1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/Analysis/TargetLibraryInfo.h" 19 #include "llvm/Analysis/TargetTransformInfo.h" 20 #include "llvm/Bitcode/BitcodeWriterPass.h" 21 #include "llvm/CodeGen/RegAllocRegistry.h" 22 #include "llvm/CodeGen/SchedulerRegistry.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/IRPrintingPasses.h" 25 #include "llvm/IR/LegacyPassManager.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/IR/Verifier.h" 28 #include "llvm/MC/SubtargetFeature.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/PrettyStackTrace.h" 31 #include "llvm/Support/TargetRegistry.h" 32 #include "llvm/Support/Timer.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include "llvm/Target/TargetOptions.h" 36 #include "llvm/Target/TargetSubtargetInfo.h" 37 #include "llvm/Transforms/IPO.h" 38 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 39 #include "llvm/Transforms/Instrumentation.h" 40 #include "llvm/Transforms/ObjCARC.h" 41 #include "llvm/Transforms/Scalar.h" 42 #include "llvm/Transforms/Utils/SymbolRewriter.h" 43 #include <memory> 44 using namespace clang; 45 using namespace llvm; 46 47 namespace { 48 49 class EmitAssemblyHelper { 50 DiagnosticsEngine &Diags; 51 const CodeGenOptions &CodeGenOpts; 52 const clang::TargetOptions &TargetOpts; 53 const LangOptions &LangOpts; 54 Module *TheModule; 55 56 Timer CodeGenerationTime; 57 58 mutable legacy::PassManager *CodeGenPasses; 59 mutable legacy::PassManager *PerModulePasses; 60 mutable legacy::FunctionPassManager *PerFunctionPasses; 61 62 private: 63 TargetIRAnalysis getTargetIRAnalysis() const { 64 if (TM) 65 return TM->getTargetIRAnalysis(); 66 67 return TargetIRAnalysis(); 68 } 69 70 legacy::PassManager *getCodeGenPasses() const { 71 if (!CodeGenPasses) { 72 CodeGenPasses = new legacy::PassManager(); 73 CodeGenPasses->add( 74 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 75 } 76 return CodeGenPasses; 77 } 78 79 legacy::PassManager *getPerModulePasses() const { 80 if (!PerModulePasses) { 81 PerModulePasses = new legacy::PassManager(); 82 PerModulePasses->add( 83 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 84 } 85 return PerModulePasses; 86 } 87 88 legacy::FunctionPassManager *getPerFunctionPasses() const { 89 if (!PerFunctionPasses) { 90 PerFunctionPasses = new legacy::FunctionPassManager(TheModule); 91 PerFunctionPasses->add( 92 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 93 } 94 return PerFunctionPasses; 95 } 96 97 void CreatePasses(); 98 99 /// Generates the TargetMachine. 100 /// Returns Null if it is unable to create the target machine. 101 /// Some of our clang tests specify triples which are not built 102 /// into clang. This is okay because these tests check the generated 103 /// IR, and they require DataLayout which depends on the triple. 104 /// In this case, we allow this method to fail and not report an error. 105 /// When MustCreateTM is used, we print an error if we are unable to load 106 /// the requested target. 107 TargetMachine *CreateTargetMachine(bool MustCreateTM); 108 109 /// Add passes necessary to emit assembly or LLVM IR. 110 /// 111 /// \return True on success. 112 bool AddEmitPasses(BackendAction Action, raw_pwrite_stream &OS); 113 114 public: 115 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 116 const CodeGenOptions &CGOpts, 117 const clang::TargetOptions &TOpts, 118 const LangOptions &LOpts, 119 Module *M) 120 : Diags(_Diags), CodeGenOpts(CGOpts), TargetOpts(TOpts), LangOpts(LOpts), 121 TheModule(M), CodeGenerationTime("Code Generation Time"), 122 CodeGenPasses(nullptr), PerModulePasses(nullptr), 123 PerFunctionPasses(nullptr) {} 124 125 ~EmitAssemblyHelper() { 126 delete CodeGenPasses; 127 delete PerModulePasses; 128 delete PerFunctionPasses; 129 if (CodeGenOpts.DisableFree) 130 BuryPointer(std::move(TM)); 131 } 132 133 std::unique_ptr<TargetMachine> TM; 134 135 void EmitAssembly(BackendAction Action, raw_pwrite_stream *OS); 136 }; 137 138 // We need this wrapper to access LangOpts and CGOpts from extension functions 139 // that we add to the PassManagerBuilder. 