1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "clang/Lex/HeaderSearchOptions.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/ADT/StringSwitch.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/IRPrintingPasses.h" 31 #include "llvm/IR/LegacyPassManager.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSummaryIndex.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/LTO/LTOBackend.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/SubtargetFeature.h" 38 #include "llvm/Passes/PassBuilder.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/MemoryBuffer.h" 41 #include "llvm/Support/PrettyStackTrace.h" 42 #include "llvm/Support/TargetRegistry.h" 43 #include "llvm/Support/Timer.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Target/TargetMachine.h" 46 #include "llvm/Target/TargetOptions.h" 47 #include "llvm/CodeGen/TargetSubtargetInfo.h" 48 #include "llvm/Transforms/Coroutines.h" 49 #include "llvm/Transforms/IPO.h" 50 #include "llvm/Transforms/IPO/AlwaysInliner.h" 51 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 52 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 53 #include "llvm/Transforms/Instrumentation.h" 54 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 55 #include "llvm/Transforms/ObjCARC.h" 56 #include "llvm/Transforms/Scalar.h" 57 #include "llvm/Transforms/Scalar/GVN.h" 58 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 59 #include "llvm/Transforms/Utils/SymbolRewriter.h" 60 #include <memory> 61 using namespace clang; 62 using namespace llvm; 63 64 namespace { 65 66 // Default filename used for profile generation. 67 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 68 69 class EmitAssemblyHelper { 70 DiagnosticsEngine &Diags; 71 const HeaderSearchOptions &HSOpts; 72 const CodeGenOptions &CodeGenOpts; 73 const clang::TargetOptions &TargetOpts; 74 const LangOptions &LangOpts; 75 Module *TheModule; 76 77 Timer CodeGenerationTime; 78 79 std::unique_ptr<raw_pwrite_stream> OS; 80 81 TargetIRAnalysis getTargetIRAnalysis() const { 82 if (TM) 83 return TM->getTargetIRAnalysis(); 84 85 return TargetIRAnalysis(); 86 } 87 88 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 89 90 /// Generates the TargetMachine. 91 /// Leaves TM unchanged if it is unable to create the target machine. 92 /// Some of our clang tests specify triples which are not built 93 /// into clang. This is okay because these tests check the generated 94 /// IR, and they require DataLayout which depends on the triple. 95 /// In this case, we allow this method to fail and not report an error. 96 /// When MustCreateTM is used, we print an error if we are unable to load 97 /// the requested target. 98 void CreateTargetMachine(bool MustCreateTM); 99 100 /// Add passes necessary to emit assembly or LLVM IR. 101 /// 102 /// \return True on success. 103 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 104 raw_pwrite_stream &OS); 105 106 public: 107 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 108 const HeaderSearchOptions &HeaderSearchOpts, 109 const CodeGenOptions &CGOpts, 110 const clang::TargetOptions &TOpts, 111 const LangOptions &LOpts, Module *M) 112 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 113 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 114 CodeGenerationTime("codegen", "Code Generation Time") {} 115 116 ~EmitAssemblyHelper() { 117 if (CodeGenOpts.DisableFree) 118 BuryPointer(std::move(TM)); 119 } 120 121 std::unique_ptr<TargetMachine> TM; 122 123 void EmitAssembly(BackendAction Action, 124 std::unique_ptr<raw_pwrite_stream> OS); 125 126 void EmitAssemblyWithNewPassManager(BackendAction Action, 127 std::unique_ptr<raw_pwrite_stream> OS); 128 }; 129 130 // We need this wrapper to access LangOpts and CGOpts from extension functions 131 // that we add to the PassManagerBuilder. 132 class PassManagerBuilderWrapper : public PassManagerBuilder { 133 public: 134 PassManagerBuilderWrapper(const Triple &TargetTriple, 135 const CodeGenOptions &CGOpts, 136 const LangOptions &LangOpts) 137 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 138 LangOpts(LangOpts) {} 139 const Triple &getTargetTriple() const { return TargetTriple; } 140 const CodeGenOptions &getCGOpts() const { return CGOpts; } 141 const LangOptions &getLangOpts() const { return LangOpts; } 142 143 private: 144 const Triple &TargetTriple; 145 const CodeGenOptions &CGOpts; 146 const LangOptions &LangOpts; 147 }; 148 } 149 150 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 151 if (Builder.OptLevel > 0) 152 PM.add(createObjCARCAPElimPass()); 153 } 154 155 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 156 if (Builder.OptLevel > 0) 157 PM.add(createObjCARCExpandPass()); 158 } 159 160 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 161 if (Builder.OptLevel > 0) 162 PM.add(createObjCARCOptPass()); 163 } 164 165 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 166 legacy::PassManagerBase &PM) { 167 PM.add(createAddDiscriminatorsPass()); 168 } 169 170 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 171 legacy::PassManagerBase &PM) { 172 PM.add(createBoundsCheckingLegacyPass()); 173 } 174 175 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 176 legacy::PassManagerBase &PM) { 177 const PassManagerBuilderWrapper &BuilderWrapper = 178 static_cast<const PassManagerBuilderWrapper&>(Builder); 179 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 180 SanitizerCoverageOptions Opts; 181 Opts.CoverageType = 182 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 183 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 184 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 185 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 186 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 187 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 188 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 189 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 190 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 191 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 192 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 193 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 194 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 195 PM.add(createSanitizerCoverageModulePass(Opts)); 196 } 197 198 // Check if ASan should use GC-friendly instrumentation for globals. 