } 1069 1070 PerModulePasses.add(createBitcodeWriterPass( 1071 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1072 } 1073 break; 1074 1075 case Backend_EmitLL: 1076 PerModulePasses.add( 1077 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1078 break; 1079 1080 default: 1081 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1082 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1083 if (!DwoOS) 1084 return; 1085 } 1086 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1087 DwoOS ? &DwoOS->os() : nullptr)) 1088 return; 1089 } 1090 1091 // Before executing passes, print the final values of the LLVM options. 1092 cl::PrintOptionValues(); 1093 1094 // Run passes. For now we do all passes at once, but eventually we 1095 // would like to have the option of streaming code generation. 1096 1097 { 1098 PrettyStackTraceString CrashInfo("Per-function optimization"); 1099 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 1100 1101 PerFunctionPasses.doInitialization(); 1102 for (Function &F : *TheModule) 1103 if (!F.isDeclaration()) 1104 PerFunctionPasses.run(F); 1105 PerFunctionPasses.doFinalization(); 1106 } 1107 1108 { 1109 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 1110 llvm::TimeTraceScope TimeScope("PerModulePasses"); 1111 PerModulePasses.run(*TheModule); 1112 } 1113 1114 { 1115 PrettyStackTraceString CrashInfo("Code generation"); 1116 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1117 CodeGenPasses.run(*TheModule); 1118 } 1119 1120 if (ThinLinkOS) 1121 ThinLinkOS->keep(); 1122 if (DwoOS) 1123 DwoOS->keep(); 1124 } 1125 1126 static OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 1127 switch (Opts.OptimizationLevel) { 1128 default: 1129 llvm_unreachable("Invalid optimization level!"); 1130 1131 case 0: 1132 return OptimizationLevel::O0; 1133 1134 case 1: 1135 return OptimizationLevel::O1; 1136 1137 case 2: 1138 switch (Opts.OptimizeSize) { 1139 default: 1140 llvm_unreachable("Invalid optimization level for size!"); 1141 1142 case 0: 1143 return OptimizationLevel::O2; 1144 1145 case 1: 1146 return OptimizationLevel::Os; 1147 1148 case 2: 1149 return OptimizationLevel::Oz; 1150 } 1151 1152 case 3: 1153 return OptimizationLevel::O3; 1154 } 1155 } 1156 1157 static void addSanitizers(const Triple &TargetTriple, 1158 const CodeGenOptions &CodeGenOpts, 1159 const LangOptions &LangOpts, PassBuilder &PB) { 1160 PB.registerOptimizerLastEPCallback([&](ModulePassManager &MPM, 1161 OptimizationLevel Level) { 1162 if (CodeGenOpts.hasSanitizeCoverage()) { 1163 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1164 MPM.addPass(ModuleSanitizerCoveragePass( 1165 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1166 CodeGenOpts.SanitizeCoverageIgnorelistFiles)); 1167 } 1168 1169 auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1170 if (LangOpts.Sanitize.has(Mask)) { 1171 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1172 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1173 1174 MemorySanitizerOptions options(TrackOrigins, Recover, CompileKernel, 1175 CodeGenOpts.SanitizeMemoryParamRetval); 1176 MPM.addPass(ModuleMemorySanitizerPass(options)); 1177 FunctionPassManager FPM; 1178 FPM.addPass(MemorySanitizerPass(options)); 1179 if (Level != OptimizationLevel::O0) { 1180 // MemorySanitizer inserts complex instrumentation that mostly 1181 // follows the logic of the original code, but operates on 1182 // "shadow" values. It can benefit from re-running some 1183 // general purpose optimization passes. 1184 FPM.addPass(EarlyCSEPass()); 1185 // TODO: Consider add more passes like in 1186 // addGeneralOptsForMemorySanitizer. EarlyCSEPass makes visible 1187 // difference on size. It's not clear if the rest is still 1188 // usefull. InstCombinePass breakes 1189 // compiler-rt/test/msan/select_origin.cpp. 1190 } 1191 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 1192 } 1193 }; 1194 MSanPass(SanitizerKind::Memory, false); 1195 MSanPass(SanitizerKind::KernelMemory, true); 1196 1197 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1198 MPM.addPass(ModuleThreadSanitizerPass()); 1199 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1200 } 1201 1202 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1203 if (LangOpts.Sanitize.has(Mask)) { 1204 bool UseGlobalGC = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1205 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1206 llvm::AsanDtorKind DestructorKind = 1207 CodeGenOpts.getSanitizeAddressDtor(); 1208 AddressSanitizerOptions Opts; 1209 Opts.CompileKernel = CompileKernel; 1210 Opts.Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1211 Opts.UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1212 Opts.UseAfterReturn = CodeGenOpts.getSanitizeAddressUseAfterReturn(); 1213 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1214 MPM.addPass(ModuleAddressSanitizerPass( 1215 Opts, UseGlobalGC, UseOdrIndicator, DestructorKind)); 1216 } 1217 }; 1218 ASanPass(SanitizerKind::Address, false); 1219 ASanPass(SanitizerKind::KernelAddress, true); 1220 1221 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1222 if (LangOpts.Sanitize.has(Mask)) { 1223 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1224 MPM.addPass(HWAddressSanitizerPass( 1225 {CompileKernel, Recover, 1226 /*DisableOptimization=*/CodeGenOpts.OptimizationLevel == 0})); 1227 } 1228 }; 1229 HWASanPass(SanitizerKind::HWAddress, false); 1230 HWASanPass(SanitizerKind::KernelHWAddress, true); 1231 1232 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 1233 MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles)); 1234 } 1235 }); 1236 } 1237 1238 void EmitAssemblyHelper::RunOptimizationPipeline( 1239 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 1240 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS) { 1241 Optional<PGOOptions> PGOOpt; 1242 1243 if (CodeGenOpts.hasProfileIRInstr()) 1244 // -fprofile-generate. 1245 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1246 ? getDefaultProfileGenName() 1247 : CodeGenOpts.InstrProfileOutput, 1248 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1249 CodeGenOpts.DebugInfoForProfiling); 1250 else if (CodeGenOpts.hasProfileIRUse()) { 1251 // -fprofile-use. 1252 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1253 : PGOOptions::NoCSAction; 1254 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1255 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1256 CSAction, CodeGenOpts.DebugInfoForProfiling); 1257 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1258 // -fprofile-sample-use 1259 PGOOpt = PGOOptions( 1260 CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile, 1261 PGOOptions::SampleUse, PGOOptions::NoCSAction, 1262 CodeGenOpts.DebugInfoForProfiling, CodeGenOpts.PseudoProbeForProfiling); 1263 else if (CodeGenOpts.PseudoProbeForProfiling) 1264 // -fpseudo-probe-for-profiling 1265 PGOOpt = 1266 PGOOptions("", "", "", PGOOptions::NoAction, PGOOptions::NoCSAction, 1267 CodeGenOpts.DebugInfoForProfiling, true); 1268 else if (CodeGenOpts.DebugInfoForProfiling) 1269 // -fdebug-info-for-profiling 1270 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1271 PGOOptions::NoCSAction, true); 1272 1273 // Check to see if we want to generate a CS profile. 1274 if (CodeGenOpts.hasProfileCSIRInstr()) { 1275 assert(!CodeGenOpts.hasProfileCSIRUse() && 1276 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1277 "the same time"); 1278 if (PGOOpt.hasValue()) { 1279 assert(PGOOpt->Action != PGOOptions::IRInstr && 1280 PGOOpt->Action != PGOOptions::SampleUse && 1281 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1282 " pass"); 1283 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1284 ? getDefaultProfileGenName() 1285 : CodeGenOpts.InstrProfileOutput; 1286 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1287 } else 1288 PGOOpt = PGOOptions("", 1289 CodeGenOpts.InstrProfileOutput.empty() 1290 ? getDefaultProfileGenName() 1291 : CodeGenOpts.InstrProfileOutput, 1292 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1293 CodeGenOpts.DebugInfoForProfiling); 1294 } 1295 if (TM) 1296 TM->setPGOOption(PGOOpt); 1297 1298 PipelineTuningOptions PTO; 1299 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1300 // For historical reasons, loop interleaving is set to mirror setting for loop 1301 // unrolling. 1302 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1303 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1304 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1305 PTO.MergeFunctions = CodeGenOpts.MergeFunctions; 1306 // Only enable CGProfilePass when using integrated assembler, since 1307 // non-integrated assemblers don't recognize .cgprofile section. 