1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "clang/Lex/HeaderSearchOptions.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/ADT/StringSwitch.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/IRPrintingPasses.h" 31 #include "llvm/IR/LegacyPassManager.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSummaryIndex.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/LTO/LTOBackend.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/SubtargetFeature.h" 38 #include "llvm/Passes/PassBuilder.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/MemoryBuffer.h" 41 #include "llvm/Support/PrettyStackTrace.h" 42 #include "llvm/Support/TargetRegistry.h" 43 #include "llvm/Support/Timer.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Target/TargetMachine.h" 46 #include "llvm/Target/TargetOptions.h" 47 #include "llvm/Target/TargetSubtargetInfo.h" 48 #include "llvm/Transforms/Coroutines.h" 49 #include "llvm/Transforms/IPO.h" 50 #include "llvm/Transforms/IPO/AlwaysInliner.h" 51 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 52 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 53 #include "llvm/Transforms/Instrumentation.h" 54 #include "llvm/Transforms/ObjCARC.h" 55 #include "llvm/Transforms/Scalar.h" 56 #include "llvm/Transforms/Scalar/GVN.h" 57 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 58 #include "llvm/Transforms/Utils/SymbolRewriter.h" 59 #include <memory> 60 using namespace clang; 61 using namespace llvm; 62 63 namespace { 64 65 // Default filename used for profile generation. 66 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 67 68 class EmitAssemblyHelper { 69 DiagnosticsEngine &Diags; 70 const HeaderSearchOptions &HSOpts; 71 const CodeGenOptions &CodeGenOpts; 72 const clang::TargetOptions &TargetOpts; 73 const LangOptions &LangOpts; 74 Module *TheModule; 75 76 Timer CodeGenerationTime; 77 78 std::unique_ptr<raw_pwrite_stream> OS; 79 80 TargetIRAnalysis getTargetIRAnalysis() const { 81 if (TM) 82 return TM->getTargetIRAnalysis(); 83 84 return TargetIRAnalysis(); 85 } 86 87 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 88 89 /// Generates the TargetMachine. 90 /// Leaves TM unchanged if it is unable to create the target machine. 91 /// Some of our clang tests specify triples which are not built 92 /// into clang. This is okay because these tests check the generated 93 /// IR, and they require DataLayout which depends on the triple. 94 /// In this case, we allow this method to fail and not report an error. 95 /// When MustCreateTM is used, we print an error if we are unable to load 96 /// the requested target. 97 void CreateTargetMachine(bool MustCreateTM); 98 99 /// Add passes necessary to emit assembly or LLVM IR. 100 /// 101 /// \return True on success. 102 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 103 raw_pwrite_stream &OS); 104 105 public: 106 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 107 const HeaderSearchOptions &HeaderSearchOpts, 108 const CodeGenOptions &CGOpts, 109 const clang::TargetOptions &TOpts, 110 const LangOptions &LOpts, Module *M) 111 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 112 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 113 CodeGenerationTime("codegen", "Code Generation Time") {} 114 115 ~EmitAssemblyHelper() { 116 if (CodeGenOpts.DisableFree) 117 BuryPointer(std::move(TM)); 118 } 119 120 std::unique_ptr<TargetMachine> TM; 121 122 void EmitAssembly(BackendAction Action, 123 std::unique_ptr<raw_pwrite_stream> OS); 124 125 void EmitAssemblyWithNewPassManager(BackendAction Action, 126 std::unique_ptr<raw_pwrite_stream> OS); 127 }; 128 129 // We need this wrapper to access LangOpts and CGOpts from extension functions 130 // that we add to the PassManagerBuilder. 131 class PassManagerBuilderWrapper : public PassManagerBuilder { 132 public: 133 PassManagerBuilderWrapper(const Triple &TargetTriple, 134 const CodeGenOptions &CGOpts, 135 const LangOptions &LangOpts) 136 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 137 LangOpts(LangOpts) {} 138 const Triple &getTargetTriple() const { return TargetTriple; } 139 const CodeGenOptions &getCGOpts() const { return CGOpts; } 140 const LangOptions &getLangOpts() const { return LangOpts; } 141 142 private: 143 const Triple &TargetTriple; 144 const CodeGenOptions &CGOpts; 145 const LangOptions &LangOpts; 146 }; 147 } 148 149 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 150 if (Builder.OptLevel > 0) 151 PM.add(createObjCARCAPElimPass()); 152 } 153 154 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 155 if (Builder.OptLevel > 0) 156 PM.add(createObjCARCExpandPass()); 157 } 158 159 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 160 if (Builder.OptLevel > 0) 161 PM.add(createObjCARCOptPass()); 162 } 163 164 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 165 legacy::PassManagerBase &PM) { 166 PM.add(createAddDiscriminatorsPass()); 167 } 168 169 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 170 legacy::PassManagerBase &PM) { 171 PM.add(createBoundsCheckingPass()); 172 } 173 174 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 175 legacy::PassManagerBase &PM) { 176 const PassManagerBuilderWrapper &BuilderWrapper = 177 static_cast<const PassManagerBuilderWrapper&>(Builder); 178 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 179 SanitizerCoverageOptions Opts; 180 Opts.CoverageType = 181 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 182 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 183 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 184 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 185 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 186 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 187 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 188 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 189 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 190 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 191 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 192 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 193 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 194 PM.add(createSanitizerCoverageModulePass(Opts)); 195 } 196 197 // Check if ASan should use GC-friendly instrumentation for globals. 