199 // First of all, there is no point if -fdata-sections is off (expect for MachO, 200 // where this is not a factor). Also, on ELF this feature requires an assembler 201 // extension that only works with -integrated-as at the moment. 202 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 203 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 204 return false; 205 switch (T.getObjectFormat()) { 206 case Triple::MachO: 207 case Triple::COFF: 208 return true; 209 case Triple::ELF: 210 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 211 default: 212 return false; 213 } 214 } 215 216 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 217 legacy::PassManagerBase &PM) { 218 const PassManagerBuilderWrapper &BuilderWrapper = 219 static_cast<const PassManagerBuilderWrapper&>(Builder); 220 const Triple &T = BuilderWrapper.getTargetTriple(); 221 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 222 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 223 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 224 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 225 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 226 UseAfterScope)); 227 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/ false, Recover, 228 UseGlobalsGC)); 229 } 230 231 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 232 legacy::PassManagerBase &PM) { 233 PM.add(createAddressSanitizerFunctionPass( 234 /*CompileKernel*/ true, 235 /*Recover*/ true, /*UseAfterScope*/ false)); 236 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/true, 237 /*Recover*/true)); 238 } 239 240 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 241 legacy::PassManagerBase &PM) { 242 PM.add(createHWAddressSanitizerPass()); 243 } 244 245 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 246 legacy::PassManagerBase &PM) { 247 const PassManagerBuilderWrapper &BuilderWrapper = 248 static_cast<const PassManagerBuilderWrapper&>(Builder); 249 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 250 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 251 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 252 PM.add(createMemorySanitizerPass(TrackOrigins, Recover)); 253 254 // MemorySanitizer inserts complex instrumentation that mostly follows 255 // the logic of the original code, but operates on "shadow" values. 256 // It can benefit from re-running some general purpose optimization passes. 257 if (Builder.OptLevel > 0) { 258 PM.add(createEarlyCSEPass()); 259 PM.add(createReassociatePass()); 260 PM.add(createLICMPass()); 261 PM.add(createGVNPass()); 262 PM.add(createInstructionCombiningPass()); 263 PM.add(createDeadStoreEliminationPass()); 264 } 265 } 266 267 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 268 legacy::PassManagerBase &PM) { 269 PM.add(createThreadSanitizerPass()); 270 } 271 272 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 273 legacy::PassManagerBase &PM) { 274 const PassManagerBuilderWrapper &BuilderWrapper = 275 static_cast<const PassManagerBuilderWrapper&>(Builder); 276 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 277 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 278 } 279 280 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 281 legacy::PassManagerBase &PM) { 282 const PassManagerBuilderWrapper &BuilderWrapper = 283 static_cast<const PassManagerBuilderWrapper&>(Builder); 284 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 285 EfficiencySanitizerOptions Opts; 286 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 287 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 288 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 289 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 290 PM.add(createEfficiencySanitizerPass(Opts)); 291 } 292 293 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 294 const CodeGenOptions &CodeGenOpts) { 295 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 296 if (!CodeGenOpts.SimplifyLibCalls) 297 TLII->disableAllFunctions(); 298 else { 299 // Disable individual libc/libm calls in TargetLibraryInfo. 300 LibFunc F; 301 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 302 if (TLII->getLibFunc(FuncName, F)) 303 TLII->setUnavailable(F); 304 } 305 306 switch (CodeGenOpts.getVecLib()) { 307 case CodeGenOptions::Accelerate: 308 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 309 break; 310 case CodeGenOptions::SVML: 311 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 312 break; 313 default: 314 break; 315 } 316 return TLII; 317 } 318 319 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 320 legacy::PassManager *MPM) { 321 llvm::SymbolRewriter::RewriteDescriptorList DL; 322 323 llvm::SymbolRewriter::RewriteMapParser MapParser; 324 for (const auto &MapFile : Opts.RewriteMapFiles) 325 MapParser.parse(MapFile, &DL); 326 327 MPM->add(createRewriteSymbolsPass(DL)); 328 } 329 330 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 331 switch (CodeGenOpts.OptimizationLevel) { 332 default: 333 llvm_unreachable("Invalid optimization level!"); 334 case 0: 335 return CodeGenOpt::None; 336 case 1: 337 return CodeGenOpt::Less; 338 case 2: 339 return CodeGenOpt::Default; // O2/Os/Oz 340 case 3: 341 return CodeGenOpt::Aggressive; 342 } 343 } 344 345 static Optional<llvm::CodeModel::Model> 346 getCodeModel(const CodeGenOptions &CodeGenOpts) { 