1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Bitcode/BitcodeReader.h" 24 #include "llvm/Bitcode/BitcodeWriter.h" 25 #include "llvm/Bitcode/BitcodeWriterPass.h" 26 #include "llvm/CodeGen/RegAllocRegistry.h" 27 #include "llvm/CodeGen/SchedulerRegistry.h" 28 #include "llvm/CodeGen/TargetSubtargetInfo.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/IRPrintingPasses.h" 31 #include "llvm/IR/LegacyPassManager.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSummaryIndex.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/LTO/LTOBackend.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/SubtargetFeature.h" 38 #include "llvm/Passes/PassBuilder.h" 39 #include "llvm/Passes/PassPlugin.h" 40 #include "llvm/Support/BuryPointer.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/MemoryBuffer.h" 43 #include "llvm/Support/PrettyStackTrace.h" 44 #include "llvm/Support/TargetRegistry.h" 45 #include "llvm/Support/TimeProfiler.h" 46 #include "llvm/Support/Timer.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include "llvm/Target/TargetOptions.h" 50 #include "llvm/Transforms/Coroutines.h" 51 #include "llvm/Transforms/IPO.h" 52 #include "llvm/Transforms/IPO/AlwaysInliner.h" 53 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 54 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 55 #include "llvm/Transforms/InstCombine/InstCombine.h" 56 #include "llvm/Transforms/Instrumentation.h" 57 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 58 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 59 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 60 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 61 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 62 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 63 #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h" 64 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 65 #include "llvm/Transforms/ObjCARC.h" 66 #include "llvm/Transforms/Scalar.h" 67 #include "llvm/Transforms/Scalar/GVN.h" 68 #include "llvm/Transforms/Utils.h" 69 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 70 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 71 #include "llvm/Transforms/Utils/SymbolRewriter.h" 72 #include <memory> 73 using namespace clang; 74 using namespace llvm; 75 76 namespace { 77 78 // Default filename used for profile generation. 79 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 80 81 class EmitAssemblyHelper { 82 DiagnosticsEngine &Diags; 83 const HeaderSearchOptions &HSOpts; 84 const CodeGenOptions &CodeGenOpts; 85 const clang::TargetOptions &TargetOpts; 86 const LangOptions &LangOpts; 87 Module *TheModule; 88 89 Timer CodeGenerationTime; 90 91 std::unique_ptr<raw_pwrite_stream> OS; 92 93 TargetIRAnalysis getTargetIRAnalysis() const { 94 if (TM) 95 return TM->getTargetIRAnalysis(); 96 97 return TargetIRAnalysis(); 98 } 99 100 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 101 102 /// Generates the TargetMachine. 103 /// Leaves TM unchanged if it is unable to create the target machine. 104 /// Some of our clang tests specify triples which are not built 105 /// into clang. This is okay because these tests check the generated 106 /// IR, and they require DataLayout which depends on the triple. 107 /// In this case, we allow this method to fail and not report an error. 108 /// When MustCreateTM is used, we print an error if we are unable to load 109 /// the requested target. 110 void CreateTargetMachine(bool MustCreateTM); 111 112 /// Add passes necessary to emit assembly or LLVM IR. 113 /// 114 /// \return True on success. 115 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 116 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 117 118 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 119 std::error_code EC; 120 auto F = llvm::make_unique<llvm::ToolOutputFile>(Path, EC, 121 llvm::sys::fs::F_None); 122 if (EC) { 123 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 124 F.reset(); 125 } 126 return F; 127 } 128 129 public: 130 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 131 const HeaderSearchOptions &HeaderSearchOpts, 132 const CodeGenOptions &CGOpts, 133 const clang::TargetOptions &TOpts, 134 const LangOptions &LOpts, Module *M) 135 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 136 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 137 CodeGenerationTime("codegen", "Code Generation Time") {} 138 139 ~EmitAssemblyHelper() { 140 if (CodeGenOpts.DisableFree) 141 BuryPointer(std::move(TM)); 142 } 143 144 std::unique_ptr<TargetMachine> TM; 145 146 void EmitAssembly(BackendAction Action, 147 std::unique_ptr<raw_pwrite_stream> OS); 148 149 void EmitAssemblyWithNewPassManager(BackendAction Action, 150 std::unique_ptr<raw_pwrite_stream> OS); 151 }; 152 153 // We need this wrapper to access LangOpts and CGOpts from extension functions 154 // that we add to the PassManagerBuilder. 