198 // First of all, there is no point if -fdata-sections is off (expect for MachO, 199 // where this is not a factor). Also, on ELF this feature requires an assembler 200 // extension that only works with -integrated-as at the moment. 201 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 202 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 203 return false; 204 switch (T.getObjectFormat()) { 205 case Triple::MachO: 206 case Triple::COFF: 207 return true; 208 case Triple::ELF: 209 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 210 default: 211 return false; 212 } 213 } 214 215 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 216 legacy::PassManagerBase &PM) { 217 const PassManagerBuilderWrapper &BuilderWrapper = 218 static_cast<const PassManagerBuilderWrapper&>(Builder); 219 const Triple &T = BuilderWrapper.getTargetTriple(); 220 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 221 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 222 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 223 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 224 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 225 UseAfterScope)); 226 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/ false, Recover, 227 UseGlobalsGC)); 228 } 229 230 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 231 legacy::PassManagerBase &PM) { 232 PM.add(createAddressSanitizerFunctionPass( 233 /*CompileKernel*/ true, 234 /*Recover*/ true, /*UseAfterScope*/ false)); 235 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/true, 236 /*Recover*/true)); 237 } 238 239 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 240 legacy::PassManagerBase &PM) { 241 const PassManagerBuilderWrapper &BuilderWrapper = 242 static_cast<const PassManagerBuilderWrapper&>(Builder); 243 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 244 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 245 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 246 PM.add(createMemorySanitizerPass(TrackOrigins, Recover)); 247 248 // MemorySanitizer inserts complex instrumentation that mostly follows 249 // the logic of the original code, but operates on "shadow" values. 250 // It can benefit from re-running some general purpose optimization passes. 251 if (Builder.OptLevel > 0) { 252 PM.add(createEarlyCSEPass()); 253 PM.add(createReassociatePass()); 254 PM.add(createLICMPass()); 255 PM.add(createGVNPass()); 256 PM.add(createInstructionCombiningPass()); 257 PM.add(createDeadStoreEliminationPass()); 258 } 259 } 260 261 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 262 legacy::PassManagerBase &PM) { 263 PM.add(createThreadSanitizerPass()); 264 } 265 266 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 267 legacy::PassManagerBase &PM) { 268 const PassManagerBuilderWrapper &BuilderWrapper = 269 static_cast<const PassManagerBuilderWrapper&>(Builder); 270 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 271 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 272 } 273 274 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 275 legacy::PassManagerBase &PM) { 276 const PassManagerBuilderWrapper &BuilderWrapper = 277 static_cast<const PassManagerBuilderWrapper&>(Builder); 278 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 279 EfficiencySanitizerOptions Opts; 280 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 281 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 282 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 283 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 284 PM.add(createEfficiencySanitizerPass(Opts)); 285 } 286 287 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 288 const CodeGenOptions &CodeGenOpts) { 289 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 290 if (!CodeGenOpts.SimplifyLibCalls) 291 TLII->disableAllFunctions(); 292 else { 293 // Disable individual libc/libm calls in TargetLibraryInfo. 294 LibFunc F; 295 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 296 if (TLII->getLibFunc(FuncName, F)) 297 TLII->setUnavailable(F); 298 } 299 300 switch (CodeGenOpts.getVecLib()) { 301 case CodeGenOptions::Accelerate: 302 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 303 break; 304 case CodeGenOptions::SVML: 305 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 306 break; 307 default: 308 break; 309 } 310 return TLII; 311 } 312 313 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 314 legacy::PassManager *MPM) { 315 llvm::SymbolRewriter::RewriteDescriptorList DL; 316 317 llvm::SymbolRewriter::RewriteMapParser MapParser; 318 for (const auto &MapFile : Opts.RewriteMapFiles) 319 MapParser.parse(MapFile, &DL); 320 321 MPM->add(createRewriteSymbolsPass(DL)); 322 } 323 324 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 325 switch (CodeGenOpts.OptimizationLevel) { 326 default: 327 llvm_unreachable("Invalid optimization level!"); 328 case 0: 329 return CodeGenOpt::None; 330 case 1: 331 return CodeGenOpt::Less; 332 case 2: 333 return CodeGenOpt::Default; // O2/Os/Oz 334 case 3: 335 return