140 class PassManagerBuilderWrapper : public PassManagerBuilder { 141 public: 142 PassManagerBuilderWrapper(const CodeGenOptions &CGOpts, 143 const LangOptions &LangOpts) 144 : PassManagerBuilder(), CGOpts(CGOpts), LangOpts(LangOpts) {} 145 const CodeGenOptions &getCGOpts() const { return CGOpts; } 146 const LangOptions &getLangOpts() const { return LangOpts; } 147 private: 148 const CodeGenOptions &CGOpts; 149 const LangOptions &LangOpts; 150 }; 151 152 } 153 154 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 155 if (Builder.OptLevel > 0) 156 PM.add(createObjCARCAPElimPass()); 157 } 158 159 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 160 if (Builder.OptLevel > 0) 161 PM.add(createObjCARCExpandPass()); 162 } 163 164 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 165 if (Builder.OptLevel > 0) 166 PM.add(createObjCARCOptPass()); 167 } 168 169 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 170 legacy::PassManagerBase &PM) { 171 PM.add(createAddDiscriminatorsPass()); 172 } 173 174 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 175 legacy::PassManagerBase &PM) { 176 PM.add(createBoundsCheckingPass()); 177 } 178 179 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 180 legacy::PassManagerBase &PM) { 181 const PassManagerBuilderWrapper &BuilderWrapper = 182 static_cast<const PassManagerBuilderWrapper&>(Builder); 183 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 184 SanitizerCoverageOptions Opts; 185 Opts.CoverageType = 186 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 187 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 188 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 189 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 190 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 191 PM.add(createSanitizerCoverageModulePass(Opts)); 192 } 193 194 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 195 legacy::PassManagerBase &PM) { 196 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/false)); 197 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/false)); 198 } 199 200 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 201 legacy::PassManagerBase &PM) { 202 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/true)); 203 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/true)); 204 } 205 206 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 207 legacy::PassManagerBase &PM) { 208 const PassManagerBuilderWrapper &BuilderWrapper = 209 static_cast<const PassManagerBuilderWrapper&>(Builder); 210 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 211 PM.add(createMemorySanitizerPass(CGOpts.SanitizeMemoryTrackOrigins)); 212 213 // MemorySanitizer inserts complex instrumentation that mostly follows 214 // the logic of the original code, but operates on "shadow" values. 215 // It can benefit from re-running some general purpose optimization passes. 216 if (Builder.OptLevel > 0) { 217 PM.add(createEarlyCSEPass()); 218 PM.add(createReassociatePass()); 219 PM.add(createLICMPass()); 220 PM.add(createGVNPass()); 221 PM.add(createInstructionCombiningPass()); 222 PM.add(createDeadStoreEliminationPass()); 223 } 224 } 225 226 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 227 legacy::PassManagerBase &PM) { 228 PM.add(createThreadSanitizerPass()); 229 } 230 231 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 232 legacy::PassManagerBase &PM) { 233 const PassManagerBuilderWrapper &BuilderWrapper = 234 static_cast<const PassManagerBuilderWrapper&>(Builder); 235 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 236 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 237 } 238 239 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 240 const CodeGenOptions &CodeGenOpts) { 241 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 242 if (!CodeGenOpts.SimplifyLibCalls) 243 TLII->disableAllFunctions(); 244 245 switch (CodeGenOpts.getVecLib()) { 246 case CodeGenOptions::Accelerate: 247 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 248 break; 249 default: 250 break; 251 } 252 return TLII; 253 } 254 255 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 256 legacy::PassManager *MPM) { 257 llvm::SymbolRewriter::RewriteDescriptorList DL; 258 259 llvm::SymbolRewriter::RewriteMapParser MapParser; 260 for (const auto &MapFile : Opts.RewriteMapFiles) 261 MapParser.parse(MapFile, &DL); 262 263 MPM->add(createRewriteSymbolsPass(DL)); 264 } 265 266 void EmitAssemblyHelper::CreatePasses() { 267 if (CodeGenOpts.DisableLLVMPasses) 268 return; 269 270 unsigned OptLevel = CodeGenOpts.OptimizationLevel; 271 CodeGenOptions::InliningMethod Inlining = CodeGenOpts.getInlining(); 272 273 // Handle disabling of LLVM optimization, where we want to preserve the 274 // internal module before any optimization. 