155 class PassManagerBuilderWrapper : public PassManagerBuilder { 156 public: 157 PassManagerBuilderWrapper(const Triple &TargetTriple, 158 const CodeGenOptions &CGOpts, 159 const LangOptions &LangOpts) 160 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 161 LangOpts(LangOpts) {} 162 const Triple &getTargetTriple() const { return TargetTriple; } 163 const CodeGenOptions &getCGOpts() const { return CGOpts; } 164 const LangOptions &getLangOpts() const { return LangOpts; } 165 166 private: 167 const Triple &TargetTriple; 168 const CodeGenOptions &CGOpts; 169 const LangOptions &LangOpts; 170 }; 171 } 172 173 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 174 if (Builder.OptLevel > 0) 175 PM.add(createObjCARCAPElimPass()); 176 } 177 178 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 179 if (Builder.OptLevel > 0) 180 PM.add(createObjCARCExpandPass()); 181 } 182 183 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 184 if (Builder.OptLevel > 0) 185 PM.add(createObjCARCOptPass()); 186 } 187 188 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 189 legacy::PassManagerBase &PM) { 190 PM.add(createAddDiscriminatorsPass()); 191 } 192 193 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 194 legacy::PassManagerBase &PM) { 195 PM.add(createBoundsCheckingLegacyPass()); 196 } 197 198 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 199 legacy::PassManagerBase &PM) { 200 const PassManagerBuilderWrapper &BuilderWrapper = 201 static_cast<const PassManagerBuilderWrapper&>(Builder); 202 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 203 SanitizerCoverageOptions Opts; 204 Opts.CoverageType = 205 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 206 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 207 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 208 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 209 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 210 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 211 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 212 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 213 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 214 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 215 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 216 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 217 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 218 PM.add(createSanitizerCoverageModulePass(Opts)); 219 } 220 221 // Check if ASan should use GC-friendly instrumentation for globals. 222 // First of all, there is no point if -fdata-sections is off (expect for MachO, 223 // where this is not a factor). Also, on ELF this feature requires an assembler 224 // extension that only works with -integrated-as at the moment. 225 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 226 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 227 return false; 228 switch (T.getObjectFormat()) { 229 case Triple::MachO: 230 case Triple::COFF: 231 return true; 232 case Triple::ELF: 233 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 234 default: 235 return false; 236 } 237 } 238 239 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 240 legacy::PassManagerBase &PM) { 241 const PassManagerBuilderWrapper &BuilderWrapper = 242 static_cast<const PassManagerBuilderWrapper&>(Builder); 243 const Triple &T = BuilderWrapper.getTargetTriple(); 244 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 245 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 246 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 247 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 248 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 249 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 250 UseAfterScope)); 251 PM.add(createModuleAddressSanitizerLegacyPassPass( 252 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator)); 253 } 254 255 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 256 legacy::PassManagerBase &PM) { 257 PM.add(createAddressSanitizerFunctionPass( 258 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 259 PM.add(createModuleAddressSanitizerLegacyPassPass( 260 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 261 /*UseOdrIndicator*/ false)); 262 } 263 264 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 265 legacy::PassManagerBase &PM) { 266 const PassManagerBuilderWrapper &BuilderWrapper = 267 static_cast<const PassManagerBuilderWrapper &>(Builder); 268 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 269 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 270 PM.add( 271 createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover)); 272 } 273 274 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 275 legacy::PassManagerBase &PM) { 