1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/StackSafetyAnalysis.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/Bitcode/BitcodeReader.h" 26 #include "llvm/Bitcode/BitcodeWriter.h" 27 #include "llvm/Bitcode/BitcodeWriterPass.h" 28 #include "llvm/CodeGen/RegAllocRegistry.h" 29 #include "llvm/CodeGen/SchedulerRegistry.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/IRPrintingPasses.h" 33 #include "llvm/IR/LegacyPassManager.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/ModuleSummaryIndex.h" 36 #include "llvm/IR/PassManager.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/LTO/LTOBackend.h" 39 #include "llvm/MC/MCAsmInfo.h" 40 #include "llvm/MC/SubtargetFeature.h" 41 #include "llvm/MC/TargetRegistry.h" 42 #include "llvm/Passes/PassBuilder.h" 43 #include "llvm/Passes/PassPlugin.h" 44 #include "llvm/Passes/StandardInstrumentations.h" 45 #include "llvm/Support/BuryPointer.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/MemoryBuffer.h" 48 #include "llvm/Support/PrettyStackTrace.h" 49 #include "llvm/Support/TimeProfiler.h" 50 #include "llvm/Support/Timer.h" 51 #include "llvm/Support/ToolOutputFile.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include "llvm/Target/TargetOptions.h" 55 #include "llvm/Transforms/Coroutines.h" 56 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 57 #include "llvm/Transforms/Coroutines/CoroEarly.h" 58 #include "llvm/Transforms/Coroutines/CoroElide.h" 59 #include "llvm/Transforms/Coroutines/CoroSplit.h" 60 #include "llvm/Transforms/IPO.h" 61 #include "llvm/Transforms/IPO/AlwaysInliner.h" 62 #include "llvm/Transforms/IPO/LowerTypeTests.h" 63 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 64 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 65 #include "llvm/Transforms/InstCombine/InstCombine.h" 66 #include "llvm/Transforms/Instrumentation.h" 67 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 68 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" 69 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 70 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 71 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 72 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 73 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 74 #include "llvm/Transforms/Instrumentation/MemProfiler.h" 75 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 76 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 77 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 78 #include "llvm/Transforms/ObjCARC.h" 79 #include "llvm/Transforms/Scalar.h" 80 #include "llvm/Transforms/Scalar/EarlyCSE.h" 81 #include "llvm/Transforms/Scalar/GVN.h" 82 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" 83 #include "llvm/Transforms/Utils.h" 84 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 85 #include "llvm/Transforms/Utils/Debugify.h" 86 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 87 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 88 #include "llvm/Transforms/Utils/SymbolRewriter.h" 89 #include <memory> 90 using namespace clang; 91 using namespace llvm; 92 93 #define HANDLE_EXTENSION(Ext) \ 94 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 95 #include "llvm/Support/Extension.def" 96 97 namespace llvm { 98 extern cl::opt<bool> DebugInfoCorrelate; 99 } 100 101 namespace { 102 103 // Default filename used for profile generation. 104 std::string getDefaultProfileGenName() { 105 return DebugInfoCorrelate ? "default_%p.proflite" : "default_%m.profraw"; 106 } 107 108 class EmitAssemblyHelper { 109 DiagnosticsEngine &Diags; 110 const HeaderSearchOptions &HSOpts; 111 const CodeGenOptions &CodeGenOpts; 112 const clang::TargetOptions &TargetOpts; 113 const LangOptions &LangOpts; 114 Module *TheModule; 115 116 Timer CodeGenerationTime; 117 118 std::unique_ptr<raw_pwrite_stream> OS; 119 120 TargetIRAnalysis getTargetIRAnalysis() const { 121 if (TM) 122 return TM->getTargetIRAnalysis(); 123 124 return TargetIRAnalysis(); 125 } 126 127 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 128 129 /// Generates the TargetMachine. 130 /// Leaves TM unchanged if it is unable to create the target machine. 131 /// Some of our clang tests specify triples which are not built 132 /// into clang. This is okay because these tests check the generated 133 /// IR, and they require DataLayout which depends on the triple. 134 /// In this case, we allow this method to fail and not report an error. 135 /// When MustCreateTM is used, we print an error if we are unable to load 136 /// the requested target. 137 void CreateTargetMachine(bool MustCreateTM); 138 139 /// Add passes necessary to emit assembly or LLVM IR. 140 /// 141 /// \return True on success. 142 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 143 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 144 145 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 146 std::error_code EC; 147 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 148 llvm::sys::fs::OF_None); 149 if (EC) { 150 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 151 F.reset(); 152 } 153 return F; 154 } 155 156 void 157 RunOptimizationPipeline(BackendAction Action, 158 std::unique_ptr<raw_pwrite_stream> &OS, 159 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS); 160 void RunCodegenPipeline(BackendAction Action, 161 std::unique_ptr<raw_pwrite_stream> &OS, 162 std::unique_ptr<llvm::ToolOutputFile> &DwoOS); 163 164 public: 165 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 166 const HeaderSearchOptions &HeaderSearchOpts, 167 const CodeGenOptions &CGOpts, 168 const clang::TargetOptions &TOpts, 169 const LangOptions &LOpts, Module *M) 170 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 171 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 172 CodeGenerationTime("codegen", "Code Generation Time") {} 173 174 ~EmitAssemblyHelper() { 175 if (CodeGenOpts.DisableFree) 176 BuryPointer(std::move(TM)); 177 } 178 179 std::unique_ptr<TargetMachine> TM; 180 181 // Emit output using the legacy pass manager for the optimization pipeline. 182 // This will be removed soon when using the legacy pass manager for the 183 // optimization pipeline is no longer supported. 184 void EmitAssemblyWithLegacyPassManager(BackendAction Action, 185 std::unique_ptr<raw_pwrite_stream> OS); 186 187 // Emit output using the new pass manager for the optimization pipeline. This 188 // is the default. 189 void EmitAssembly(BackendAction Action, 190 std::unique_ptr<raw_pwrite_stream> OS); 191 }; 192 193 // We need this wrapper to access LangOpts and CGOpts from extension functions 194 // that we add to the PassManagerBuilder. 195 class PassManagerBuilderWrapper : public PassManagerBuilder { 196 public: 197 PassManagerBuilderWrapper(const Triple &TargetTriple, 198 const CodeGenOptions &CGOpts, 199 const LangOptions &LangOpts) 200 : TargetTriple(TargetTriple), CGOpts(CGOpts), LangOpts(LangOpts) {} 201 const Triple &getTargetTriple() const { return TargetTriple; } 202 const CodeGenOptions &getCGOpts() const { return CGOpts; } 203 const LangOptions &getLangOpts() const { return LangOpts; } 204 205 private: 206 const Triple &TargetTriple; 207 const CodeGenOptions &CGOpts; 208 const LangOptions &LangOpts; 209 }; 210 } 211 212 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 213 if (Builder.OptLevel > 0) 214 PM.add(createObjCARCAPElimPass()); 215 } 216 217 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 218 if (Builder.OptLevel > 0) 219 PM.add(createObjCARCExpandPass()); 220 } 221 222 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 223 if (Builder.OptLevel > 0) 224 PM.add(createObjCARCOptPass()); 225 } 226 227 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 228 legacy::PassManagerBase &PM) { 229 PM.add(createAddDiscriminatorsPass()); 230 } 231 232 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 233 legacy::PassManagerBase &PM) { 234 PM.add(createBoundsCheckingLegacyPass()); 235 } 236 237 static SanitizerCoverageOptions 238 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 239 SanitizerCoverageOptions Opts; 240 Opts.CoverageType = 241 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 242 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 