CodeGenOpt::Aggressive; 336 } 337 } 338 339 static Optional<llvm::CodeModel::Model> 340 getCodeModel(const CodeGenOptions &CodeGenOpts) { 341 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 342 .Case("small", llvm::CodeModel::Small) 343 .Case("kernel", llvm::CodeModel::Kernel) 344 .Case("medium", llvm::CodeModel::Medium) 345 .Case("large", llvm::CodeModel::Large) 346 .Case("default", ~1u) 347 .Default(~0u); 348 assert(CodeModel != ~0u && "invalid code model!"); 349 if (CodeModel == ~1u) 350 return None; 351 return static_cast<llvm::CodeModel::Model>(CodeModel); 352 } 353 354 static llvm::Reloc::Model getRelocModel(const CodeGenOptions &CodeGenOpts) { 355 // Keep this synced with the equivalent code in 356 // lib/Frontend/CompilerInvocation.cpp 357 llvm::Optional<llvm::Reloc::Model> RM; 358 RM = llvm::StringSwitch<llvm::Reloc::Model>(CodeGenOpts.RelocationModel) 359 .Case("static", llvm::Reloc::Static) 360 .Case("pic", llvm::Reloc::PIC_) 361 .Case("ropi", llvm::Reloc::ROPI) 362 .Case("rwpi", llvm::Reloc::RWPI) 363 .Case("ropi-rwpi", llvm::Reloc::ROPI_RWPI) 364 .Case("dynamic-no-pic", llvm::Reloc::DynamicNoPIC); 365 assert(RM.hasValue() && "invalid PIC model!"); 366 return *RM; 367 } 368 369 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 370 if (Action == Backend_EmitObj) 371 return TargetMachine::CGFT_ObjectFile; 372 else if (Action == Backend_EmitMCNull) 373 return TargetMachine::CGFT_Null; 374 else { 375 assert(Action == Backend_EmitAssembly && "Invalid action!"); 376 return TargetMachine::CGFT_AssemblyFile; 377 } 378 } 379 380 static void initTargetOptions(llvm::TargetOptions &Options, 381 const CodeGenOptions &CodeGenOpts, 382 const clang::TargetOptions &TargetOpts, 383 const LangOptions &LangOpts, 384 const HeaderSearchOptions &HSOpts) { 385 Options.ThreadModel = 386 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 387 .Case("posix", llvm::ThreadModel::POSIX) 388 .Case("single", llvm::ThreadModel::Single); 389 390 // Set float ABI type. 391 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 392 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 393 "Invalid Floating Point ABI!"); 394 Options.FloatABIType = 395 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 396 .Case("soft", llvm::FloatABI::Soft) 397 .Case("softfp", llvm::FloatABI::Soft) 398 .Case("hard", llvm::FloatABI::Hard) 399 .Default(llvm::FloatABI::Default); 400 401 // Set FP fusion mode. 402 switch (LangOpts.getDefaultFPContractMode()) { 403 case LangOptions::FPC_Off: 404 // Preserve any contraction performed by the front-end. (Strict performs 405 // splitting of the muladd instrinsic in the backend.) 406 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 407 break; 408 case LangOptions::FPC_On: 409 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 410 break; 411 case LangOptions::FPC_Fast: 412 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 413 break; 414 } 415 416 Options.UseInitArray = CodeGenOpts.UseInitArray; 417 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 418 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 419 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 420 421 // Set EABI version. 422 Options.EABIVersion = TargetOpts.EABIVersion; 423 424 if (LangOpts.SjLjExceptions) 425 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 426 427 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 428 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 429 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 430 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 431 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 432 Options.FunctionSections = CodeGenOpts.FunctionSections; 433 Options.DataSections = CodeGenOpts.DataSections; 434 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 435 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 436 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 437 438 if (CodeGenOpts.EnableSplitDwarf) 439 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 440 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 441 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 442 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 443 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 444 Options.MCOptions.MCIncrementalLinkerCompatible = 445 CodeGenOpts.IncrementalLinkerCompatible; 446 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 447 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 448 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 449 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 450 Options.MCOptions.ABIName = TargetOpts.ABI; 451 for (const auto &Entry : HSOpts.UserEntries) 452 if (!Entry.IsFramework && 453 (Entry.Group == frontend::IncludeDirGroup::Quoted || 454 Entry.Group == frontend::IncludeDirGroup::Angled || 455 Entry.Group == frontend::IncludeDirGroup::System)) 456 Options.MCOptions.IASSearchPaths.push_back( 457 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 458 } 459 460 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 461 legacy::FunctionPassManager &FPM) { 462 // Handle disabling of all LLVM passes, where we want to preserve the 463 // internal module before any optimization. 464 if (CodeGenOpts.DisableLLVMPasses) 465 return; 466 467 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 468 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 469 // are inserted before PMBuilder ones - they'd get the default-constructed 470 // TLI with an unknown target otherwise. 