347 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 348 .Case("small", llvm::CodeModel::Small) 349 .Case("kernel", llvm::CodeModel::Kernel) 350 .Case("medium", llvm::CodeModel::Medium) 351 .Case("large", llvm::CodeModel::Large) 352 .Case("default", ~1u) 353 .Default(~0u); 354 assert(CodeModel != ~0u && "invalid code model!"); 355 if (CodeModel == ~1u) 356 return None; 357 return static_cast<llvm::CodeModel::Model>(CodeModel); 358 } 359 360 static llvm::Reloc::Model getRelocModel(const CodeGenOptions &CodeGenOpts) { 361 // Keep this synced with the equivalent code in 362 // lib/Frontend/CompilerInvocation.cpp 363 llvm::Optional<llvm::Reloc::Model> RM; 364 RM = llvm::StringSwitch<llvm::Reloc::Model>(CodeGenOpts.RelocationModel) 365 .Case("static", llvm::Reloc::Static) 366 .Case("pic", llvm::Reloc::PIC_) 367 .Case("ropi", llvm::Reloc::ROPI) 368 .Case("rwpi", llvm::Reloc::RWPI) 369 .Case("ropi-rwpi", llvm::Reloc::ROPI_RWPI) 370 .Case("dynamic-no-pic", llvm::Reloc::DynamicNoPIC); 371 assert(RM.hasValue() && "invalid PIC model!"); 372 return *RM; 373 } 374 375 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 376 if (Action == Backend_EmitObj) 377 return TargetMachine::CGFT_ObjectFile; 378 else if (Action == Backend_EmitMCNull) 379 return TargetMachine::CGFT_Null; 380 else { 381 assert(Action == Backend_EmitAssembly && "Invalid action!"); 382 return TargetMachine::CGFT_AssemblyFile; 383 } 384 } 385 386 static void initTargetOptions(llvm::TargetOptions &Options, 387 const CodeGenOptions &CodeGenOpts, 388 const clang::TargetOptions &TargetOpts, 389 const LangOptions &LangOpts, 390 const HeaderSearchOptions &HSOpts) { 391 Options.ThreadModel = 392 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 393 .Case("posix", llvm::ThreadModel::POSIX) 394 .Case("single", llvm::ThreadModel::Single); 395 396 // Set float ABI type. 397 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 398 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 399 "Invalid Floating Point ABI!"); 400 Options.FloatABIType = 401 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 402 .Case("soft", llvm::FloatABI::Soft) 403 .Case("softfp", llvm::FloatABI::Soft) 404 .Case("hard", llvm::FloatABI::Hard) 405 .Default(llvm::FloatABI::Default); 406 407 // Set FP fusion mode. 408 switch (LangOpts.getDefaultFPContractMode()) { 409 case LangOptions::FPC_Off: 410 // Preserve any contraction performed by the front-end. (Strict performs 411 // splitting of the muladd instrinsic in the backend.) 412 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 413 break; 414 case LangOptions::FPC_On: 415 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 416 break; 417 case LangOptions::FPC_Fast: 418 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 419 break; 420 } 421 422 Options.UseInitArray = CodeGenOpts.UseInitArray; 423 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 424 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 425 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 426 427 // Set EABI version. 428 Options.EABIVersion = TargetOpts.EABIVersion; 429 430 if (LangOpts.SjLjExceptions) 431 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 432 if (LangOpts.SEHExceptions) 433 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 434 if (LangOpts.DWARFExceptions) 435 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 436 437 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 438 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 439 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 440 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 441 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 442 Options.FunctionSections = CodeGenOpts.FunctionSections; 443 Options.DataSections = CodeGenOpts.DataSections; 444 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 445 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 446 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 447 448 if (CodeGenOpts.EnableSplitDwarf) 449 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 450 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 451 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 452 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 453 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 454 Options.MCOptions.MCIncrementalLinkerCompatible = 455 CodeGenOpts.IncrementalLinkerCompatible; 456 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 457 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 458 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 459 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 460 Options.MCOptions.ABIName = TargetOpts.ABI; 461 for (const auto &Entry : HSOpts.UserEntries) 462 if (!Entry.IsFramework && 463 (Entry.Group == frontend::IncludeDirGroup::Quoted || 464 Entry.Group == frontend::IncludeDirGroup::Angled || 465 Entry.Group == frontend::IncludeDirGroup::System)) 466 Options.MCOptions.IASSearchPaths.push_back( 467 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 468 } 469 470 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 471 legacy::FunctionPassManager &FPM) { 472 // Handle disabling of all LLVM passes, where we want to preserve the 473 // internal module before any optimization. 474 if (CodeGenOpts.DisableLLVMPasses) 475 return; 476 477 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 478 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 479 // are inserted before PMBuilder ones - they'd get the default-constructed 480 // TLI with an unknown target otherwise. 481 Triple TargetTriple(TheModule->getTargetTriple()); 482 std::unique_ptr<TargetLibraryInfoImpl> TLII( 483 createTLII(TargetTriple, CodeGenOpts)); 484 485 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 486 487 // At O0 and O1 we only run the always inliner which is more efficient. At 488 // higher optimization levels we run the normal inliner. 