243 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 244 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 245 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 246 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 247 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 248 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 249 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 250 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 251 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 252 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 253 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 254 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 255 Opts.TraceLoads = CGOpts.SanitizeCoverageTraceLoads; 256 Opts.TraceStores = CGOpts.SanitizeCoverageTraceStores; 257 return Opts; 258 } 259 260 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 261 legacy::PassManagerBase &PM) { 262 const PassManagerBuilderWrapper &BuilderWrapper = 263 static_cast<const PassManagerBuilderWrapper &>(Builder); 264 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 265 auto Opts = getSancovOptsFromCGOpts(CGOpts); 266 PM.add(createModuleSanitizerCoverageLegacyPassPass( 267 Opts, CGOpts.SanitizeCoverageAllowlistFiles, 268 CGOpts.SanitizeCoverageIgnorelistFiles)); 269 } 270 271 // Check if ASan should use GC-friendly instrumentation for globals. 272 // First of all, there is no point if -fdata-sections is off (expect for MachO, 273 // where this is not a factor). Also, on ELF this feature requires an assembler 274 // extension that only works with -integrated-as at the moment. 275 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 276 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 277 return false; 278 switch (T.getObjectFormat()) { 279 case Triple::MachO: 280 case Triple::COFF: 281 return true; 282 case Triple::ELF: 283 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 284 case Triple::GOFF: 285 llvm::report_fatal_error("ASan not implemented for GOFF"); 286 case Triple::XCOFF: 287 llvm::report_fatal_error("ASan not implemented for XCOFF."); 288 case Triple::Wasm: 289 case Triple::UnknownObjectFormat: 290 break; 291 } 292 return false; 293 } 294 295 static void addMemProfilerPasses(const PassManagerBuilder &Builder, 296 legacy::PassManagerBase &PM) { 297 PM.add(createMemProfilerFunctionPass()); 298 PM.add(createModuleMemProfilerLegacyPassPass()); 299 } 300 301 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 302 legacy::PassManagerBase &PM) { 303 const PassManagerBuilderWrapper &BuilderWrapper = 304 static_cast<const PassManagerBuilderWrapper&>(Builder); 305 const Triple &T = BuilderWrapper.getTargetTriple(); 306 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 307 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 308 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 309 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 310 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 311 llvm::AsanDtorKind DestructorKind = CGOpts.getSanitizeAddressDtor(); 312 llvm::AsanDetectStackUseAfterReturnMode UseAfterReturn = 313 CGOpts.getSanitizeAddressUseAfterReturn(); 314 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 315 UseAfterScope, UseAfterReturn)); 316 PM.add(createModuleAddressSanitizerLegacyPassPass( 317 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator, 318 DestructorKind)); 319 } 320 321 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 322 legacy::PassManagerBase &PM) { 323 PM.add(createAddressSanitizerFunctionPass( 324 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false, 325 /*UseAfterReturn*/ llvm::AsanDetectStackUseAfterReturnMode::Never)); 326 PM.add(createModuleAddressSanitizerLegacyPassPass( 327 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 328 /*UseOdrIndicator*/ false)); 329 } 330 331 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 332 legacy::PassManagerBase &PM) { 333 const PassManagerBuilderWrapper &BuilderWrapper = 334 static_cast<const PassManagerBuilderWrapper &>(Builder); 335 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 336 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 337 PM.add(createHWAddressSanitizerLegacyPassPass( 338 /*CompileKernel*/ false, Recover, 339 /*DisableOptimization*/ CGOpts.OptimizationLevel == 0)); 340 } 341 342 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 343 legacy::PassManagerBase &PM) { 344 const PassManagerBuilderWrapper &BuilderWrapper = 345 static_cast<const PassManagerBuilderWrapper &>(Builder); 346 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 347 PM.add(createHWAddressSanitizerLegacyPassPass( 348 /*CompileKernel*/ true, /*Recover*/ true, 349 /*DisableOptimization*/ CGOpts.OptimizationLevel == 0)); 350 } 351 352 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 353 legacy::PassManagerBase &PM, 354 bool CompileKernel) { 355 const PassManagerBuilderWrapper &BuilderWrapper = 356 static_cast<const PassManagerBuilderWrapper&>(Builder); 357 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 358 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 359 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 360 PM.add(createMemorySanitizerLegacyPassPass( 361 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 362 363 // MemorySanitizer inserts complex instrumentation that mostly follows 364 // the logic of the original code, but operates on "shadow" values. 365 // It can benefit from re-running some general purpose optimization passes. 366 if (Builder.OptLevel > 0) { 367 PM.add(createEarlyCSEPass()); 368 PM.add(createReassociatePass()); 369 PM.add(createLICMPass()); 370 PM.add(createGVNPass()); 371 PM.add(createInstructionCombiningPass()); 372 PM.add(createDeadStoreEliminationPass()); 373 } 374 } 375 376 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 377 legacy::PassManagerBase &PM) { 378 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 379 } 380 381 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 382 legacy::PassManagerBase &PM) { 383 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 384 } 385 386 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 387 legacy::PassManagerBase &PM) { 388 PM.add(createThreadSanitizerLegacyPassPass()); 389 } 390 391 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 392 legacy::PassManagerBase &PM) { 393 const PassManagerBuilderWrapper &BuilderWrapper = 394 static_cast<const PassManagerBuilderWrapper&>(Builder); 395 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 396 PM.add(createDataFlowSanitizerLegacyPassPass(LangOpts.NoSanitizeFiles)); 397 } 398 399 static void addEntryExitInstrumentationPass(const PassManagerBuilder &Builder, 400 legacy::PassManagerBase &PM) { 401 PM.add(createEntryExitInstrumenterPass()); 402 } 403 404 static void 405 addPostInlineEntryExitInstrumentationPass(const PassManagerBuilder &Builder, 406 legacy::PassManagerBase &PM) { 407 PM.add(createPostInlineEntryExitInstrumenterPass()); 408 } 409 410 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 411 const CodeGenOptions &CodeGenOpts) { 412 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 413 414 switch (CodeGenOpts.getVecLib()) { 415 case CodeGenOptions::Accelerate: 416 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 417 break; 418 case CodeGenOptions::LIBMVEC: 419 switch(TargetTriple.getArch()) { 420 default: 421 break; 422 case llvm::Triple::x86_64: 423 TLII->addVectorizableFunctionsFromVecLib 424 (TargetLibraryInfoImpl::LIBMVEC_X86); 425 break; 426 } 427 break; 428 case CodeGenOptions::MASSV: 429 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 430 break; 431 case CodeGenOptions::SVML: 432 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 433 break; 434 case CodeGenOptions::Darwin_libsystem_m: 435 TLII->addVectorizableFunctionsFromVecLib( 436 TargetLibraryInfoImpl::DarwinLibSystemM); 437 break; 438 default: 439 break; 440 } 441 return TLII; 442 } 443 444 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 445 legacy::PassManager *MPM) { 446 llvm::SymbolRewriter::RewriteDescriptorList DL; 447 448 llvm::SymbolRewriter::RewriteMapParser MapParser; 449 for (const auto &MapFile : Opts.RewriteMapFiles) 450 MapParser.parse(MapFile, &DL); 451 452 MPM->add(createRewriteSymbolsPass(DL)); 453 } 454 455 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 456 switch (CodeGenOpts.OptimizationLevel) { 457 default: 458 llvm_unreachable("Invalid optimization level!"); 459 case 0: 460 return CodeGenOpt::None; 461 case 1: 462 return CodeGenOpt::Less; 463 case 2: 464 return CodeGenOpt::Default; // O2/Os/Oz 465 case 3: 466 return CodeGenOpt::Aggressive; 467 } 468 } 469 470 static Optional<llvm::CodeModel::Model> 471 getCodeModel(const CodeGenOptions &CodeGenOpts) { 472 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 473 .Case("tiny", llvm::CodeModel::Tiny) 474 .Case("small", llvm::CodeModel::Small) 475 .Case("kernel", llvm::CodeModel::Kernel) 476 .Case("medium", llvm::CodeModel::Medium) 477 .Case("large", llvm::CodeModel::Large) 478 .Case("default", ~1u) 479 .Default(~0u); 480 assert(CodeModel != ~0u && "invalid code model!"); 481 if (CodeModel == ~1u) 482 return None; 483 return static_cast<llvm::CodeModel::Model>(CodeModel); 484 } 485 486 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 487 if (Action == Backend_EmitObj) 488 return CGFT_ObjectFile; 489 else if (Action == Backend_EmitMCNull) 490 return CGFT_Null; 491 else { 492 assert(Action == Backend_EmitAssembly && "Invalid action!"); 493 return CGFT_AssemblyFile; 494 } 495 } 496 497 static bool actionRequiresCodeGen(BackendAction Action) { 498 return Action != Backend_EmitNothing && Action != Backend_EmitBC && 499 Action != Backend_EmitLL; 500 } 501 502 static bool initTargetOptions(DiagnosticsEngine &Diags, 503 llvm::TargetOptions &Options, 504 const CodeGenOptions &CodeGenOpts, 505 const clang::TargetOptions &TargetOpts, 506 const LangOptions &LangOpts, 507 const HeaderSearchOptions &HSOpts) { 508 switch (LangOpts.getThreadModel()) { 509 case LangOptions::ThreadModelKind::POSIX: 510 Options.ThreadModel = llvm::ThreadModel::POSIX; 511 break; 512 case LangOptions::ThreadModelKind::Single: 513 Options.ThreadModel = llvm::ThreadModel::Single; 514 break; 515 } 516 517 // Set float ABI type. 518 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 519 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 520 "Invalid Floating Point ABI!"); 521 Options.FloatABIType = 522 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 523 .Case("soft", llvm::FloatABI::Soft) 524 .Case("softfp", llvm::FloatABI::Soft) 525 .Case("hard", llvm::FloatABI::Hard) 526 .Default(llvm::FloatABI::Default); 527 528 // Set FP fusion mode. 529 switch (LangOpts.getDefaultFPContractMode()) { 530 case LangOptions::FPM_Off: 531 // Preserve any contraction performed by the front-end. (Strict performs 532 // splitting of the muladd intrinsic in the backend.) 533 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 534 break; 535 case LangOptions::FPM_On: 536 case LangOptions::FPM_FastHonorPragmas: 537 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 538 break; 539 case LangOptions::FPM_Fast: 540 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 541 break; 542 } 543 544 Options.BinutilsVersion = 545 llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion); 546 Options.UseInitArray = CodeGenOpts.UseInitArray; 547 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 548 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 549 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 550 551 // Set EABI version. 552 Options.EABIVersion = TargetOpts.EABIVersion; 553 554 if (LangOpts.hasSjLjExceptions()) 555 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 556 if (LangOpts.hasSEHExceptions()) 557 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 558 if (LangOpts.hasDWARFExceptions()) 559 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 560 if (LangOpts.hasWasmExceptions()) 561 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 562 563 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 564 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 565 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 566 Options.UnsafeFPMath = LangOpts.UnsafeFPMath; 567 Options.ApproxFuncFPMath = LangOpts.ApproxFunc; 568 569 Options.BBSections = 570 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 571 .Case("all", llvm::BasicBlockSection::All) 572 .Case("labels", llvm::BasicBlockSection::Labels) 573 .StartsWith("list=", llvm::BasicBlockSection::List) 574 .Case("none", llvm::BasicBlockSection::None) 575 .Default(llvm::BasicBlockSection::None); 576 577 if (Options.BBSections == llvm::BasicBlockSection::List) { 578 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 579 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 580 if (!MBOrErr) { 581 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 582 << MBOrErr.getError().message(); 583 return false; 584 } 585 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 586 } 587 588 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions; 589 Options.FunctionSections = CodeGenOpts.FunctionSections; 590 Options.DataSections = CodeGenOpts.DataSections; 591 Options.IgnoreXCOFFVisibility = LangOpts.IgnoreXCOFFVisibility; 592 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 593 Options.UniqueBasicBlockSectionNames = 594 CodeGenOpts.UniqueBasicBlockSectionNames; 595 Options.TLSSize = CodeGenOpts.TLSSize; 596 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 597 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 598 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 599 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 600 Options.StackUsageOutput = CodeGenOpts.StackUsageOutput; 601 Options.EmitAddrsig = CodeGenOpts.Addrsig; 602 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 603 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 604 Options.EnableAIXExtendedAltivecABI = CodeGenOpts.EnableAIXExtendedAltivecABI; 605 Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex; 606 Options.LoopAlignment = CodeGenOpts.LoopAlignment; 607 608 switch (CodeGenOpts.getSwiftAsyncFramePointer()) { 609 case CodeGenOptions::SwiftAsyncFramePointerKind::Auto: 610 Options.SwiftAsyncFramePointer = 611 SwiftAsyncFramePointerMode::DeploymentBased; 612 break; 613 614 case CodeGenOptions::SwiftAsyncFramePointerKind::Always: 615 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Always; 616 break; 617 618 case CodeGenOptions::SwiftAsyncFramePointerKind::Never: 619 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Never; 620 break; 621 } 622 623 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 624 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 625 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 626 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 627 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 628 Options.MCOptions.MCIncrementalLinkerCompatible = 629 CodeGenOpts.IncrementalLinkerCompatible; 630 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 631 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 632 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 633 Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64; 634 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 635 Options.MCOptions.ABIName = TargetOpts.ABI; 636 for (const auto &Entry : HSOpts.UserEntries) 637 if (!Entry.IsFramework && 638 (Entry.Group == frontend::IncludeDirGroup::Quoted || 639 Entry.Group == frontend::IncludeDirGroup::Angled || 640 Entry.Group == frontend::IncludeDirGroup::System)) 641 Options.MCOptions.IASSearchPaths.push_back( 642 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 643 Options.MCOptions.Argv0 = CodeGenOpts.Argv0; 644 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; 645 Options.DebugStrictDwarf = CodeGenOpts.DebugStrictDwarf; 646 Options.ObjectFilenameForDebug = CodeGenOpts.ObjectFilenameForDebug; 647 648 return true; 649 } 650 651 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts, 652 const LangOptions &LangOpts) { 653 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 654 return None; 655 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 656 // LLVM's -default-gcov-version flag is set to something invalid. 