275 if (CodeGenOpts.DisableLLVMOpts) { 276 OptLevel = 0; 277 Inlining = CodeGenOpts.NoInlining; 278 } 279 280 PassManagerBuilderWrapper PMBuilder(CodeGenOpts, LangOpts); 281 PMBuilder.OptLevel = OptLevel; 282 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 283 PMBuilder.BBVectorize = CodeGenOpts.VectorizeBB; 284 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 285 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 286 287 PMBuilder.DisableUnitAtATime = !CodeGenOpts.UnitAtATime; 288 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 289 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 290 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 291 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 292 293 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 294 addAddDiscriminatorsPass); 295 296 // In ObjC ARC mode, add the main ARC optimization passes. 297 if (LangOpts.ObjCAutoRefCount) { 298 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 299 addObjCARCExpandPass); 300 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 301 addObjCARCAPElimPass); 302 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 303 addObjCARCOptPass); 304 } 305 306 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 307 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 308 addBoundsCheckingPass); 309 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 310 addBoundsCheckingPass); 311 } 312 313 if (CodeGenOpts.SanitizeCoverageType || 314 CodeGenOpts.SanitizeCoverageIndirectCalls || 315 CodeGenOpts.SanitizeCoverageTraceCmp) { 316 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 317 addSanitizerCoveragePass); 318 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 319 addSanitizerCoveragePass); 320 } 321 322 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 323 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 324 addAddressSanitizerPasses); 325 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 326 addAddressSanitizerPasses); 327 } 328 329 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 330 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 331 addKernelAddressSanitizerPasses); 332 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 333 addKernelAddressSanitizerPasses); 334 } 335 336 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 337 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 338 addMemorySanitizerPass); 339 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 340 addMemorySanitizerPass); 341 } 342 343 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 344 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 345 addThreadSanitizerPass); 346 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 347 addThreadSanitizerPass); 348 } 349 350 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 351 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 352 addDataFlowSanitizerPass); 353 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 354 addDataFlowSanitizerPass); 355 } 356 357 // Figure out TargetLibraryInfo. 358 Triple TargetTriple(TheModule->getTargetTriple()); 359 PMBuilder.LibraryInfo = createTLII(TargetTriple, CodeGenOpts); 360 361 switch (Inlining) { 362 case CodeGenOptions::NoInlining: break; 363 case CodeGenOptions::NormalInlining: { 364 PMBuilder.Inliner = 365 createFunctionInliningPass(OptLevel, CodeGenOpts.OptimizeSize); 366 break; 367 } 368 case CodeGenOptions::OnlyAlwaysInlining: 369 // Respect always_inline. 370 if (OptLevel == 0) 371 // Do not insert lifetime intrinsics at -O0. 372 PMBuilder.Inliner = createAlwaysInlinerPass(false); 373 else 374 PMBuilder.Inliner = createAlwaysInlinerPass(); 375 break; 376 } 377 378 // Set up the per-function pass manager. 379 legacy::FunctionPassManager *FPM = getPerFunctionPasses(); 380 if (CodeGenOpts.VerifyModule) 381 FPM->add(createVerifierPass()); 382 PMBuilder.populateFunctionPassManager(*FPM); 383 384 // Set up the per-module pass manager. 385 legacy::PassManager *MPM = getPerModulePasses(); 386 if (!CodeGenOpts.RewriteMapFiles.empty()) 387 addSymbolRewriterPass(CodeGenOpts, MPM); 388 389 if (!CodeGenOpts.DisableGCov && 390 (CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)) { 391 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 392 // LLVM's -default-gcov-version flag is set to something invalid. 