489 if (CodeGenOpts.OptimizationLevel <= 1) { 490 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 491 !CodeGenOpts.DisableLifetimeMarkers); 492 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 493 } else { 494 // We do not want to inline hot callsites for SamplePGO module-summary build 495 // because profile annotation will happen again in ThinLTO backend, and we 496 // want the IR of the hot path to match the profile. 497 PMBuilder.Inliner = createFunctionInliningPass( 498 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 499 (!CodeGenOpts.SampleProfileFile.empty() && 500 CodeGenOpts.EmitSummaryIndex)); 501 } 502 503 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 504 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 505 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 506 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 507 508 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 509 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 510 PMBuilder.PrepareForThinLTO = CodeGenOpts.EmitSummaryIndex; 511 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 512 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 513 514 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 515 516 if (TM) 517 TM->adjustPassManager(PMBuilder); 518 519 if (CodeGenOpts.DebugInfoForProfiling || 520 !CodeGenOpts.SampleProfileFile.empty()) 521 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 522 addAddDiscriminatorsPass); 523 524 // In ObjC ARC mode, add the main ARC optimization passes. 525 if (LangOpts.ObjCAutoRefCount) { 526 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 527 addObjCARCExpandPass); 528 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 529 addObjCARCAPElimPass); 530 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 531 addObjCARCOptPass); 532 } 533 534 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 535 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 536 addBoundsCheckingPass); 537 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 538 addBoundsCheckingPass); 539 } 540 541 if (CodeGenOpts.SanitizeCoverageType || 542 CodeGenOpts.SanitizeCoverageIndirectCalls || 543 CodeGenOpts.SanitizeCoverageTraceCmp) { 544 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 545 addSanitizerCoveragePass); 546 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 547 addSanitizerCoveragePass); 548 } 549 550 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 551 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 552 addAddressSanitizerPasses); 553 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 554 addAddressSanitizerPasses); 555 } 556 557 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 558 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 559 addKernelAddressSanitizerPasses); 560 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 561 addKernelAddressSanitizerPasses); 562 } 563 564 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 565 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 566 addHWAddressSanitizerPasses); 567 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 568 addHWAddressSanitizerPasses); 569 } 570 571 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 572 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 573 addMemorySanitizerPass); 574 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 575 addMemorySanitizerPass); 576 } 577 578 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 579 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 580 addThreadSanitizerPass); 581 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 582 addThreadSanitizerPass); 583 } 584 585 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 586 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 587 addDataFlowSanitizerPass); 588 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 589 addDataFlowSanitizerPass); 590 } 591 592 if (LangOpts.CoroutinesTS) 593 addCoroutinePassesToExtensionPoints(PMBuilder); 594 595 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 596 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 597 addEfficiencySanitizerPass); 598 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 599 addEfficiencySanitizerPass); 600 } 601 602 // Set up the per-function pass manager. 603 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 604 if (CodeGenOpts.VerifyModule) 605 FPM.add(createVerifierPass()); 606 607 // Set up the per-module pass manager. 608 if (!CodeGenOpts.RewriteMapFiles.empty()) 609 addSymbolRewriterPass(CodeGenOpts, &MPM); 610 611 if (!CodeGenOpts.DisableGCov && 612 (CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)) { 613 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 614 // LLVM's -default-gcov-version flag is set to something invalid. 615 GCOVOptions Options; 616 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 617 Options.EmitData = CodeGenOpts.EmitGcovArcs; 618 memcpy(Options.Version, CodeGenOpts.CoverageVersion, 4); 619 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 620 Options.NoRedZone = CodeGenOpts.DisableRedZone; 621 Options.FunctionNamesInData = 622 !CodeGenOpts.CoverageNoFunctionNamesInData; 623 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 624 MPM.add(createGCOVProfilerPass(Options)); 625 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 626 MPM.add(createStripSymbolsPass(true)); 627 } 628 629 if (CodeGenOpts.hasProfileClangInstr()) { 630 InstrProfOptions Options; 631 Options.NoRedZone = CodeGenOpts.DisableRedZone; 632 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 633 MPM.add(createInstrProfilingLegacyPass(Options)); 634 } 635 if (CodeGenOpts.hasProfileIRInstr()) { 636 PMBuilder.EnablePGOInstrGen = true; 637 if (!CodeGenOpts.InstrProfileOutput.empty()) 638 