657 GCOVOptions Options; 658 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 659 Options.EmitData = CodeGenOpts.EmitGcovArcs; 660 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 661 Options.NoRedZone = CodeGenOpts.DisableRedZone; 662 Options.Filter = CodeGenOpts.ProfileFilterFiles; 663 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 664 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 665 return Options; 666 } 667 668 static Optional<InstrProfOptions> 669 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 670 const LangOptions &LangOpts) { 671 if (!CodeGenOpts.hasProfileClangInstr()) 672 return None; 673 InstrProfOptions Options; 674 Options.NoRedZone = CodeGenOpts.DisableRedZone; 675 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 676 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 677 return Options; 678 } 679 680 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 681 legacy::FunctionPassManager &FPM) { 682 // Handle disabling of all LLVM passes, where we want to preserve the 683 // internal module before any optimization. 684 if (CodeGenOpts.DisableLLVMPasses) 685 return; 686 687 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 688 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 689 // are inserted before PMBuilder ones - they'd get the default-constructed 690 // TLI with an unknown target otherwise. 691 Triple TargetTriple(TheModule->getTargetTriple()); 692 std::unique_ptr<TargetLibraryInfoImpl> TLII( 693 createTLII(TargetTriple, CodeGenOpts)); 694 695 // If we reached here with a non-empty index file name, then the index file 696 // was empty and we are not performing ThinLTO backend compilation (used in 697 // testing in a distributed build environment). Drop any the type test 698 // assume sequences inserted for whole program vtables so that codegen doesn't 699 // complain. 700 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 701 MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr, 702 /*ImportSummary=*/nullptr, 703 /*DropTypeTests=*/true)); 704 705 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 706 707 // At O0 and O1 we only run the always inliner which is more efficient. At 708 // higher optimization levels we run the normal inliner. 709 if (CodeGenOpts.OptimizationLevel <= 1) { 710 bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 && 711 !CodeGenOpts.DisableLifetimeMarkers) || 712 LangOpts.Coroutines); 713 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 714 } else { 715 // We do not want to inline hot callsites for SamplePGO module-summary build 716 // because profile annotation will happen again in ThinLTO backend, and we 717 // want the IR of the hot path to match the profile. 718 PMBuilder.Inliner = createFunctionInliningPass( 719 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 720 (!CodeGenOpts.SampleProfileFile.empty() && 721 CodeGenOpts.PrepareForThinLTO)); 722 } 723 724 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 725 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 726 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 727 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 728 // Only enable CGProfilePass when using integrated assembler, since 729 // non-integrated assemblers don't recognize .cgprofile section. 730 PMBuilder.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 731 732 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 733 // Loop interleaving in the loop vectorizer has historically been set to be 734 // enabled when loop unrolling is enabled. 735 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 736 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 737 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 738 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 739 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 740 741 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 742 743 if (TM) 744 TM->adjustPassManager(PMBuilder); 745 746 if (CodeGenOpts.DebugInfoForProfiling || 747 !CodeGenOpts.SampleProfileFile.empty()) 748 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 749 addAddDiscriminatorsPass); 750 751 // In ObjC ARC mode, add the main ARC optimization passes. 752 if (LangOpts.ObjCAutoRefCount) { 753 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 754 addObjCARCExpandPass); 755 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 756 addObjCARCAPElimPass); 757 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 758 addObjCARCOptPass); 759 } 760 761 if (LangOpts.Coroutines) 762 addCoroutinePassesToExtensionPoints(PMBuilder); 763 764 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 765 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 766 addMemProfilerPasses); 767 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 768 addMemProfilerPasses); 769 } 770 771 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 772 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 773 addBoundsCheckingPass); 774 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 775 addBoundsCheckingPass); 776 } 777 778 if (CodeGenOpts.hasSanitizeCoverage()) { 779 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 780 addSanitizerCoveragePass); 781 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 782 addSanitizerCoveragePass); 783 } 784 785 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 786 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 787 addAddressSanitizerPasses); 788 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 789 addAddressSanitizerPasses); 790 } 791 792 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 793 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 794 addKernelAddressSanitizerPasses); 795 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 796 addKernelAddressSanitizerPasses); 797 } 798 799 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 800 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 801 addHWAddressSanitizerPasses); 802 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 803 addHWAddressSanitizerPasses); 804 } 805 806 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 807 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 808 addKernelHWAddressSanitizerPasses); 809 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 810 addKernelHWAddressSanitizerPasses); 811 } 812 813 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 814 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 815 addMemorySanitizerPass); 816 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 817 addMemorySanitizerPass); 818 } 819 820 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 821 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 822 addKernelMemorySanitizerPass); 823 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 824 addKernelMemorySanitizerPass); 825 } 826 827 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 828 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 829 addThreadSanitizerPass); 830 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 831 addThreadSanitizerPass); 832 } 833 834 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 835 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 836 addDataFlowSanitizerPass); 837 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 838 addDataFlowSanitizerPass); 839 } 840 841 if (CodeGenOpts.InstrumentFunctions || 842 CodeGenOpts.InstrumentFunctionEntryBare || 843 CodeGenOpts.InstrumentFunctionsAfterInlining || 844 CodeGenOpts.InstrumentForProfiling) { 845 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 846 addEntryExitInstrumentationPass); 847 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 848 addEntryExitInstrumentationPass); 849 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 850 addPostInlineEntryExitInstrumentationPass); 851 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 852 addPostInlineEntryExitInstrumentationPass); 853 } 854 855 // Set up the per-function pass manager. 856 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 857 if (CodeGenOpts.VerifyModule) 858 FPM.add(createVerifierPass()); 859 860 // Set up the per-module pass manager. 