393 GCOVOptions Options; 394 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 395 Options.EmitData = CodeGenOpts.EmitGcovArcs; 396 memcpy(Options.Version, CodeGenOpts.CoverageVersion, 4); 397 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 398 Options.NoRedZone = CodeGenOpts.DisableRedZone; 399 Options.FunctionNamesInData = 400 !CodeGenOpts.CoverageNoFunctionNamesInData; 401 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 402 MPM->add(createGCOVProfilerPass(Options)); 403 if (CodeGenOpts.getDebugInfo() == CodeGenOptions::NoDebugInfo) 404 MPM->add(createStripSymbolsPass(true)); 405 } 406 407 if (CodeGenOpts.ProfileInstrGenerate) { 408 InstrProfOptions Options; 409 Options.NoRedZone = CodeGenOpts.DisableRedZone; 410 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 411 MPM->add(createInstrProfilingPass(Options)); 412 } 413 414 if (!CodeGenOpts.SampleProfileFile.empty()) 415 MPM->add(createSampleProfileLoaderPass(CodeGenOpts.SampleProfileFile)); 416 417 PMBuilder.populateModulePassManager(*MPM); 418 } 419 420 TargetMachine *EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 421 // Create the TargetMachine for generating code. 422 std::string Error; 423 std::string Triple = TheModule->getTargetTriple(); 424 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 425 if (!TheTarget) { 426 if (MustCreateTM) 427 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 428 return nullptr; 429 } 430 431 unsigned CodeModel = 432 llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 433 .Case("small", llvm::CodeModel::Small) 434 .Case("kernel", llvm::CodeModel::Kernel) 435 .Case("medium", llvm::CodeModel::Medium) 436 .Case("large", llvm::CodeModel::Large) 437 .Case("default", llvm::CodeModel::Default) 438 .Default(~0u); 439 assert(CodeModel != ~0u && "invalid code model!"); 440 llvm::CodeModel::Model CM = static_cast<llvm::CodeModel::Model>(CodeModel); 441 442 SmallVector<const char *, 16> BackendArgs; 443 BackendArgs.push_back("clang"); // Fake program name. 444 if (!CodeGenOpts.DebugPass.empty()) { 445 BackendArgs.push_back("-debug-pass"); 446 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 447 } 448 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 449 BackendArgs.push_back("-limit-float-precision"); 450 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 451 } 452 for (const std::string &BackendOption : CodeGenOpts.BackendOptions) 453 BackendArgs.push_back(BackendOption.c_str()); 454 BackendArgs.push_back(nullptr); 455 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 456 BackendArgs.data()); 457 458 std::string FeaturesStr; 459 if (!TargetOpts.Features.empty()) { 460 SubtargetFeatures Features; 461 for (const std::string &Feature : TargetOpts.Features) 462 Features.AddFeature(Feature); 463 FeaturesStr = Features.getString(); 464 } 465 466 llvm::Reloc::Model RM = llvm::Reloc::Default; 467 if (CodeGenOpts.RelocationModel == "static") { 468 RM = llvm::Reloc::Static; 469 } else if (CodeGenOpts.RelocationModel == "pic") { 470 RM = llvm::Reloc::PIC_; 471 } else { 472 assert(CodeGenOpts.RelocationModel == "dynamic-no-pic" && 473 "Invalid PIC model!"); 474 RM = llvm::Reloc::DynamicNoPIC; 475 } 476 477 CodeGenOpt::Level OptLevel = CodeGenOpt::Default; 478 switch (CodeGenOpts.OptimizationLevel) { 479 default: break; 480 case 0: OptLevel = CodeGenOpt::None; break; 481 case 3: OptLevel = CodeGenOpt::Aggressive; break; 482 } 483 484 llvm::TargetOptions Options; 485 486 if (!TargetOpts.Reciprocals.empty()) 487 Options.Reciprocals = TargetRecip(TargetOpts.Reciprocals); 488 489 Options.ThreadModel = 490 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 491 .Case("posix", llvm::ThreadModel::POSIX) 492 .Case("single", llvm::ThreadModel::Single); 493 494 if (CodeGenOpts.DisableIntegratedAS) 495 Options.DisableIntegratedAS = true; 496 497 if (CodeGenOpts.CompressDebugSections) 498 Options.CompressDebugSections = true; 499 500 if (CodeGenOpts.UseInitArray) 501 Options.UseInitArray = true; 502 503 // Set float ABI type. 504 if (CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp") 505 Options.FloatABIType = llvm::FloatABI::Soft; 506 else if (CodeGenOpts.FloatABI == "hard") 507 Options.FloatABIType = llvm::FloatABI::Hard; 508 else { 509 assert(CodeGenOpts.FloatABI.empty() && "Invalid float abi!"); 510 Options.FloatABIType = llvm::FloatABI::Default; 511 } 512 513 // Set FP fusion mode. 514 switch (CodeGenOpts.getFPContractMode()) { 515 case CodeGenOptions::FPC_Off: 516 Options.AllowFPOpFusion = llvm::FPOpFusion::Strict; 517 break; 518 case CodeGenOptions::FPC_On: 519 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 520 break; 521 case CodeGenOptions::FPC_Fast: 522 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 523 break; 524 } 525 526 Options.LessPreciseFPMADOption = CodeGenOpts.LessPreciseFPMAD; 527 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 528 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 529 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 530 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 531 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 532 Options.PositionIndependentExecutable = LangOpts.PIELevel != 0; 533 Options.FunctionSections = CodeGenOpts.FunctionSections; 