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 639 else 640 PMBuilder.PGOInstrGen = DefaultProfileGenName; 641 } 642 if (CodeGenOpts.hasProfileIRUse()) 643 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 644 645 if (!CodeGenOpts.SampleProfileFile.empty()) 646 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 647 648 PMBuilder.populateFunctionPassManager(FPM); 649 PMBuilder.populateModulePassManager(MPM); 650 } 651 652 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 653 SmallVector<const char *, 16> BackendArgs; 654 BackendArgs.push_back("clang"); // Fake program name. 655 if (!CodeGenOpts.DebugPass.empty()) { 656 BackendArgs.push_back("-debug-pass"); 657 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 658 } 659 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 660 BackendArgs.push_back("-limit-float-precision"); 661 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 662 } 663 for (const std::string &BackendOption : CodeGenOpts.BackendOptions) 664 BackendArgs.push_back(BackendOption.c_str()); 665 BackendArgs.push_back(nullptr); 666 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 667 BackendArgs.data()); 668 } 669 670 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 671 // Create the TargetMachine for generating code. 672 std::string Error; 673 std::string Triple = TheModule->getTargetTriple(); 674 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 675 if (!TheTarget) { 676 if (MustCreateTM) 677 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 678 return; 679 } 680 681 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 682 std::string FeaturesStr = 683 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 684 llvm::Reloc::Model RM = getRelocModel(CodeGenOpts); 685 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 686 687 llvm::TargetOptions Options; 688 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 689 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 690 Options, RM, CM, OptLevel)); 691 } 692 693 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 694 BackendAction Action, 695 raw_pwrite_stream &OS) { 696 // Add LibraryInfo. 697 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 698 std::unique_ptr<TargetLibraryInfoImpl> TLII( 699 createTLII(TargetTriple, CodeGenOpts)); 700 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 701 702 // Normal mode, emit a .s or .o file by running the code generator. Note, 703 // this also adds codegenerator level optimization passes. 704 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 705 706 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 707 // "codegen" passes so that it isn't run multiple times when there is 708 // inlining happening. 709 if (CodeGenOpts.OptimizationLevel > 0) 710 CodeGenPasses.add(createObjCARCContractPass()); 711 712 if (TM->addPassesToEmitFile(CodeGenPasses, OS, CGFT, 713 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 714 Diags.Report(diag::err_fe_unable_to_interface_with_target); 715 return false; 716 } 717 718 return true; 719 } 720 721 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 722 std::unique_ptr<raw_pwrite_stream> OS) { 723 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 724 725 setCommandLineOpts(CodeGenOpts); 726 727 bool UsesCodeGen = (Action != Backend_EmitNothing && 728 Action != Backend_EmitBC && 729 Action != Backend_EmitLL); 730 CreateTargetMachine(UsesCodeGen); 731 732 if (UsesCodeGen && !TM) 733 return; 734 if (TM) 735 TheModule->setDataLayout(TM->createDataLayout()); 736 737 legacy::PassManager PerModulePasses; 738 PerModulePasses.add( 739 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 740 741 legacy::FunctionPassManager PerFunctionPasses(TheModule); 742 PerFunctionPasses.add( 743 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 744 745 CreatePasses(PerModulePasses, PerFunctionPasses); 746 747 legacy::PassManager CodeGenPasses; 748 CodeGenPasses.add( 749 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 750 751 std::unique_ptr<raw_fd_ostream> ThinLinkOS; 752 753 switch (Action) { 754 case Backend_EmitNothing: 755 break; 756 757 case Backend_EmitBC: 758 if (CodeGenOpts.EmitSummaryIndex) { 759 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 760 std::error_code EC; 761 ThinLinkOS.reset(new llvm::raw_fd_ostream( 762 CodeGenOpts.ThinLinkBitcodeFile, EC, 763 llvm::sys::fs::F_None)); 764 if (EC) { 765 Diags.Report(diag::err_fe_unable_to_open_output) << CodeGenOpts.ThinLinkBitcodeFile 766 << EC.message(); 767 return; 768 } 769 } 770 PerModulePasses.add( 771 createWriteThinLTOBitcodePass(*OS, ThinLinkOS.get())); 772 } 773 else 774 PerModulePasses.add( 775 createBitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists)); 776 break; 777 778 case Backend_EmitLL: 779 PerModulePasses.add( 780 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 781 break; 782 783 default: 784 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 785 return; 786 } 787 788 // Before executing passes, print the final values of the LLVM options. 789 cl::PrintOptionValues(); 790 791 // Run passes. For now we do all passes at once, but eventually we 792 // would like to have the option of streaming code generation. 793 794 { 795 PrettyStackTraceString CrashInfo("Per-function optimization"); 796 797 PerFunctionPasses.doInitialization(); 798 for (Function &F : *TheModule) 799 if (!F.isDeclaration()) 800 PerFunctionPasses.run(F); 801 PerFunctionPasses.doFinalization(); 802 } 803 804 { 805 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 806 PerModulePasses.run(*TheModule); 807 } 808 809 { 810 PrettyStackTraceString CrashInfo("Code generation"); 811 CodeGenPasses.run(*TheModule); 812 } 813 } 814 815 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 816 switch (Opts.OptimizationLevel) { 817 default: 818 llvm_unreachable("Invalid optimization level!"); 819 820 case 1: 821 return PassBuilder::O1; 822 823 case 2: 824 switch (Opts.OptimizeSize) { 825 default: 826 llvm_unreachable("Invalide optimization level for size!"); 827 828 case 0: 829 return PassBuilder::O2; 830 831 case 1: 832 return PassBuilder::Os; 833 834 case 2: 835 return PassBuilder::Oz; 836 } 837 838 case 3: 839 return PassBuilder::O3; 840 } 841 } 842 843 /// A clean version of `EmitAssembly` that uses the new pass manager. 