471 Triple TargetTriple(TheModule->getTargetTriple()); 472 std::unique_ptr<TargetLibraryInfoImpl> TLII( 473 createTLII(TargetTriple, CodeGenOpts)); 474 475 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 476 477 // At O0 and O1 we only run the always inliner which is more efficient. At 478 // higher optimization levels we run the normal inliner. 479 if (CodeGenOpts.OptimizationLevel <= 1) { 480 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 481 !CodeGenOpts.DisableLifetimeMarkers); 482 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 483 } else { 484 // We do not want to inline hot callsites for SamplePGO module-summary build 485 // because profile annotation will happen again in ThinLTO backend, and we 486 // want the IR of the hot path to match the profile. 487 PMBuilder.Inliner = createFunctionInliningPass( 488 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 489 (!CodeGenOpts.SampleProfileFile.empty() && 490 CodeGenOpts.EmitSummaryIndex)); 491 } 492 493 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 494 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 495 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 496 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 497 498 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 499 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 500 PMBuilder.PrepareForThinLTO = CodeGenOpts.EmitSummaryIndex; 501 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 502 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 503 504 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 505 506 if (TM) 507 TM->adjustPassManager(PMBuilder); 508 509 if (CodeGenOpts.DebugInfoForProfiling || 510 !CodeGenOpts.SampleProfileFile.empty()) 511 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 512 addAddDiscriminatorsPass); 513 514 // In ObjC ARC mode, add the main ARC optimization passes. 515 if (LangOpts.ObjCAutoRefCount) { 516 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 517 addObjCARCExpandPass); 518 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 519 addObjCARCAPElimPass); 520 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 521 addObjCARCOptPass); 522 } 523 524 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 525 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 526 addBoundsCheckingPass); 527 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 528 addBoundsCheckingPass); 529 } 530 531 if (CodeGenOpts.SanitizeCoverageType || 532 CodeGenOpts.SanitizeCoverageIndirectCalls || 533 CodeGenOpts.SanitizeCoverageTraceCmp) { 534 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 535 addSanitizerCoveragePass); 536 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 537 addSanitizerCoveragePass); 538 } 539 540 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 541 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 542 addAddressSanitizerPasses); 543 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 544 addAddressSanitizerPasses); 545 } 546 547 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 548 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 549 addKernelAddressSanitizerPasses); 550 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 551 addKernelAddressSanitizerPasses); 552 } 553 554 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 555 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 556 addMemorySanitizerPass); 557 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 558 addMemorySanitizerPass); 559 } 560 561 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 562 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 563 addThreadSanitizerPass); 564 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 565 addThreadSanitizerPass); 566 } 567 568 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 569 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 570 addDataFlowSanitizerPass); 571 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 572 addDataFlowSanitizerPass); 573 } 574 575 if (LangOpts.CoroutinesTS) 576 addCoroutinePassesToExtensionPoints(PMBuilder); 577 578 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 579 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 580 addEfficiencySanitizerPass); 581 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 582 addEfficiencySanitizerPass); 583 } 584 585 // Set up the per-function pass manager. 586 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 587 if (CodeGenOpts.VerifyModule) 588 FPM.add(createVerifierPass()); 589 590 // Set up the per-module pass manager. 591 if (!CodeGenOpts.RewriteMapFiles.empty()) 592 addSymbolRewriterPass(CodeGenOpts, &MPM); 593 594 if (!CodeGenOpts.DisableGCov && 595 (CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)) { 596 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 597 // LLVM's -default-gcov-version flag is set to something invalid. 598 GCOVOptions Options; 599 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 600 Options.EmitData = CodeGenOpts.EmitGcovArcs; 601 memcpy(Options.Version, CodeGenOpts.CoverageVersion, 4); 602 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 603 Options.NoRedZone = CodeGenOpts.DisableRedZone; 604 Options.FunctionNamesInData = 605 !CodeGenOpts.CoverageNoFunctionNamesInData; 606 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 607 MPM.add(createGCOVProfilerPass(Options)); 608 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 609 MPM.add(createStripSymbolsPass(true)); 610 } 611 612 if (CodeGenOpts.hasProfileClangInstr()) { 613 InstrProfOptions Options; 614 Options.NoRedZone = CodeGenOpts.DisableRedZone; 615 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 616 MPM.add(createInstrProfilingLegacyPass(Options)); 617 } 618 if (CodeGenOpts.hasProfileIRInstr()) { 619 PMBuilder.EnablePGOInstrGen = true; 620 if (!CodeGenOpts.InstrProfileOutput.empty()) 621 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 622 else 623 PMBuilder.PGOInstrGen = DefaultProfileGenName; 624 } 625 if (CodeGenOpts.hasProfileIRUse()) 626 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 627 628 if (!CodeGenOpts.SampleProfileFile.empty()) 629 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 630 631 PMBuilder.populateFunctionPassManager(FPM); 632 PMBuilder.populateModulePassManager(MPM); 633 } 634 635 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 636 SmallVector<const char *, 16> BackendArgs; 637 BackendArgs.push_back("clang"); // Fake program name. 638 if (!CodeGenOpts.DebugPass.empty()) { 639 BackendArgs.push_back("-debug-pass"); 640 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 641 } 642 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 643 BackendArgs.push_back("-limit-float-precision"); 644 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 645 } 646 for (const std::string &BackendOption : CodeGenOpts.BackendOptions) 647 BackendArgs.push_back(BackendOption.c_str()); 648 BackendArgs.push_back(nullptr); 649 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 650 BackendArgs.data()); 651 } 652 653 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 654 // Create the TargetMachine for generating code. 655 std::string Error; 656 std::string Triple = TheModule->getTargetTriple(); 657 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 658 if (!TheTarget) { 659 if (MustCreateTM) 660 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 661 return; 662 } 663 664 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 665 std::string FeaturesStr = 666 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 667 llvm::Reloc::Model RM = getRelocModel(CodeGenOpts); 668 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 669 670 llvm::TargetOptions Options; 671 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 672 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 673 Options, RM, CM, OptLevel)); 674 } 675 676 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 677 BackendAction Action, 678 raw_pwrite_stream &OS) { 679 // Add LibraryInfo. 680 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 681 std::unique_ptr<TargetLibraryInfoImpl> TLII( 682 createTLII(TargetTriple, CodeGenOpts)); 683 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 684 685 // Normal mode, emit a .s or .o file by running the code generator. Note, 686 // this also adds codegenerator level optimization passes. 687 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 688 689 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 690 // "codegen" passes so that it isn't run multiple times when there is 691 // inlining happening. 692 if (CodeGenOpts.OptimizationLevel > 0) 693 CodeGenPasses.add(createObjCARCContractPass()); 694 695 if (TM->addPassesToEmitFile(CodeGenPasses, OS, CGFT, 696 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 697 Diags.Report(diag::err_fe_unable_to_interface_with_target); 698 return false; 699 } 700 701 return true; 702 } 703 704 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 705 std::unique_ptr<raw_pwrite_stream> OS) { 706 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 707 708 setCommandLineOpts(CodeGenOpts); 709 710 bool UsesCodeGen = (Action != Backend_EmitNothing && 711 Action != Backend_EmitBC && 712 Action != Backend_EmitLL); 713 CreateTargetMachine(UsesCodeGen); 714 715 if (UsesCodeGen && !TM) 716 return; 717 if (TM) 718 TheModule->setDataLayout(TM->createDataLayout()); 719 720 legacy::PassManager PerModulePasses; 721 PerModulePasses.add( 722 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 723 724 legacy::FunctionPassManager PerFunctionPasses(TheModule); 725 PerFunctionPasses.add( 726 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 727 728 CreatePasses(PerModulePasses, PerFunctionPasses); 729 730 legacy::PassManager CodeGenPasses; 731 CodeGenPasses.add( 732 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 733 734 std::unique_ptr<raw_fd_ostream> ThinLinkOS; 735 736 switch (Action) { 737 case Backend_EmitNothing: 738 break; 739 740 case Backend_EmitBC: 741 if (CodeGenOpts.EmitSummaryIndex) { 742 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 743 std::error_code EC; 744 ThinLinkOS.reset(new llvm::raw_fd_ostream( 745 CodeGenOpts.ThinLinkBitcodeFile, EC, 746 llvm::sys::fs::F_None)); 747 if (EC) { 748 Diags.Report(diag::err_fe_unable_to_open_output) << CodeGenOpts.ThinLinkBitcodeFile 749 << EC.message(); 750 return; 751 } 752 } 753 PerModulePasses.add( 754 createWriteThinLTOBitcodePass(*OS, ThinLinkOS.get())); 755 } 756 else 757 PerModulePasses.add( 758 createBitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists)); 759 break; 760 761 case Backend_EmitLL: 762 PerModulePasses.add( 763 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 764 break; 765 766 default: 767 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 768 return; 769 } 770 771 // Before executing passes, print the final values of the LLVM options. 772 cl::PrintOptionValues(); 773 774 // Run passes. For now we do all passes at once, but eventually we 775 // would like to have the option of streaming code generation. 