1308 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 1309 1310 LoopAnalysisManager LAM; 1311 FunctionAnalysisManager FAM; 1312 CGSCCAnalysisManager CGAM; 1313 ModuleAnalysisManager MAM; 1314 1315 bool DebugPassStructure = CodeGenOpts.DebugPass == "Structure"; 1316 PassInstrumentationCallbacks PIC; 1317 PrintPassOptions PrintPassOpts; 1318 PrintPassOpts.Indent = DebugPassStructure; 1319 PrintPassOpts.SkipAnalyses = DebugPassStructure; 1320 StandardInstrumentations SI(CodeGenOpts.DebugPassManager || 1321 DebugPassStructure, 1322 /*VerifyEach*/ false, PrintPassOpts); 1323 SI.registerCallbacks(PIC, &FAM); 1324 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 1325 1326 // Attempt to load pass plugins and register their callbacks with PB. 1327 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1328 auto PassPlugin = PassPlugin::Load(PluginFN); 1329 if (PassPlugin) { 1330 PassPlugin->registerPassBuilderCallbacks(PB); 1331 } else { 1332 Diags.Report(diag::err_fe_unable_to_load_plugin) 1333 << PluginFN << toString(PassPlugin.takeError()); 1334 } 1335 } 1336 #define HANDLE_EXTENSION(Ext) \ 1337 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 1338 #include "llvm/Support/Extension.def" 1339 1340 // Register the target library analysis directly and give it a customized 1341 // preset TLI. 1342 Triple TargetTriple(TheModule->getTargetTriple()); 1343 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1344 createTLII(TargetTriple, CodeGenOpts)); 1345 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1346 1347 // Register all the basic analyses with the managers. 1348 PB.registerModuleAnalyses(MAM); 1349 PB.registerCGSCCAnalyses(CGAM); 1350 PB.registerFunctionAnalyses(FAM); 1351 PB.registerLoopAnalyses(LAM); 1352 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1353 1354 ModulePassManager MPM; 1355 1356 if (!CodeGenOpts.DisableLLVMPasses) { 1357 // Map our optimization levels into one of the distinct levels used to 1358 // configure the pipeline. 1359 OptimizationLevel Level = mapToLevel(CodeGenOpts); 1360 1361 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1362 bool IsLTO = CodeGenOpts.PrepareForLTO; 1363 1364 if (LangOpts.ObjCAutoRefCount) { 1365 PB.registerPipelineStartEPCallback( 1366 [](ModulePassManager &MPM, OptimizationLevel Level) { 1367 if (Level != OptimizationLevel::O0) 1368 MPM.addPass( 1369 createModuleToFunctionPassAdaptor(ObjCARCExpandPass())); 1370 }); 1371 PB.registerPipelineEarlySimplificationEPCallback( 1372 [](ModulePassManager &MPM, OptimizationLevel Level) { 1373 if (Level != OptimizationLevel::O0) 1374 MPM.addPass(ObjCARCAPElimPass()); 1375 }); 1376 PB.registerScalarOptimizerLateEPCallback( 1377 [](FunctionPassManager &FPM, OptimizationLevel Level) { 1378 if (Level != OptimizationLevel::O0) 1379 FPM.addPass(ObjCARCOptPass()); 1380 }); 1381 } 1382 1383 // If we reached here with a non-empty index file name, then the index 1384 // file was empty and we are not performing ThinLTO backend compilation 1385 // (used in testing in a distributed build environment). 1386 bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty(); 1387 // If so drop any the type test assume sequences inserted for whole program 1388 // vtables so that codegen doesn't complain. 1389 if (IsThinLTOPostLink) 1390 PB.registerPipelineStartEPCallback( 1391 [](ModulePassManager &MPM, OptimizationLevel Level) { 1392 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1393 /*ImportSummary=*/nullptr, 1394 /*DropTypeTests=*/true)); 1395 }); 1396 1397 if (CodeGenOpts.InstrumentFunctions || 1398 CodeGenOpts.InstrumentFunctionEntryBare || 1399 CodeGenOpts.InstrumentFunctionsAfterInlining || 1400 CodeGenOpts.InstrumentForProfiling) { 1401 PB.registerPipelineStartEPCallback( 1402 [](ModulePassManager &MPM, OptimizationLevel Level) { 1403 MPM.addPass(createModuleToFunctionPassAdaptor( 1404 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1405 }); 1406 PB.registerOptimizerLastEPCallback( 1407 [](ModulePassManager &MPM, OptimizationLevel Level) { 1408 MPM.addPass(createModuleToFunctionPassAdaptor( 1409 EntryExitInstrumenterPass(/*PostInlining=*/true))); 1410 }); 1411 } 1412 1413 // Register callbacks to schedule sanitizer passes at the appropriate part 1414 // of the pipeline. 1415 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1416 PB.registerScalarOptimizerLateEPCallback( 1417 [](FunctionPassManager &FPM, OptimizationLevel Level) { 1418 FPM.addPass(BoundsCheckingPass()); 1419 }); 1420 1421 // Don't add sanitizers if we are here from ThinLTO PostLink. That already 1422 // done on PreLink stage. 