861 if (!CodeGenOpts.RewriteMapFiles.empty()) 862 addSymbolRewriterPass(CodeGenOpts, &MPM); 863 864 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) { 865 MPM.add(createGCOVProfilerPass(*Options)); 866 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 867 MPM.add(createStripSymbolsPass(true)); 868 } 869 870 if (Optional<InstrProfOptions> Options = 871 getInstrProfOptions(CodeGenOpts, LangOpts)) 872 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 873 874 bool hasIRInstr = false; 875 if (CodeGenOpts.hasProfileIRInstr()) { 876 PMBuilder.EnablePGOInstrGen = true; 877 hasIRInstr = true; 878 } 879 if (CodeGenOpts.hasProfileCSIRInstr()) { 880 assert(!CodeGenOpts.hasProfileCSIRUse() && 881 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 882 "same time"); 883 assert(!hasIRInstr && 884 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 885 "same time"); 886 PMBuilder.EnablePGOCSInstrGen = true; 887 hasIRInstr = true; 888 } 889 if (hasIRInstr) { 890 if (!CodeGenOpts.InstrProfileOutput.empty()) 891 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 892 else 893 PMBuilder.PGOInstrGen = getDefaultProfileGenName(); 894 } 895 if (CodeGenOpts.hasProfileIRUse()) { 896 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 897 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 898 } 899 900 if (!CodeGenOpts.SampleProfileFile.empty()) 901 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 902 903 PMBuilder.populateFunctionPassManager(FPM); 904 PMBuilder.populateModulePassManager(MPM); 905 } 906 907 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 908 SmallVector<const char *, 16> BackendArgs; 909 BackendArgs.push_back("clang"); // Fake program name. 910 if (!CodeGenOpts.DebugPass.empty()) { 911 BackendArgs.push_back("-debug-pass"); 912 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 913 } 914 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 915 BackendArgs.push_back("-limit-float-precision"); 916 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 917 } 918 // Check for the default "clang" invocation that won't set any cl::opt values. 919 // Skip trying to parse the command line invocation to avoid the issues 920 // described below. 921 if (BackendArgs.size() == 1) 922 return; 923 BackendArgs.push_back(nullptr); 924 // FIXME: The command line parser below is not thread-safe and shares a global 925 // state, so this call might crash or overwrite the options of another Clang 926 // instance in the same process. 927 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 928 BackendArgs.data()); 929 } 930 931 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 932 // Create the TargetMachine for generating code. 933 std::string Error; 934 std::string Triple = TheModule->getTargetTriple(); 935 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 936 if (!TheTarget) { 937 if (MustCreateTM) 938 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 939 return; 940 } 941 942 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 943 std::string FeaturesStr = 944 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 945 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 946 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 947 948 llvm::TargetOptions Options; 949 if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, 950 HSOpts)) 951 return; 952 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 953 Options, RM, CM, OptLevel)); 954 } 955 956 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 957 BackendAction Action, 958 raw_pwrite_stream &OS, 959 raw_pwrite_stream *DwoOS) { 960 // Add LibraryInfo. 961 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 962 std::unique_ptr<TargetLibraryInfoImpl> TLII( 963 createTLII(TargetTriple, CodeGenOpts)); 964 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 965 966 // Normal mode, emit a .s or .o file by running the code generator. Note, 967 // this also adds codegenerator level optimization passes. 968 CodeGenFileType CGFT = getCodeGenFileType(Action); 969 970 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 971 // "codegen" passes so that it isn't run multiple times when there is 972 // inlining happening. 973 if (CodeGenOpts.OptimizationLevel > 0) 974 CodeGenPasses.add(createObjCARCContractPass()); 975 976 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 977 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 978 Diags.Report(diag::err_fe_unable_to_interface_with_target); 979 return false; 980 } 981 982 return true; 983 } 984 985 void EmitAssemblyHelper::EmitAssemblyWithLegacyPassManager( 986 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 987 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 988 989 setCommandLineOpts(CodeGenOpts); 990 991 bool UsesCodeGen = actionRequiresCodeGen(Action); 992 CreateTargetMachine(UsesCodeGen); 993 994 if (UsesCodeGen && !TM) 995 return; 996 if (TM) 997 TheModule->setDataLayout(TM->createDataLayout()); 998 999 DebugifyCustomPassManager PerModulePasses; 1000 DebugInfoPerPassMap DIPreservationMap; 1001 if (CodeGenOpts.EnableDIPreservationVerify) { 1002 PerModulePasses.setDebugifyMode(DebugifyMode::OriginalDebugInfo); 1003 PerModulePasses.setDIPreservationMap(DIPreservationMap); 1004 1005 if (!CodeGenOpts.DIBugsReportFilePath.empty()) 1006 PerModulePasses.setOrigDIVerifyBugsReportFilePath( 1007 CodeGenOpts.DIBugsReportFilePath); 1008 } 1009 PerModulePasses.add( 1010 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1011 1012 legacy::FunctionPassManager PerFunctionPasses(TheModule); 1013 PerFunctionPasses.add( 1014 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1015 1016 CreatePasses(PerModulePasses, PerFunctionPasses); 1017 1018 // Add a verifier pass if requested. We don't have to do this if the action 1019 // requires code generation because there will already be a verifier pass in 1020 // the code-generation pipeline. 1021 if (!UsesCodeGen && CodeGenOpts.VerifyModule) 1022 PerModulePasses.add(createVerifierPass()); 1023 1024 legacy::PassManager CodeGenPasses; 1025 CodeGenPasses.add( 1026 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1027 1028 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1029 1030 switch (Action) { 1031 case Backend_EmitNothing: 1032 break; 1033 1034 case Backend_EmitBC: 1035 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1036 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1037 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1038 if (!ThinLinkOS) 1039 return; 1040 } 1041 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1042 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1043 CodeGenOpts.EnableSplitLTOUnit); 1044 PerModulePasses.add(createWriteThinLTOBitcodePass( 1045 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 1046 } else { 1047 // Emit a module summary by default for Regular LTO except for ld64 1048 // targets 1049 bool EmitLTOSummary = 1050 (CodeGenOpts.PrepareForLTO && 1051 !CodeGenOpts.DisableLLVMPasses && 1052 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1053 llvm::Triple::Apple); 1054 if (EmitLTOSummary) { 1055 if (!TheModule->getModuleFlag("ThinLTO")) 1056 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1057 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1058 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1059 uint32_t(1)); 1060 } 1061 1062 PerModulePasses.add(createBitcodeWriterPass( 1063 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1064 } 1065 break; 1066 1067 case Backend_EmitLL: 1068 PerModulePasses.add( 1069 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1070 break; 1071 1072 default: 1073 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1074 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1075 if (!DwoOS) 1076 return; 1077 } 1078 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1079 DwoOS ? &DwoOS->os() : nullptr)) 1080 return; 1081 } 1082 1083 // Before executing passes, print the final values of the LLVM options. 1084 cl::PrintOptionValues(); 1085 1086 // Run passes. For now we do all passes at once, but eventually we 1087 // would like to have the option of streaming code generation. 