534 Options.DataSections = CodeGenOpts.DataSections; 535 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 536 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 537 538 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 539 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 540 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 541 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 542 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 543 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 544 Options.MCOptions.ABIName = TargetOpts.ABI; 545 546 TargetMachine *TM = TheTarget->createTargetMachine(Triple, TargetOpts.CPU, 547 FeaturesStr, Options, 548 RM, CM, OptLevel); 549 550 return TM; 551 } 552 553 bool EmitAssemblyHelper::AddEmitPasses(BackendAction Action, 554 raw_pwrite_stream &OS) { 555 556 // Create the code generator passes. 557 legacy::PassManager *PM = getCodeGenPasses(); 558 559 // Add LibraryInfo. 560 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 561 std::unique_ptr<TargetLibraryInfoImpl> TLII( 562 createTLII(TargetTriple, CodeGenOpts)); 563 PM->add(new TargetLibraryInfoWrapperPass(*TLII)); 564 565 // Normal mode, emit a .s or .o file by running the code generator. Note, 566 // this also adds codegenerator level optimization passes. 567 TargetMachine::CodeGenFileType CGFT = TargetMachine::CGFT_AssemblyFile; 568 if (Action == Backend_EmitObj) 569 CGFT = TargetMachine::CGFT_ObjectFile; 570 else if (Action == Backend_EmitMCNull) 571 CGFT = TargetMachine::CGFT_Null; 572 else 573 assert(Action == Backend_EmitAssembly && "Invalid action!"); 574 575 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 576 // "codegen" passes so that it isn't run multiple times when there is 577 // inlining happening. 578 if (CodeGenOpts.OptimizationLevel > 0) 579 PM->add(createObjCARCContractPass()); 580 581 if (TM->addPassesToEmitFile(*PM, OS, CGFT, 582 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 583 Diags.Report(diag::err_fe_unable_to_interface_with_target); 584 return false; 585 } 586 587 return true; 588 } 589 590 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 591 raw_pwrite_stream *OS) { 592 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 593 594 bool UsesCodeGen = (Action != Backend_EmitNothing && 595 Action != Backend_EmitBC && 596 Action != Backend_EmitLL); 597 if (!TM) 598 TM.reset(CreateTargetMachine(UsesCodeGen)); 599 600 if (UsesCodeGen && !TM) 601 return; 602 if (TM) 603 TheModule->setDataLayout(TM->createDataLayout()); 604 CreatePasses(); 605 606 switch (Action) { 607 case Backend_EmitNothing: 608 break; 609 610 case Backend_EmitBC: 611 getPerModulePasses()->add( 612 createBitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists)); 613 break; 614 615 case Backend_EmitLL: 616 getPerModulePasses()->add( 617 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 618 break; 619 620 default: 621 if (!AddEmitPasses(Action, *OS)) 622 return; 623 } 624 625 // Before executing passes, print the final values of the LLVM options. 626 cl::PrintOptionValues(); 627 628 // Run passes. For now we do all passes at once, but eventually we 629 // would like to have the option of streaming code generation. 630 631 if (PerFunctionPasses) { 632 PrettyStackTraceString CrashInfo("Per-function optimization"); 633 634 PerFunctionPasses->doInitialization(); 635 for (Function &F : *TheModule) 636 if (!F.isDeclaration()) 637 PerFunctionPasses->run(F); 638 PerFunctionPasses->doFinalization(); 639 } 640 641 if (PerModulePasses) { 642 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 643 PerModulePasses->run(*TheModule); 644 } 645 646 if (CodeGenPasses) { 647 PrettyStackTraceString CrashInfo("Code generation"); 648 CodeGenPasses->run(*TheModule); 649 } 650 } 651 652 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 653 const CodeGenOptions &CGOpts, 654 const clang::TargetOptions &TOpts, 655 const LangOptions &LOpts, StringRef TDesc, 656 Module *M, BackendAction Action, 657 raw_pwrite_stream *OS) { 658 EmitAssemblyHelper AsmHelper(Diags, CGOpts, TOpts, LOpts, M); 659 660 AsmHelper.EmitAssembly(Action, OS); 661 662 // If an optional clang TargetInfo description string was passed in, use it to 663 // verify the LLVM TargetMachine's DataLayout. 664 if (AsmHelper.TM && !TDesc.empty()) { 665 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 666 if (DLDesc != TDesc) { 667 unsigned DiagID = Diags.getCustomDiagID( 668 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 669 "expected target description '%1'"); 670 Diags.Report(DiagID) << DLDesc << TDesc; 671 } 672 } 673 } 674