776 777 { 778 PrettyStackTraceString CrashInfo("Per-function optimization"); 779 780 PerFunctionPasses.doInitialization(); 781 for (Function &F : *TheModule) 782 if (!F.isDeclaration()) 783 PerFunctionPasses.run(F); 784 PerFunctionPasses.doFinalization(); 785 } 786 787 { 788 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 789 PerModulePasses.run(*TheModule); 790 } 791 792 { 793 PrettyStackTraceString CrashInfo("Code generation"); 794 CodeGenPasses.run(*TheModule); 795 } 796 } 797 798 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 799 switch (Opts.OptimizationLevel) { 800 default: 801 llvm_unreachable("Invalid optimization level!"); 802 803 case 1: 804 return PassBuilder::O1; 805 806 case 2: 807 switch (Opts.OptimizeSize) { 808 default: 809 llvm_unreachable("Invalide optimization level for size!"); 810 811 case 0: 812 return PassBuilder::O2; 813 814 case 1: 815 return PassBuilder::Os; 816 817 case 2: 818 return PassBuilder::Oz; 819 } 820 821 case 3: 822 return PassBuilder::O3; 823 } 824 } 825 826 /// A clean version of `EmitAssembly` that uses the new pass manager. 827 /// 828 /// Not all features are currently supported in this system, but where 829 /// necessary it falls back to the legacy pass manager to at least provide 830 /// basic functionality. 831 /// 832 /// This API is planned to have its functionality finished and then to replace 833 /// `EmitAssembly` at some point in the future when the default switches. 834 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 835 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 836 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 837 setCommandLineOpts(CodeGenOpts); 838 839 // The new pass manager always makes a target machine available to passes 840 // during construction. 841 CreateTargetMachine(/*MustCreateTM*/ true); 842 if (!TM) 843 // This will already be diagnosed, just bail. 844 return; 845 TheModule->setDataLayout(TM->createDataLayout()); 846 847 Optional<PGOOptions> PGOOpt; 848 849 if (CodeGenOpts.hasProfileIRInstr()) 850 // -fprofile-generate. 851 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 852 ? DefaultProfileGenName 853 : CodeGenOpts.InstrProfileOutput, 854 "", "", true, CodeGenOpts.DebugInfoForProfiling); 855 else if (CodeGenOpts.hasProfileIRUse()) 856 // -fprofile-use. 857 PGOOpt = PGOOptions("", CodeGenOpts.ProfileInstrumentUsePath, "", false, 858 CodeGenOpts.DebugInfoForProfiling); 859 else if (!CodeGenOpts.SampleProfileFile.empty()) 860 // -fprofile-sample-use 861 PGOOpt = PGOOptions("", "", CodeGenOpts.SampleProfileFile, false, 862 CodeGenOpts.DebugInfoForProfiling); 863 else if (CodeGenOpts.DebugInfoForProfiling) 864 // -fdebug-info-for-profiling 865 PGOOpt = PGOOptions("", "", "", false, true); 866 867 PassBuilder PB(TM.get(), PGOOpt); 868 869 LoopAnalysisManager LAM; 870 FunctionAnalysisManager FAM; 871 CGSCCAnalysisManager CGAM; 872 ModuleAnalysisManager MAM; 873 874 // Register the AA manager first so that our version is the one used. 875 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 876 877 // Register the target library analysis directly and give it a customized 878 // preset TLI. 879 Triple TargetTriple(TheModule->getTargetTriple()); 880 std::unique_ptr<TargetLibraryInfoImpl> TLII( 881 createTLII(TargetTriple, CodeGenOpts)); 882 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 883 MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 884 885 // Register all the basic analyses with the managers. 886 PB.registerModuleAnalyses(MAM); 887 PB.registerCGSCCAnalyses(CGAM); 888 PB.registerFunctionAnalyses(FAM); 889 PB.registerLoopAnalyses(LAM); 890 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 891 892 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 893 894 if (!CodeGenOpts.DisableLLVMPasses) { 895 bool IsThinLTO = CodeGenOpts.EmitSummaryIndex; 896 bool IsLTO = CodeGenOpts.PrepareForLTO; 897 898 if (CodeGenOpts.OptimizationLevel == 0) { 899 // Build a minimal pipeline based on the semantics required by Clang, 900 // which is just that always inlining occurs. 901 MPM.addPass(AlwaysInlinerPass()); 902 if (IsThinLTO) 903 MPM.addPass(NameAnonGlobalPass()); 904 } else { 905 // Map our optimization levels into one of the distinct levels used to 906 // configure the pipeline. 907 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 908 909 if (IsThinLTO) { 910 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 911 Level, CodeGenOpts.DebugPassManager); 912 MPM.addPass(NameAnonGlobalPass()); 913 } else if (IsLTO) { 914 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 915 CodeGenOpts.DebugPassManager); 916 } else { 917 MPM = PB.buildPerModuleDefaultPipeline(Level, 918 CodeGenOpts.DebugPassManager); 919 } 920 } 921 } 922 923 // FIXME: We still use the legacy pass manager to do code generation. We 924 // create that pass manager here and use it as needed below. 925 legacy::PassManager CodeGenPasses; 926 bool NeedCodeGen = false; 927 Optional<raw_fd_ostream> ThinLinkOS; 928 929 // Append any output we need to the pass manager. 930 switch (Action) { 931 case Backend_EmitNothing: 932 break; 933 934 case Backend_EmitBC: 935 if (CodeGenOpts.EmitSummaryIndex) { 936 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 937 std::error_code EC; 938 ThinLinkOS.emplace(CodeGenOpts.ThinLinkBitcodeFile, EC, 939 llvm::sys::fs::F_None); 940 if (EC) { 941 Diags.Report(diag::err_fe_unable_to_open_output) 942 << CodeGenOpts.ThinLinkBitcodeFile << EC.message(); 943 return; 944 } 945 } 946 MPM.addPass( 947 ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &*ThinLinkOS : nullptr)); 948 } else { 949 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 950 CodeGenOpts.EmitSummaryIndex, 951 CodeGenOpts.EmitSummaryIndex)); 952 } 953 break; 954 955 case Backend_EmitLL: 956 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 957 break; 958 959 case Backend_EmitAssembly: 960 case Backend_EmitMCNull: 961 case Backend_EmitObj: 962 NeedCodeGen = true; 963 CodeGenPasses.add( 964 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 965 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 966 // FIXME: Should we handle this error differently? 