1088 1089 { 1090 PrettyStackTraceString CrashInfo("Per-function optimization"); 1091 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 1092 1093 PerFunctionPasses.doInitialization(); 1094 for (Function &F : *TheModule) 1095 if (!F.isDeclaration()) 1096 PerFunctionPasses.run(F); 1097 PerFunctionPasses.doFinalization(); 1098 } 1099 1100 { 1101 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 1102 llvm::TimeTraceScope TimeScope("PerModulePasses"); 1103 PerModulePasses.run(*TheModule); 1104 } 1105 1106 { 1107 PrettyStackTraceString CrashInfo("Code generation"); 1108 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1109 CodeGenPasses.run(*TheModule); 1110 } 1111 1112 if (ThinLinkOS) 1113 ThinLinkOS->keep(); 1114 if (DwoOS) 1115 DwoOS->keep(); 1116 } 1117 1118 static OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 1119 switch (Opts.OptimizationLevel) { 1120 default: 1121 llvm_unreachable("Invalid optimization level!"); 1122 1123 case 0: 1124 return OptimizationLevel::O0; 1125 1126 case 1: 1127 return OptimizationLevel::O1; 1128 1129 case 2: 1130 switch (Opts.OptimizeSize) { 1131 default: 1132 llvm_unreachable("Invalid optimization level for size!"); 1133 1134 case 0: 1135 return OptimizationLevel::O2; 1136 1137 case 1: 1138 return OptimizationLevel::Os; 1139 1140 case 2: 1141 return OptimizationLevel::Oz; 1142 } 1143 1144 case 3: 1145 return OptimizationLevel::O3; 1146 } 1147 } 1148 1149 static void addSanitizers(const Triple &TargetTriple, 1150 const CodeGenOptions &CodeGenOpts, 1151 const LangOptions &LangOpts, PassBuilder &PB) { 1152 PB.registerOptimizerLastEPCallback([&](ModulePassManager &MPM, 1153 OptimizationLevel Level) { 1154 if (CodeGenOpts.hasSanitizeCoverage()) { 1155 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1156 MPM.addPass(ModuleSanitizerCoveragePass( 1157 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1158 CodeGenOpts.SanitizeCoverageIgnorelistFiles)); 1159 } 1160 1161 auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1162 if (LangOpts.Sanitize.has(Mask)) { 1163 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1164 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1165 1166 MPM.addPass( 1167 ModuleMemorySanitizerPass({TrackOrigins, Recover, CompileKernel})); 1168 FunctionPassManager FPM; 1169 FPM.addPass( 1170 MemorySanitizerPass({TrackOrigins, Recover, CompileKernel})); 1171 if (Level != OptimizationLevel::O0) { 1172 // MemorySanitizer inserts complex instrumentation that mostly 1173 // follows the logic of the original code, but operates on 1174 // "shadow" values. It can benefit from re-running some 1175 // general purpose optimization passes. 1176 FPM.addPass(EarlyCSEPass()); 1177 // TODO: Consider add more passes like in 1178 // addGeneralOptsForMemorySanitizer. EarlyCSEPass makes visible 1179 // difference on size. It's not clear if the rest is still 1180 // usefull. InstCombinePass breakes 1181 // compiler-rt/test/msan/select_origin.cpp. 1182 } 1183 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 1184 } 1185 }; 1186 MSanPass(SanitizerKind::Memory, false); 1187 MSanPass(SanitizerKind::KernelMemory, true); 1188 1189 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1190 MPM.addPass(ModuleThreadSanitizerPass()); 1191 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1192 } 1193 1194 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1195 if (LangOpts.Sanitize.has(Mask)) { 1196 bool UseGlobalGC = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1197 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1198 llvm::AsanDtorKind DestructorKind = 1199 CodeGenOpts.getSanitizeAddressDtor(); 1200 AddressSanitizerOptions Opts; 1201 Opts.CompileKernel = CompileKernel; 1202 Opts.Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1203 Opts.UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1204 Opts.UseAfterReturn = CodeGenOpts.getSanitizeAddressUseAfterReturn(); 1205 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1206 MPM.addPass(ModuleAddressSanitizerPass( 1207 Opts, UseGlobalGC, UseOdrIndicator, DestructorKind)); 1208 } 1209 }; 1210 ASanPass(SanitizerKind::Address, false); 1211 ASanPass(SanitizerKind::KernelAddress, true); 1212 1213 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1214 if (LangOpts.Sanitize.has(Mask)) { 1215 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1216 MPM.addPass(HWAddressSanitizerPass( 1217 {CompileKernel, Recover, 1218 /*DisableOptimization=*/CodeGenOpts.OptimizationLevel == 0})); 1219 } 1220 }; 1221 HWASanPass(SanitizerKind::HWAddress, false); 1222 HWASanPass(SanitizerKind::KernelHWAddress, true); 1223 1224 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 1225 MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles)); 1226 } 1227 }); 1228 } 1229 1230 void EmitAssemblyHelper::RunOptimizationPipeline( 1231 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 1232 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS) { 1233 Optional<PGOOptions> PGOOpt; 1234 1235 if (CodeGenOpts.hasProfileIRInstr()) 1236 // -fprofile-generate. 1237 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1238 ? getDefaultProfileGenName() 1239 : CodeGenOpts.InstrProfileOutput, 1240 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1241 CodeGenOpts.DebugInfoForProfiling); 1242 else if (CodeGenOpts.hasProfileIRUse()) { 1243 // -fprofile-use. 1244 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1245 : PGOOptions::NoCSAction; 1246 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1247 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1248 CSAction, CodeGenOpts.DebugInfoForProfiling); 1249 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1250 // -fprofile-sample-use 1251 PGOOpt = PGOOptions( 1252 CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile, 1253 PGOOptions::SampleUse, PGOOptions::NoCSAction, 1254 CodeGenOpts.DebugInfoForProfiling, CodeGenOpts.PseudoProbeForProfiling); 1255 else if (CodeGenOpts.PseudoProbeForProfiling) 1256 // -fpseudo-probe-for-profiling 1257 PGOOpt = 1258 PGOOptions("", "", "", PGOOptions::NoAction, PGOOptions::NoCSAction, 1259 CodeGenOpts.DebugInfoForProfiling, true); 1260 else if (CodeGenOpts.DebugInfoForProfiling) 1261 // -fdebug-info-for-profiling 1262 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1263 PGOOptions::NoCSAction, true); 1264 1265 // Check to see if we want to generate a CS profile. 1266 if (CodeGenOpts.hasProfileCSIRInstr()) { 1267 assert(!CodeGenOpts.hasProfileCSIRUse() && 1268 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1269 "the same time"); 1270 if (PGOOpt.hasValue()) { 1271 assert(PGOOpt->Action != PGOOptions::IRInstr && 1272 PGOOpt->Action != PGOOptions::SampleUse && 1273 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1274 " pass"); 1275 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1276 ? getDefaultProfileGenName() 1277 : CodeGenOpts.InstrProfileOutput; 1278 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1279 } else 1280 PGOOpt = PGOOptions("", 1281 CodeGenOpts.InstrProfileOutput.empty() 1282 ? getDefaultProfileGenName() 1283 : CodeGenOpts.InstrProfileOutput, 1284 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1285 CodeGenOpts.DebugInfoForProfiling); 1286 } 1287 if (TM) 1288 TM->setPGOOption(PGOOpt); 1289 1290 PipelineTuningOptions PTO; 1291 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1292 // For historical reasons, loop interleaving is set to mirror setting for loop 1293 // unrolling. 1294 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1295 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1296 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1297 PTO.MergeFunctions = CodeGenOpts.MergeFunctions; 1298 // Only enable CGProfilePass when using integrated assembler, since 1299 // non-integrated assemblers don't recognize .cgprofile section. 