1423 if (!IsThinLTOPostLink) 1424 addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB); 1425 1426 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) 1427 PB.registerPipelineStartEPCallback( 1428 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 1429 MPM.addPass(GCOVProfilerPass(*Options)); 1430 }); 1431 if (Optional<InstrProfOptions> Options = 1432 getInstrProfOptions(CodeGenOpts, LangOpts)) 1433 PB.registerPipelineStartEPCallback( 1434 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 1435 MPM.addPass(InstrProfiling(*Options, false)); 1436 }); 1437 1438 if (CodeGenOpts.OptimizationLevel == 0) { 1439 MPM = PB.buildO0DefaultPipeline(Level, IsLTO || IsThinLTO); 1440 } else if (IsThinLTO) { 1441 MPM = PB.buildThinLTOPreLinkDefaultPipeline(Level); 1442 } else if (IsLTO) { 1443 MPM = PB.buildLTOPreLinkDefaultPipeline(Level); 1444 } else { 1445 MPM = PB.buildPerModuleDefaultPipeline(Level); 1446 } 1447 1448 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1449 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass())); 1450 MPM.addPass(ModuleMemProfilerPass()); 1451 } 1452 } 1453 1454 // Add a verifier pass if requested. We don't have to do this if the action 1455 // requires code generation because there will already be a verifier pass in 1456 // the code-generation pipeline. 1457 if (!actionRequiresCodeGen(Action) && CodeGenOpts.VerifyModule) 1458 MPM.addPass(VerifierPass()); 1459 1460 switch (Action) { 1461 case Backend_EmitBC: 1462 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1463 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1464 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1465 if (!ThinLinkOS) 1466 return; 1467 } 1468 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1469 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1470 CodeGenOpts.EnableSplitLTOUnit); 1471 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1472 : nullptr)); 1473 } else { 1474 // Emit a module summary by default for Regular LTO except for ld64 1475 // targets 1476 bool EmitLTOSummary = 1477 (CodeGenOpts.PrepareForLTO && !CodeGenOpts.DisableLLVMPasses && 1478 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1479 llvm::Triple::Apple); 1480 if (EmitLTOSummary) { 1481 if (!TheModule->getModuleFlag("ThinLTO")) 1482 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1483 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1484 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1485 uint32_t(1)); 1486 } 1487 MPM.addPass( 1488 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1489 } 1490 break; 1491 1492 case Backend_EmitLL: 1493 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1494 break; 1495 1496 default: 1497 break; 1498 } 1499 1500 // Now that we have all of the passes ready, run them. 1501 { 1502 PrettyStackTraceString CrashInfo("Optimizer"); 1503 llvm::TimeTraceScope TimeScope("Optimizer"); 1504 MPM.run(*TheModule, MAM); 1505 } 1506 } 1507 1508 void EmitAssemblyHelper::RunCodegenPipeline( 1509 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 1510 std::unique_ptr<llvm::ToolOutputFile> &DwoOS) { 1511 // We still use the legacy PM to run the codegen pipeline since the new PM 1512 // does not work with the codegen pipeline. 1513 // FIXME: make the new PM work with the codegen pipeline. 1514 legacy::PassManager CodeGenPasses; 1515 1516 // Append any output we need to the pass manager. 1517 switch (Action) { 1518 case Backend_EmitAssembly: 1519 case Backend_EmitMCNull: 1520 case Backend_EmitObj: 1521 CodeGenPasses.add( 1522 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1523 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1524 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1525 if (!DwoOS) 1526 return; 1527 } 1528 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1529 DwoOS ? &DwoOS->os() : nullptr)) 1530 // FIXME: Should we handle this error differently? 1531 return; 1532 break; 1533 default: 1534 return; 1535 } 1536 1537 { 1538 PrettyStackTraceString CrashInfo("Code generation"); 1539 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1540 CodeGenPasses.run(*TheModule); 1541 } 1542 } 1543 1544 /// A clean version of `EmitAssembly` that uses the new pass manager. 1545 /// 1546 /// Not all features are currently supported in this system, but where 1547 /// necessary it falls back to the legacy pass manager to at least provide 1548 /// basic functionality. 1549 /// 1550 /// This API is planned to have its functionality finished and then to replace 1551 /// `EmitAssembly` at some point in the future when the default switches. 