844 /// 845 /// Not all features are currently supported in this system, but where 846 /// necessary it falls back to the legacy pass manager to at least provide 847 /// basic functionality. 848 /// 849 /// This API is planned to have its functionality finished and then to replace 850 /// `EmitAssembly` at some point in the future when the default switches. 851 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 852 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 853 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 854 setCommandLineOpts(CodeGenOpts); 855 856 // The new pass manager always makes a target machine available to passes 857 // during construction. 858 CreateTargetMachine(/*MustCreateTM*/ true); 859 if (!TM) 860 // This will already be diagnosed, just bail. 861 return; 862 TheModule->setDataLayout(TM->createDataLayout()); 863 864 Optional<PGOOptions> PGOOpt; 865 866 if (CodeGenOpts.hasProfileIRInstr()) 867 // -fprofile-generate. 868 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 869 ? DefaultProfileGenName 870 : CodeGenOpts.InstrProfileOutput, 871 "", "", true, CodeGenOpts.DebugInfoForProfiling); 872 else if (CodeGenOpts.hasProfileIRUse()) 873 // -fprofile-use. 874 PGOOpt = PGOOptions("", CodeGenOpts.ProfileInstrumentUsePath, "", false, 875 CodeGenOpts.DebugInfoForProfiling); 876 else if (!CodeGenOpts.SampleProfileFile.empty()) 877 // -fprofile-sample-use 878 PGOOpt = PGOOptions("", "", CodeGenOpts.SampleProfileFile, false, 879 CodeGenOpts.DebugInfoForProfiling); 880 else if (CodeGenOpts.DebugInfoForProfiling) 881 // -fdebug-info-for-profiling 882 PGOOpt = PGOOptions("", "", "", false, true); 883 884 PassBuilder PB(TM.get(), PGOOpt); 885 886 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 887 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 888 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 889 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 890 891 // Register the AA manager first so that our version is the one used. 892 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 893 894 // Register the target library analysis directly and give it a customized 895 // preset TLI. 896 Triple TargetTriple(TheModule->getTargetTriple()); 897 std::unique_ptr<TargetLibraryInfoImpl> TLII( 898 createTLII(TargetTriple, CodeGenOpts)); 899 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 900 MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 901 902 // Register all the basic analyses with the managers. 903 PB.registerModuleAnalyses(MAM); 904 PB.registerCGSCCAnalyses(CGAM); 905 PB.registerFunctionAnalyses(FAM); 906 PB.registerLoopAnalyses(LAM); 907 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 908 909 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 910 911 if (!CodeGenOpts.DisableLLVMPasses) { 912 bool IsThinLTO = CodeGenOpts.EmitSummaryIndex; 913 bool IsLTO = CodeGenOpts.PrepareForLTO; 914 915 if (CodeGenOpts.OptimizationLevel == 0) { 916 // Build a minimal pipeline based on the semantics required by Clang, 917 // which is just that always inlining occurs. 918 MPM.addPass(AlwaysInlinerPass()); 919 920 // At -O0 we directly run necessary sanitizer passes. 921 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 922 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 923 924 // Lastly, add a semantically necessary pass for ThinLTO. 925 if (IsThinLTO) 926 MPM.addPass(NameAnonGlobalPass()); 927 } else { 928 // Map our optimization levels into one of the distinct levels used to 929 // configure the pipeline. 930 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 931 932 // Register callbacks to schedule sanitizer passes at the appropriate part of 933 // the pipeline. 934 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 935 PB.registerScalarOptimizerLateEPCallback( 936 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 937 FPM.addPass(BoundsCheckingPass()); 938 }); 939 940 if (IsThinLTO) { 941 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 942 Level, CodeGenOpts.DebugPassManager); 943 MPM.addPass(NameAnonGlobalPass()); 944 } else if (IsLTO) { 945 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 946 CodeGenOpts.DebugPassManager); 947 } else { 948 MPM = PB.buildPerModuleDefaultPipeline(Level, 949 CodeGenOpts.DebugPassManager); 950 } 951 } 952 } 953 954 // FIXME: We still use the legacy pass manager to do code generation. We 955 // create that pass manager here and use it as needed below. 956 legacy::PassManager CodeGenPasses; 957 bool NeedCodeGen = false; 958 Optional<raw_fd_ostream> ThinLinkOS; 959 960 // Append any output we need to the pass manager. 961 switch (Action) { 962 case Backend_EmitNothing: 963 break; 964 965 case Backend_EmitBC: 966 if (CodeGenOpts.EmitSummaryIndex) { 967 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 968 std::error_code EC; 969 ThinLinkOS.emplace(CodeGenOpts.ThinLinkBitcodeFile, EC, 970 llvm::sys::fs::F_None); 971 if (EC) { 972 Diags.Report(diag::err_fe_unable_to_open_output) 973 << CodeGenOpts.ThinLinkBitcodeFile << EC.message(); 974 return; 975 } 976 } 977 MPM.addPass( 978 ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &*ThinLinkOS : nullptr)); 979 } else { 980 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 981 CodeGenOpts.EmitSummaryIndex, 982 CodeGenOpts.EmitSummaryIndex)); 983 } 984 break; 985 986 case Backend_EmitLL: 987 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 988 break; 989 990 case Backend_EmitAssembly: 991 case Backend_EmitMCNull: 992 case Backend_EmitObj: 993 NeedCodeGen = true; 994 CodeGenPasses.add( 995 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 996 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 997 // FIXME: Should we handle this error differently? 