1300 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 1301 1302 LoopAnalysisManager LAM; 1303 FunctionAnalysisManager FAM; 1304 CGSCCAnalysisManager CGAM; 1305 ModuleAnalysisManager MAM; 1306 1307 bool DebugPassStructure = CodeGenOpts.DebugPass == "Structure"; 1308 PassInstrumentationCallbacks PIC; 1309 PrintPassOptions PrintPassOpts; 1310 PrintPassOpts.Indent = DebugPassStructure; 1311 PrintPassOpts.SkipAnalyses = DebugPassStructure; 1312 StandardInstrumentations SI(CodeGenOpts.DebugPassManager || 1313 DebugPassStructure, 1314 /*VerifyEach*/ false, PrintPassOpts); 1315 SI.registerCallbacks(PIC, &FAM); 1316 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 1317 1318 // Attempt to load pass plugins and register their callbacks with PB. 1319 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1320 auto PassPlugin = PassPlugin::Load(PluginFN); 1321 if (PassPlugin) { 1322 PassPlugin->registerPassBuilderCallbacks(PB); 1323 } else { 1324 Diags.Report(diag::err_fe_unable_to_load_plugin) 1325 << PluginFN << toString(PassPlugin.takeError()); 1326 } 1327 } 1328 #define HANDLE_EXTENSION(Ext) \ 1329 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 1330 #include "llvm/Support/Extension.def" 1331 1332 // Register the target library analysis directly and give it a customized 1333 // preset TLI. 1334 Triple TargetTriple(TheModule->getTargetTriple()); 1335 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1336 createTLII(TargetTriple, CodeGenOpts)); 1337 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1338 1339 // Register all the basic analyses with the managers. 1340 PB.registerModuleAnalyses(MAM); 1341 PB.registerCGSCCAnalyses(CGAM); 1342 PB.registerFunctionAnalyses(FAM); 1343 PB.registerLoopAnalyses(LAM); 1344 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1345 1346 ModulePassManager MPM; 1347 1348 if (!CodeGenOpts.DisableLLVMPasses) { 1349 // Map our optimization levels into one of the distinct levels used to 1350 // configure the pipeline. 1351 OptimizationLevel Level = mapToLevel(CodeGenOpts); 1352 1353 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1354 bool IsLTO = CodeGenOpts.PrepareForLTO; 1355 1356 if (LangOpts.ObjCAutoRefCount) { 1357 PB.registerPipelineStartEPCallback( 1358 [](ModulePassManager &MPM, OptimizationLevel Level) { 1359 if (Level != OptimizationLevel::O0) 1360 MPM.addPass( 1361 createModuleToFunctionPassAdaptor(ObjCARCExpandPass())); 1362 }); 1363 PB.registerPipelineEarlySimplificationEPCallback( 1364 [](ModulePassManager &MPM, OptimizationLevel Level) { 1365 if (Level != OptimizationLevel::O0) 1366 MPM.addPass(ObjCARCAPElimPass()); 1367 }); 1368 PB.registerScalarOptimizerLateEPCallback( 1369 [](FunctionPassManager &FPM, OptimizationLevel Level) { 1370 if (Level != OptimizationLevel::O0) 1371 FPM.addPass(ObjCARCOptPass()); 1372 }); 1373 } 1374 1375 // If we reached here with a non-empty index file name, then the index 1376 // file was empty and we are not performing ThinLTO backend compilation 1377 // (used in testing in a distributed build environment). 1378 bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty(); 1379 // If so drop any the type test assume sequences inserted for whole program 1380 // vtables so that codegen doesn't complain. 1381 if (IsThinLTOPostLink) 1382 PB.registerPipelineStartEPCallback( 1383 [](ModulePassManager &MPM, OptimizationLevel Level) { 1384 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1385 /*ImportSummary=*/nullptr, 1386 /*DropTypeTests=*/true)); 1387 }); 1388 1389 if (CodeGenOpts.InstrumentFunctions || 1390 CodeGenOpts.InstrumentFunctionEntryBare || 1391 CodeGenOpts.InstrumentFunctionsAfterInlining || 1392 CodeGenOpts.InstrumentForProfiling) { 1393 PB.registerPipelineStartEPCallback( 1394 [](ModulePassManager &MPM, OptimizationLevel Level) { 1395 MPM.addPass(createModuleToFunctionPassAdaptor( 1396 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1397 }); 1398 PB.registerOptimizerLastEPCallback( 1399 [](ModulePassManager &MPM, OptimizationLevel Level) { 1400 MPM.addPass(createModuleToFunctionPassAdaptor( 1401 EntryExitInstrumenterPass(/*PostInlining=*/true))); 1402 }); 1403 } 1404 1405 // Register callbacks to schedule sanitizer passes at the appropriate part 1406 // of the pipeline. 1407 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1408 PB.registerScalarOptimizerLateEPCallback( 1409 [](FunctionPassManager &FPM, OptimizationLevel Level) { 1410 FPM.addPass(BoundsCheckingPass()); 1411 }); 1412 1413 // Don't add sanitizers if we are here from ThinLTO PostLink. That already 1414 // done on PreLink stage. 1415 if (!IsThinLTOPostLink) 1416 addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB); 1417 1418 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) 1419 PB.registerPipelineStartEPCallback( 1420 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 1421 MPM.addPass(GCOVProfilerPass(*Options)); 1422 }); 1423 if (Optional<InstrProfOptions> Options = 1424 getInstrProfOptions(CodeGenOpts, LangOpts)) 1425 PB.registerPipelineStartEPCallback( 1426 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 1427 MPM.addPass(InstrProfiling(*Options, false)); 1428 }); 1429 1430 if (CodeGenOpts.OptimizationLevel == 0) { 1431 MPM = PB.buildO0DefaultPipeline(Level, IsLTO || IsThinLTO); 1432 } else if (IsThinLTO) { 1433 MPM = PB.buildThinLTOPreLinkDefaultPipeline(Level); 1434 } else if (IsLTO) { 1435 MPM = PB.buildLTOPreLinkDefaultPipeline(Level); 1436 } else { 1437 MPM = PB.buildPerModuleDefaultPipeline(Level); 1438 } 1439 1440 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1441 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass())); 1442 MPM.addPass(ModuleMemProfilerPass()); 1443 } 1444 } 1445 1446 // Add a verifier pass if requested. We don't have to do this if the action 1447 // requires code generation because there will already be a verifier pass in 1448 // the code-generation pipeline. 1449 if (!actionRequiresCodeGen(Action) && CodeGenOpts.VerifyModule) 1450 MPM.addPass(VerifierPass()); 1451 1452 switch (Action) { 1453 case Backend_EmitBC: 1454 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1455 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1456 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1457 if (!ThinLinkOS) 1458 return; 1459 } 1460 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1461 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1462 CodeGenOpts.EnableSplitLTOUnit); 1463 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1464 : nullptr)); 1465 } else { 1466 // Emit a module summary by default for Regular LTO except for ld64 1467 // targets 1468 bool EmitLTOSummary = 1469 (CodeGenOpts.PrepareForLTO && !CodeGenOpts.DisableLLVMPasses && 1470 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1471 llvm::Triple::Apple); 1472 if (EmitLTOSummary) { 1473 if (!TheModule->getModuleFlag("ThinLTO")) 1474 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1475 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1476 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1477 uint32_t(1)); 1478 } 1479 MPM.addPass( 1480 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1481 } 1482 break; 1483 1484 case Backend_EmitLL: 1485 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1486 break; 1487 1488 default: 1489 break; 1490 } 1491 1492 // Now that we have all of the passes ready, run them. 1493 PrettyStackTraceString CrashInfo("Optimizer"); 1494 MPM.run(*TheModule, MAM); 1495 } 1496 1497 void EmitAssemblyHelper::RunCodegenPipeline( 1498 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 1499 std::unique_ptr<llvm::ToolOutputFile> &DwoOS) { 1500 // We still use the legacy PM to run the codegen pipeline since the new PM 1501 // does not work with the codegen pipeline. 1502 // FIXME: make the new PM work with the codegen pipeline. 1503 legacy::PassManager CodeGenPasses; 1504 1505 // Append any output we need to the pass manager. 1506 switch (Action) { 1507 case Backend_EmitAssembly: 1508 case Backend_EmitMCNull: 1509 case Backend_EmitObj: 1510 CodeGenPasses.add( 1511 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1512 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1513 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1514 if (!DwoOS) 1515 return; 1516 } 1517 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1518 DwoOS ? &DwoOS->os() : nullptr)) 1519 // FIXME: Should we handle this error differently? 1520 return; 1521 break; 1522 default: 1523 return; 1524 } 1525 1526 PrettyStackTraceString CrashInfo("Code generation"); 1527 CodeGenPasses.run(*TheModule); 1528 } 1529 1530 /// A clean version of `EmitAssembly` that uses the new pass manager. 