1552 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 1553 std::unique_ptr<raw_pwrite_stream> OS) { 1554 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 1555 setCommandLineOpts(CodeGenOpts); 1556 1557 bool RequiresCodeGen = actionRequiresCodeGen(Action); 1558 CreateTargetMachine(RequiresCodeGen); 1559 1560 if (RequiresCodeGen && !TM) 1561 return; 1562 if (TM) 1563 TheModule->setDataLayout(TM->createDataLayout()); 1564 1565 // Before executing passes, print the final values of the LLVM options. 1566 cl::PrintOptionValues(); 1567 1568 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1569 RunOptimizationPipeline(Action, OS, ThinLinkOS); 1570 RunCodegenPipeline(Action, OS, DwoOS); 1571 1572 if (ThinLinkOS) 1573 ThinLinkOS->keep(); 1574 if (DwoOS) 1575 DwoOS->keep(); 1576 } 1577 1578 static void runThinLTOBackend( 1579 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M, 1580 const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, 1581 const clang::TargetOptions &TOpts, const LangOptions &LOpts, 1582 std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile, 1583 std::string ProfileRemapping, BackendAction Action) { 1584 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1585 ModuleToDefinedGVSummaries; 1586 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1587 1588 setCommandLineOpts(CGOpts); 1589 1590 // We can simply import the values mentioned in the combined index, since 1591 // we should only invoke this using the individual indexes written out 1592 // via a WriteIndexesThinBackend. 1593 FunctionImporter::ImportMapTy ImportList; 1594 if (!lto::initImportList(*M, *CombinedIndex, ImportList)) 1595 return; 1596 1597 auto AddStream = [&](size_t Task) { 1598 return std::make_unique<CachedFileStream>(std::move(OS), 1599 CGOpts.ObjectFilenameForDebug); 1600 }; 1601 lto::Config Conf; 1602 if (CGOpts.SaveTempsFilePrefix != "") { 1603 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1604 /* UseInputModulePath */ false)) { 1605 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1606 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1607 << '\n'; 1608 }); 1609 } 1610 } 1611 Conf.CPU = TOpts.CPU; 1612 Conf.CodeModel = getCodeModel(CGOpts); 1613 Conf.MAttrs = TOpts.Features; 1614 Conf.RelocModel = CGOpts.RelocationModel; 1615 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1616 Conf.OptLevel = CGOpts.OptimizationLevel; 1617 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1618 Conf.SampleProfile = std::move(SampleProfile); 1619 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1620 // For historical reasons, loop interleaving is set to mirror setting for loop 1621 // unrolling. 1622 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1623 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1624 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1625 // Only enable CGProfilePass when using integrated assembler, since 1626 // non-integrated assemblers don't recognize .cgprofile section. 1627 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1628 1629 // Context sensitive profile. 1630 if (CGOpts.hasProfileCSIRInstr()) { 1631 Conf.RunCSIRInstr = true; 1632 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1633 } else if (CGOpts.hasProfileCSIRUse()) { 1634 Conf.RunCSIRInstr = false; 1635 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1636 } 1637 1638 Conf.ProfileRemapping = std::move(ProfileRemapping); 1639 Conf.UseNewPM = !CGOpts.LegacyPassManager; 1640 Conf.DebugPassManager = CGOpts.DebugPassManager; 1641 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1642 Conf.RemarksFilename = CGOpts.OptRecordFile; 1643 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1644 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1645 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1646 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1647 switch (Action) { 1648 case Backend_EmitNothing: 1649 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1650 return false; 1651 }; 1652 break; 1653 case Backend_EmitLL: 1654 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1655 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1656 return false; 1657 }; 1658 break; 1659 case Backend_EmitBC: 1660 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1661 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1662 return false; 1663 }; 1664 break; 1665 default: 1666 Conf.CGFileType = getCodeGenFileType(Action); 1667 break; 1668 } 1669 if (Error