998 return; 999 break; 1000 } 1001 1002 // Before executing passes, print the final values of the LLVM options. 1003 cl::PrintOptionValues(); 1004 1005 // Now that we have all of the passes ready, run them. 1006 { 1007 PrettyStackTraceString CrashInfo("Optimizer"); 1008 MPM.run(*TheModule, MAM); 1009 } 1010 1011 // Now if needed, run the legacy PM for codegen. 1012 if (NeedCodeGen) { 1013 PrettyStackTraceString CrashInfo("Code generation"); 1014 CodeGenPasses.run(*TheModule); 1015 } 1016 } 1017 1018 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1019 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1020 if (!BMsOrErr) 1021 return BMsOrErr.takeError(); 1022 1023 // The bitcode file may contain multiple modules, we want the one that is 1024 // marked as being the ThinLTO module. 1025 for (BitcodeModule &BM : *BMsOrErr) { 1026 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1027 if (LTOInfo && LTOInfo->IsThinLTO) 1028 return BM; 1029 } 1030 1031 return make_error<StringError>("Could not find module summary", 1032 inconvertibleErrorCode()); 1033 } 1034 1035 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1036 const HeaderSearchOptions &HeaderOpts, 1037 const CodeGenOptions &CGOpts, 1038 const clang::TargetOptions &TOpts, 1039 const LangOptions &LOpts, 1040 std::unique_ptr<raw_pwrite_stream> OS, 1041 std::string SampleProfile, 1042 BackendAction Action) { 1043 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1044 ModuleToDefinedGVSummaries; 1045 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1046 1047 setCommandLineOpts(CGOpts); 1048 1049 // We can simply import the values mentioned in the combined index, since 1050 // we should only invoke this using the individual indexes written out 1051 // via a WriteIndexesThinBackend. 1052 FunctionImporter::ImportMapTy ImportList; 1053 for (auto &GlobalList : *CombinedIndex) { 1054 // Ignore entries for undefined references. 1055 if (GlobalList.second.SummaryList.empty()) 1056 continue; 1057 1058 auto GUID = GlobalList.first; 1059 assert(GlobalList.second.SummaryList.size() == 1 && 1060 "Expected individual combined index to have one summary per GUID"); 1061 auto &Summary = GlobalList.second.SummaryList[0]; 1062 // Skip the summaries for the importing module. These are included to 1063 // e.g. record required linkage changes. 1064 if (Summary->modulePath() == M->getModuleIdentifier()) 1065 continue; 1066 // Doesn't matter what value we plug in to the map, just needs an entry 1067 // to provoke importing by thinBackend. 1068 ImportList[Summary->modulePath()][GUID] = 1; 1069 } 1070 1071 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1072 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1073 1074 for (auto &I : ImportList) { 1075 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1076 llvm::MemoryBuffer::getFile(I.first()); 1077 if (!MBOrErr) { 1078 errs() << "Error loading imported file '" << I.first() 1079 << "': " << MBOrErr.getError().message() << "\n"; 1080 return; 1081 } 1082 1083 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1084 if (!BMOrErr) { 1085 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1086 errs() << "Error loading imported file '" << I.first() 1087 << "': " << EIB.message() << '\n'; 1088 }); 1089 return; 1090 } 1091 ModuleMap.insert({I.first(), *BMOrErr}); 1092 1093 OwnedImports.push_back(std::move(*MBOrErr)); 1094 } 1095 auto AddStream = [&](size_t Task) { 1096 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 1097 }; 1098 lto::Config Conf; 1099 Conf.CPU = TOpts.CPU; 1100 Conf.CodeModel = getCodeModel(CGOpts); 1101 Conf.MAttrs = TOpts.Features; 1102 Conf.RelocModel = getRelocModel(CGOpts); 1103 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1104 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1105 Conf.SampleProfile = std::move(SampleProfile); 1106 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1107 Conf.DebugPassManager = CGOpts.DebugPassManager; 1108 switch (Action) { 1109 case Backend_EmitNothing: 1110 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1111 return false; 1112 }; 1113 break; 1114 case Backend_EmitLL: 1115 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1116 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1117 return false; 1118 }; 1119 break; 1120 case Backend_EmitBC: 1121 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1122 WriteBitcodeToFile(M, *OS, CGOpts.EmitLLVMUseLists); 1123 return false; 1124 }; 1125 break; 1126 default: 1127 Conf.CGFileType = getCodeGenFileType(Action); 1128 break; 1129 } 1130 if (Error E = thinBackend( 1131 Conf, 0, AddStream, *M, *CombinedIndex, ImportList, 1132 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1133 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1134 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1135 }); 1136 } 1137 } 1138 1139 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1140 const HeaderSearchOptions &HeaderOpts, 1141 const CodeGenOptions &CGOpts, 1142 const clang::TargetOptions &TOpts, 1143 const LangOptions &LOpts, 1144 const llvm::DataLayout &TDesc, Module *M, 1145 BackendAction Action, 1146 std::unique_ptr<raw_pwrite_stream> OS) { 1147 if (!CGOpts.ThinLTOIndexFile.empty()) { 1148 // If we are performing a ThinLTO importing compile, load the function index 1149 // into memory and pass it into runThinLTOBackend, which will run the 1150 // function importer and invoke LTO passes. 