967 return; 968 break; 969 } 970 971 // Before executing passes, print the final values of the LLVM options. 972 cl::PrintOptionValues(); 973 974 // Now that we have all of the passes ready, run them. 975 { 976 PrettyStackTraceString CrashInfo("Optimizer"); 977 MPM.run(*TheModule, MAM); 978 } 979 980 // Now if needed, run the legacy PM for codegen. 981 if (NeedCodeGen) { 982 PrettyStackTraceString CrashInfo("Code generation"); 983 CodeGenPasses.run(*TheModule); 984 } 985 } 986 987 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 988 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 989 if (!BMsOrErr) 990 return BMsOrErr.takeError(); 991 992 // The bitcode file may contain multiple modules, we want the one that is 993 // marked as being the ThinLTO module. 994 for (BitcodeModule &BM : *BMsOrErr) { 995 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 996 if (LTOInfo && LTOInfo->IsThinLTO) 997 return BM; 998 } 999 1000 return make_error<StringError>("Could not find module summary", 1001 inconvertibleErrorCode()); 1002 } 1003 1004 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1005 const HeaderSearchOptions &HeaderOpts, 1006 const CodeGenOptions &CGOpts, 1007 const clang::TargetOptions &TOpts, 1008 const LangOptions &LOpts, 1009 std::unique_ptr<raw_pwrite_stream> OS, 1010 std::string SampleProfile, 1011 BackendAction Action) { 1012 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1013 ModuleToDefinedGVSummaries; 1014 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1015 1016 setCommandLineOpts(CGOpts); 1017 1018 // We can simply import the values mentioned in the combined index, since 1019 // we should only invoke this using the individual indexes written out 1020 // via a WriteIndexesThinBackend. 1021 FunctionImporter::ImportMapTy ImportList; 1022 for (auto &GlobalList : *CombinedIndex) { 1023 // Ignore entries for undefined references. 1024 if (GlobalList.second.SummaryList.empty()) 1025 continue; 1026 1027 auto GUID = GlobalList.first; 1028 assert(GlobalList.second.SummaryList.size() == 1 && 1029 "Expected individual combined index to have one summary per GUID"); 1030 auto &Summary = GlobalList.second.SummaryList[0]; 1031 // Skip the summaries for the importing module. These are included to 1032 // e.g. record required linkage changes. 1033 if (Summary->modulePath() == M->getModuleIdentifier()) 1034 continue; 1035 // Doesn't matter what value we plug in to the map, just needs an entry 1036 // to provoke importing by thinBackend. 1037 ImportList[Summary->modulePath()][GUID] = 1; 1038 } 1039 1040 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1041 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1042 1043 for (auto &I : ImportList) { 1044 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1045 llvm::MemoryBuffer::getFile(I.first()); 1046 if (!MBOrErr) { 1047 errs() << "Error loading imported file '" << I.first() 1048 << "': " << MBOrErr.getError().message() << "\n"; 1049 return; 1050 } 1051 1052 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1053 if (!BMOrErr) { 1054 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1055 errs() << "Error loading imported file '" << I.first() 1056 << "': " << EIB.message() << '\n'; 1057 }); 1058 return; 1059 } 1060 ModuleMap.insert({I.first(), *BMOrErr}); 1061 1062 OwnedImports.push_back(std::move(*MBOrErr)); 1063 } 1064 auto AddStream = [&](size_t Task) { 1065 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 1066 }; 1067 lto::Config Conf; 1068 Conf.CPU = TOpts.CPU; 1069 Conf.CodeModel = getCodeModel(CGOpts); 1070 Conf.MAttrs = TOpts.Features; 1071 Conf.RelocModel = getRelocModel(CGOpts); 1072 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1073 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1074 Conf.SampleProfile = std::move(SampleProfile); 1075 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1076 switch (Action) { 1077 case Backend_EmitNothing: 1078 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1079 return false; 1080 }; 1081 break; 1082 case Backend_EmitLL: 1083 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1084 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1085 return false; 1086 }; 1087 break; 1088 case Backend_EmitBC: 1089 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1090 WriteBitcodeToFile(M, *OS, CGOpts.EmitLLVMUseLists); 1091 return false; 1092 }; 1093 break; 1094 default: 1095 Conf.CGFileType = getCodeGenFileType(Action); 1096 break; 1097 } 1098 if (Error E = thinBackend( 1099 Conf, 0, AddStream, *M, *CombinedIndex, ImportList, 1100 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1101 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1102 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1103 }); 1104 } 1105 } 1106 1107 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1108 const HeaderSearchOptions &HeaderOpts, 1109 const CodeGenOptions &CGOpts, 1110 const clang::TargetOptions &TOpts, 1111 const LangOptions &LOpts, 1112 const llvm::DataLayout &TDesc, Module *M, 1113 BackendAction Action, 1114 std::unique_ptr<raw_pwrite_stream> OS) { 1115 if (!CGOpts.ThinLTOIndexFile.empty()) { 1116 // If we are performing a ThinLTO importing compile, load the function index 1117 // into memory and pass it into runThinLTOBackend, which will run the 1118 // function importer and invoke LTO passes. 