E = 1670 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1671 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], 1672 /* ModuleMap */ nullptr, CGOpts.CmdArgs)) { 1673 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1674 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1675 }); 1676 } 1677 } 1678 1679 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1680 const HeaderSearchOptions &HeaderOpts, 1681 const CodeGenOptions &CGOpts, 1682 const clang::TargetOptions &TOpts, 1683 const LangOptions &LOpts, 1684 StringRef TDesc, Module *M, 1685 BackendAction Action, 1686 std::unique_ptr<raw_pwrite_stream> OS) { 1687 1688 llvm::TimeTraceScope TimeScope("Backend"); 1689 1690 std::unique_ptr<llvm::Module> EmptyModule; 1691 if (!CGOpts.ThinLTOIndexFile.empty()) { 1692 // If we are performing a ThinLTO importing compile, load the function index 1693 // into memory and pass it into runThinLTOBackend, which will run the 1694 // function importer and invoke LTO passes. 1695 std::unique_ptr<ModuleSummaryIndex> CombinedIndex; 1696 if (Error E = llvm::getModuleSummaryIndexForFile( 1697 CGOpts.ThinLTOIndexFile, 1698 /*IgnoreEmptyThinLTOIndexFile*/ true) 1699 .moveInto(CombinedIndex)) { 1700 logAllUnhandledErrors(std::move(E), errs(), 1701 "Error loading index file '" + 1702 CGOpts.ThinLTOIndexFile + "': "); 1703 return; 1704 } 1705 1706 // A null CombinedIndex means we should skip ThinLTO compilation 1707 // (LLVM will optionally ignore empty index files, returning null instead 1708 // of an error). 1709 if (CombinedIndex) { 1710 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1711 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, 1712 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, 1713 CGOpts.ProfileRemappingFile, Action); 1714 return; 1715 } 1716 // Distributed indexing detected that nothing from the module is needed 1717 // for the final linking. So we can skip the compilation. We sill need to 1718 // output an empty object file to make sure that a linker does not fail 1719 // trying to read it. Also for some features, like CFI, we must skip 1720 // the compilation as CombinedIndex does not contain all required 1721 // information. 1722 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1723 EmptyModule->setTargetTriple(M->getTargetTriple()); 1724 M = EmptyModule.get(); 1725 } 1726 } 1727 1728 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1729 1730 if (CGOpts.LegacyPassManager) 1731 AsmHelper.EmitAssemblyWithLegacyPassManager(Action, std::move(OS)); 1732 else 1733 AsmHelper.EmitAssembly(Action, std::move(OS)); 1734 1735 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1736 // DataLayout. 1737 if (AsmHelper.TM) { 1738 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1739 if (DLDesc != TDesc) { 1740 unsigned DiagID = Diags.getCustomDiagID( 1741 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1742 "expected target description '%1'"); 1743 Diags.Report(DiagID) << DLDesc << TDesc; 1744 } 1745 } 1746 } 1747 1748 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1749 // __LLVM,__bitcode section. 1750 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1751 llvm::MemoryBufferRef Buf) { 1752 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1753 return; 1754 llvm::embedBitcodeInModule( 1755 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1756 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1757 CGOpts.CmdArgs); 1758 } 1759 1760 void clang::EmbedObject(llvm::Module *M, const CodeGenOptions &CGOpts, 1761 DiagnosticsEngine &Diags) { 1762 if (CGOpts.OffloadObjects.empty()) 1763 return; 1764 1765 for (StringRef OffloadObject : CGOpts.OffloadObjects) { 1766 if (OffloadObject.count(',') != 1) 1767 Diags.Report(Diags.getCustomDiagID( 1768 DiagnosticsEngine::Error, "Invalid string pair for embedding '%0'")) 1769 << OffloadObject; 1770 auto FilenameAndSection = OffloadObject.split(','); 1771 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> ObjectOrErr = 1772 llvm::MemoryBuffer::getFileOrSTDIN(FilenameAndSection.first); 1773 if (std::error_code EC = ObjectOrErr.getError()) { 1774 auto DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 1775 "could not open '%0' for embedding"); 1776 Diags.Report(DiagID) << FilenameAndSection.first; 1777 return; 1778 } 1779 1780 SmallString<128> SectionName( 1781 {".llvm.offloading.", FilenameAndSection.second}); 1782 llvm::embedBufferInModule(*M, **ObjectOrErr, SectionName); 1783 } 1784 } 1785