1151 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1152 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1153 /*IgnoreEmptyThinLTOIndexFile*/true); 1154 if (!IndexOrErr) { 1155 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1156 "Error loading index file '" + 1157 CGOpts.ThinLTOIndexFile + "': "); 1158 return; 1159 } 1160 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1161 // A null CombinedIndex means we should skip ThinLTO compilation 1162 // (LLVM will optionally ignore empty index files, returning null instead 1163 // of an error). 1164 bool DoThinLTOBackend = CombinedIndex != nullptr; 1165 if (DoThinLTOBackend) { 1166 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1167 LOpts, std::move(OS), CGOpts.SampleProfileFile, Action); 1168 return; 1169 } 1170 } 1171 1172 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1173 1174 if (CGOpts.ExperimentalNewPassManager) 1175 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1176 else 1177 AsmHelper.EmitAssembly(Action, std::move(OS)); 1178 1179 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1180 // DataLayout. 1181 if (AsmHelper.TM) { 1182 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1183 if (DLDesc != TDesc.getStringRepresentation()) { 1184 unsigned DiagID = Diags.getCustomDiagID( 1185 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1186 "expected target description '%1'"); 1187 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1188 } 1189 } 1190 } 1191 1192 static const char* getSectionNameForBitcode(const Triple &T) { 1193 switch (T.getObjectFormat()) { 1194 case Triple::MachO: 1195 return "__LLVM,__bitcode"; 1196 case Triple::COFF: 1197 case Triple::ELF: 1198 case Triple::Wasm: 1199 case Triple::UnknownObjectFormat: 1200 return ".llvmbc"; 1201 } 1202 llvm_unreachable("Unimplemented ObjectFormatType"); 1203 } 1204 1205 static const char* getSectionNameForCommandline(const Triple &T) { 1206 switch (T.getObjectFormat()) { 1207 case Triple::MachO: 1208 return "__LLVM,__cmdline"; 1209 case Triple::COFF: 1210 case Triple::ELF: 1211 case Triple::Wasm: 1212 case Triple::UnknownObjectFormat: 1213 return ".llvmcmd"; 1214 } 1215 llvm_unreachable("Unimplemented ObjectFormatType"); 1216 } 1217 1218 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1219 // __LLVM,__bitcode section. 1220 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1221 llvm::MemoryBufferRef Buf) { 1222 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1223 return; 1224 1225 // Save llvm.compiler.used and remote it. 1226 SmallVector<Constant*, 2> UsedArray; 1227 SmallSet<GlobalValue*, 4> UsedGlobals; 1228 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1229 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1230 for (auto *GV : UsedGlobals) { 1231 if (GV->getName() != "llvm.embedded.module" && 1232 GV->getName() != "llvm.cmdline") 1233 UsedArray.push_back( 1234 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1235 } 1236 if (Used) 1237 Used->eraseFromParent(); 1238 1239 // Embed the bitcode for the llvm module. 1240 std::string Data; 1241 ArrayRef<uint8_t> ModuleData; 1242 Triple T(M->getTargetTriple()); 1243 // Create a constant that contains the bitcode. 1244 // In case of embedding a marker, ignore the input Buf and use the empty 1245 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1246 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1247 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1248 (const unsigned char *)Buf.getBufferEnd())) { 1249 // If the input is LLVM Assembly, bitcode is produced by serializing 1250 // the module. Use-lists order need to be perserved in this case. 1251 llvm::raw_string_ostream OS(Data); 1252 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 1253 ModuleData = 1254 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1255 } else 1256 // If the input is LLVM bitcode, write the input byte stream directly. 1257 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1258 Buf.getBufferSize()); 1259 } 1260 llvm::Constant *ModuleConstant = 1261 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1262 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1263 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1264 ModuleConstant); 1265 GV->setSection(getSectionNameForBitcode(T)); 1266 UsedArray.push_back( 1267 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1268 if (llvm::GlobalVariable *Old = 1269 M->getGlobalVariable("llvm.embedded.module", true)) { 1270 assert(Old->hasOneUse() && 1271 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1272 GV->takeName(Old); 1273 Old->eraseFromParent(); 1274 } else { 1275 GV->setName("llvm.embedded.module"); 1276 } 1277 1278 // Skip if only bitcode needs to be embedded. 1279 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1280 // Embed command-line options. 1281 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1282 CGOpts.CmdArgs.size()); 1283 llvm::Constant *CmdConstant = 1284 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1285 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1286 llvm::GlobalValue::PrivateLinkage, 1287 CmdConstant); 1288 GV->setSection(getSectionNameForCommandline(T)); 1289 UsedArray.push_back( 1290 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1291 if (llvm::GlobalVariable *Old = 1292 M->getGlobalVariable("llvm.cmdline", true)) { 1293 assert(Old->hasOneUse() && 1294 "llvm.cmdline can only be used once in llvm.compiler.used"); 1295 GV->takeName(Old); 1296 Old->eraseFromParent(); 1297 } else { 1298 GV->setName("llvm.cmdline"); 1299 } 1300 } 1301 1302 if (UsedArray.empty()) 1303 return; 1304 1305 // Recreate llvm.compiler.used. 1306 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1307 auto *NewUsed = new GlobalVariable( 1308 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1309 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1310 NewUsed->setSection("llvm.metadata"); 1311 } 1312