1119 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1120 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1121 /*IgnoreEmptyThinLTOIndexFile*/true); 1122 if (!IndexOrErr) { 1123 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1124 "Error loading index file '" + 1125 CGOpts.ThinLTOIndexFile + "': "); 1126 return; 1127 } 1128 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1129 // A null CombinedIndex means we should skip ThinLTO compilation 1130 // (LLVM will optionally ignore empty index files, returning null instead 1131 // of an error). 1132 bool DoThinLTOBackend = CombinedIndex != nullptr; 1133 if (DoThinLTOBackend) { 1134 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1135 LOpts, std::move(OS), CGOpts.SampleProfileFile, Action); 1136 return; 1137 } 1138 } 1139 1140 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1141 1142 if (CGOpts.ExperimentalNewPassManager) 1143 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1144 else 1145 AsmHelper.EmitAssembly(Action, std::move(OS)); 1146 1147 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1148 // DataLayout. 1149 if (AsmHelper.TM) { 1150 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1151 if (DLDesc != TDesc.getStringRepresentation()) { 1152 unsigned DiagID = Diags.getCustomDiagID( 1153 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1154 "expected target description '%1'"); 1155 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1156 } 1157 } 1158 } 1159 1160 static const char* getSectionNameForBitcode(const Triple &T) { 1161 switch (T.getObjectFormat()) { 1162 case Triple::MachO: 1163 return "__LLVM,__bitcode"; 1164 case Triple::COFF: 1165 case Triple::ELF: 1166 case Triple::Wasm: 1167 case Triple::UnknownObjectFormat: 1168 return ".llvmbc"; 1169 } 1170 llvm_unreachable("Unimplemented ObjectFormatType"); 1171 } 1172 1173 static const char* getSectionNameForCommandline(const Triple &T) { 1174 switch (T.getObjectFormat()) { 1175 case Triple::MachO: 1176 return "__LLVM,__cmdline"; 1177 case Triple::COFF: 1178 case Triple::ELF: 1179 case Triple::Wasm: 1180 case Triple::UnknownObjectFormat: 1181 return ".llvmcmd"; 1182 } 1183 llvm_unreachable("Unimplemented ObjectFormatType"); 1184 } 1185 1186 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1187 // __LLVM,__bitcode section. 1188 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1189 llvm::MemoryBufferRef Buf) { 1190 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1191 return; 1192 1193 // Save llvm.compiler.used and remote it. 1194 SmallVector<Constant*, 2> UsedArray; 1195 SmallSet<GlobalValue*, 4> UsedGlobals; 1196 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1197 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1198 for (auto *GV : UsedGlobals) { 1199 if (GV->getName() != "llvm.embedded.module" && 1200 GV->getName() != "llvm.cmdline") 1201 UsedArray.push_back( 1202 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1203 } 1204 if (Used) 1205 Used->eraseFromParent(); 1206 1207 // Embed the bitcode for the llvm module. 1208 std::string Data; 1209 ArrayRef<uint8_t> ModuleData; 1210 Triple T(M->getTargetTriple()); 1211 // Create a constant that contains the bitcode. 1212 // In case of embedding a marker, ignore the input Buf and use the empty 1213 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1214 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1215 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1216 (const unsigned char *)Buf.getBufferEnd())) { 1217 // If the input is LLVM Assembly, bitcode is produced by serializing 1218 // the module. Use-lists order need to be perserved in this case. 1219 llvm::raw_string_ostream OS(Data); 1220 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 1221 ModuleData = 1222 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1223 } else 1224 // If the input is LLVM bitcode, write the input byte stream directly. 1225 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1226 Buf.getBufferSize()); 1227 } 1228 llvm::Constant *ModuleConstant = 1229 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1230 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1231 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1232 ModuleConstant); 1233 GV->setSection(getSectionNameForBitcode(T)); 1234 UsedArray.push_back( 1235 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1236 if (llvm::GlobalVariable *Old = 1237 M->getGlobalVariable("llvm.embedded.module", true)) { 1238 assert(Old->hasOneUse() && 1239 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1240 GV->takeName(Old); 1241 Old->eraseFromParent(); 1242 } else { 1243 GV->setName("llvm.embedded.module"); 1244 } 1245 1246 // Skip if only bitcode needs to be embedded. 1247 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1248 // Embed command-line options. 1249 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1250 CGOpts.CmdArgs.size()); 1251 llvm::Constant *CmdConstant = 1252 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1253 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1254 llvm::GlobalValue::PrivateLinkage, 1255 CmdConstant); 1256 GV->setSection(getSectionNameForCommandline(T)); 1257 UsedArray.push_back( 1258 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1259 if (llvm::GlobalVariable *Old = 1260 M->getGlobalVariable("llvm.cmdline", true)) { 1261 assert(Old->hasOneUse() && 1262 "llvm.cmdline can only be used once in llvm.compiler.used"); 1263 GV->takeName(Old); 1264 Old->eraseFromParent(); 1265 } else { 1266 GV->setName("llvm.cmdline"); 1267 } 1268 } 1269 1270 if (UsedArray.empty()) 1271 return; 1272 1273 // Recreate llvm.compiler.used. 1274 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1275 auto *NewUsed = new GlobalVariable( 1276 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1277 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1278 NewUsed->setSection("llvm.metadata"); 1279 } 1280