1531 /// 1532 /// Not all features are currently supported in this system, but where 1533 /// necessary it falls back to the legacy pass manager to at least provide 1534 /// basic functionality. 1535 /// 1536 /// This API is planned to have its functionality finished and then to replace 1537 /// `EmitAssembly` at some point in the future when the default switches. 1538 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 1539 std::unique_ptr<raw_pwrite_stream> OS) { 1540 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 1541 setCommandLineOpts(CodeGenOpts); 1542 1543 bool RequiresCodeGen = actionRequiresCodeGen(Action); 1544 CreateTargetMachine(RequiresCodeGen); 1545 1546 if (RequiresCodeGen && !TM) 1547 return; 1548 if (TM) 1549 TheModule->setDataLayout(TM->createDataLayout()); 1550 1551 // Before executing passes, print the final values of the LLVM options. 1552 cl::PrintOptionValues(); 1553 1554 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1555 RunOptimizationPipeline(Action, OS, ThinLinkOS); 1556 RunCodegenPipeline(Action, OS, DwoOS); 1557 1558 if (ThinLinkOS) 1559 ThinLinkOS->keep(); 1560 if (DwoOS) 1561 DwoOS->keep(); 1562 } 1563 1564 static void runThinLTOBackend( 1565 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M, 1566 const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, 1567 const clang::TargetOptions &TOpts, const LangOptions &LOpts, 1568 std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile, 1569 std::string ProfileRemapping, BackendAction Action) { 1570 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1571 ModuleToDefinedGVSummaries; 1572 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1573 1574 setCommandLineOpts(CGOpts); 1575 1576 // We can simply import the values mentioned in the combined index, since 1577 // we should only invoke this using the individual indexes written out 1578 // via a WriteIndexesThinBackend. 1579 FunctionImporter::ImportMapTy ImportList; 1580 if (!lto::initImportList(*M, *CombinedIndex, ImportList)) 1581 return; 1582 1583 auto AddStream = [&](size_t Task) { 1584 return std::make_unique<CachedFileStream>(std::move(OS), 1585 CGOpts.ObjectFilenameForDebug); 1586 }; 1587 lto::Config Conf; 1588 if (CGOpts.SaveTempsFilePrefix != "") { 1589 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1590 /* UseInputModulePath */ false)) { 1591 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1592 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1593 << '\n'; 1594 }); 1595 } 1596 } 1597 Conf.CPU = TOpts.CPU; 1598 Conf.CodeModel = getCodeModel(CGOpts); 1599 Conf.MAttrs = TOpts.Features; 1600 Conf.RelocModel = CGOpts.RelocationModel; 1601 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1602 Conf.OptLevel = CGOpts.OptimizationLevel; 1603 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1604 Conf.SampleProfile = std::move(SampleProfile); 1605 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1606 // For historical reasons, loop interleaving is set to mirror setting for loop 1607 // unrolling. 1608 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1609 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1610 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1611 // Only enable CGProfilePass when using integrated assembler, since 1612 // non-integrated assemblers don't recognize .cgprofile section. 1613 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1614 1615 // Context sensitive profile. 1616 if (CGOpts.hasProfileCSIRInstr()) { 1617 Conf.RunCSIRInstr = true; 1618 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1619 } else if (CGOpts.hasProfileCSIRUse()) { 1620 Conf.RunCSIRInstr = false; 1621 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1622 } 1623 1624 Conf.ProfileRemapping = std::move(ProfileRemapping); 1625 Conf.UseNewPM = !CGOpts.LegacyPassManager; 1626 Conf.DebugPassManager = CGOpts.DebugPassManager; 1627 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1628 Conf.RemarksFilename = CGOpts.OptRecordFile; 1629 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1630 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1631 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1632 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1633 switch (Action) { 1634 case Backend_EmitNothing: 1635 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1636 return false; 1637 }; 1638 break; 1639 case Backend_EmitLL: 1640 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1641 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1642 return false; 1643 }; 1644 break; 1645 case Backend_EmitBC: 1646 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1647 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1648 return false; 1649 }; 1650 break; 1651 default: 1652 Conf.CGFileType = getCodeGenFileType(Action); 1653 break; 1654 } 1655 if (Error E = 1656 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1657 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], 1658 /* ModuleMap */ nullptr, CGOpts.CmdArgs)) { 1659 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1660 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1661 }); 1662 } 1663 } 1664 1665 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1666 const HeaderSearchOptions &HeaderOpts, 1667 const CodeGenOptions &CGOpts, 1668 const clang::TargetOptions &TOpts, 1669 const LangOptions &LOpts, 1670 StringRef TDesc, Module *M, 1671 BackendAction Action, 1672 std::unique_ptr<raw_pwrite_stream> OS) { 1673 1674 llvm::TimeTraceScope TimeScope("Backend"); 1675 1676 std::unique_ptr<llvm::Module> EmptyModule; 1677 if (!CGOpts.ThinLTOIndexFile.empty()) { 1678 // If we are performing a ThinLTO importing compile, load the function index 1679 // into memory and pass it into runThinLTOBackend, which will run the 1680 // function importer and invoke LTO passes. 1681 std::unique_ptr<ModuleSummaryIndex> CombinedIndex; 1682 if (Error E = llvm::getModuleSummaryIndexForFile( 1683 CGOpts.ThinLTOIndexFile, 1684 /*IgnoreEmptyThinLTOIndexFile*/ true) 1685 .moveInto(CombinedIndex)) { 1686 logAllUnhandledErrors(std::move(E), errs(), 1687 "Error loading index file '" + 1688 CGOpts.ThinLTOIndexFile + "': "); 1689 return; 1690 } 1691 1692 // A null CombinedIndex means we should skip ThinLTO compilation 1693 // (LLVM will optionally ignore empty index files, returning null instead 1694 // of an error). 1695 if (CombinedIndex) { 1696 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1697 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, 1698 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, 1699 CGOpts.ProfileRemappingFile, Action); 1700 return; 1701 } 1702 // Distributed indexing detected that nothing from the module is needed 1703 // for the final linking. So we can skip the compilation. We sill need to 1704 // output an empty object file to make sure that a linker does not fail 1705 // trying to read it. Also for some features, like CFI, we must skip 1706 // the compilation as CombinedIndex does not contain all required 1707 // information. 1708 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1709 EmptyModule->setTargetTriple(M->getTargetTriple()); 1710 M = EmptyModule.get(); 1711 } 1712 } 1713 1714 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1715 1716 if (CGOpts.LegacyPassManager) 1717 AsmHelper.EmitAssemblyWithLegacyPassManager(Action, std::move(OS)); 1718 else 1719 AsmHelper.EmitAssembly(Action, std::move(OS)); 1720 1721 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1722 // DataLayout. 1723 if (AsmHelper.TM) { 1724 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1725 if (DLDesc != TDesc) { 1726 unsigned DiagID = Diags.getCustomDiagID( 1727 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1728 "expected target description '%1'"); 1729 Diags.Report(DiagID) << DLDesc << TDesc; 1730 } 1731 } 1732 } 1733 1734 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1735 // __LLVM,__bitcode section. 1736 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1737 llvm::MemoryBufferRef Buf) { 1738 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1739 return; 1740 llvm::EmbedBitcodeInModule( 1741 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1742 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1743 CGOpts.CmdArgs); 1744 } 1745