276 PM.add(createHWAddressSanitizerLegacyPassPass( 277 /*CompileKernel*/ true, /*Recover*/ true)); 278 } 279 280 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 281 legacy::PassManagerBase &PM, 282 bool CompileKernel) { 283 const PassManagerBuilderWrapper &BuilderWrapper = 284 static_cast<const PassManagerBuilderWrapper&>(Builder); 285 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 286 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 287 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 288 PM.add(createMemorySanitizerLegacyPassPass( 289 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 290 291 // MemorySanitizer inserts complex instrumentation that mostly follows 292 // the logic of the original code, but operates on "shadow" values. 293 // It can benefit from re-running some general purpose optimization passes. 294 if (Builder.OptLevel > 0) { 295 PM.add(createEarlyCSEPass()); 296 PM.add(createReassociatePass()); 297 PM.add(createLICMPass()); 298 PM.add(createGVNPass()); 299 PM.add(createInstructionCombiningPass()); 300 PM.add(createDeadStoreEliminationPass()); 301 } 302 } 303 304 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 305 legacy::PassManagerBase &PM) { 306 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 307 } 308 309 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 310 legacy::PassManagerBase &PM) { 311 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 312 } 313 314 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 315 legacy::PassManagerBase &PM) { 316 PM.add(createThreadSanitizerLegacyPassPass()); 317 } 318 319 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 320 legacy::PassManagerBase &PM) { 321 const PassManagerBuilderWrapper &BuilderWrapper = 322 static_cast<const PassManagerBuilderWrapper&>(Builder); 323 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 324 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 325 } 326 327 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 328 const CodeGenOptions &CodeGenOpts) { 329 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 330 if (!CodeGenOpts.SimplifyLibCalls) 331 TLII->disableAllFunctions(); 332 else { 333 // Disable individual libc/libm calls in TargetLibraryInfo. 334 LibFunc F; 335 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 336 if (TLII->getLibFunc(FuncName, F)) 337 TLII->setUnavailable(F); 338 } 339 340 switch (CodeGenOpts.getVecLib()) { 341 case CodeGenOptions::Accelerate: 342 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 343 break; 344 case CodeGenOptions::MASSV: 345 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 346 break; 347 case CodeGenOptions::SVML: 348 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 349 break; 350 default: 351 break; 352 } 353 return TLII; 354 } 355 356 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 357 legacy::PassManager *MPM) { 358 llvm::SymbolRewriter::RewriteDescriptorList DL; 359 360 llvm::SymbolRewriter::RewriteMapParser MapParser; 361 for (const auto &MapFile : Opts.RewriteMapFiles) 362 MapParser.parse(MapFile, &DL); 363 364 MPM->add(createRewriteSymbolsPass(DL)); 365 } 366 367 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 368 switch (CodeGenOpts.OptimizationLevel) { 369 default: 370 llvm_unreachable("Invalid optimization level!"); 371 case 0: 372 return CodeGenOpt::None; 373 case 1: 374 return CodeGenOpt::Less; 375 case 2: 376 return CodeGenOpt::Default; // O2/Os/Oz 377 case 3: 378 return CodeGenOpt::Aggressive; 379 } 380 } 381 382 static Optional<llvm::CodeModel::Model> 383 getCodeModel(const CodeGenOptions &CodeGenOpts) { 384 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 385 .Case("tiny", llvm::CodeModel::Tiny) 386 .Case("small", llvm::CodeModel::Small) 387 .Case("kernel", llvm::CodeModel::Kernel) 388 .Case("medium", llvm::CodeModel::Medium) 389 .Case("large", llvm::CodeModel::Large) 390 .Case("default", ~1u) 391 .Default(~0u); 392 assert(CodeModel != ~0u && "invalid code model!"); 393 if (CodeModel == ~1u) 394 return None; 395 return static_cast<llvm::CodeModel::Model>(CodeModel); 396 } 397 398 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 399 if (Action == Backend_EmitObj) 400 return TargetMachine::CGFT_ObjectFile; 401 else if (Action == Backend_EmitMCNull) 402 return TargetMachine::CGFT_Null; 403 else { 404 assert(Action == Backend_EmitAssembly && "Invalid action!"); 405 return TargetMachine::CGFT_AssemblyFile; 406 } 407 } 408 409 static void initTargetOptions(llvm::TargetOptions &Options, 410 const CodeGenOptions &CodeGenOpts, 411 const clang::TargetOptions &TargetOpts, 412 const LangOptions &LangOpts, 413 const HeaderSearchOptions &HSOpts) { 414 Options.ThreadModel = 415 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 416 .Case("posix", llvm::ThreadModel::POSIX) 417 .Case("single", llvm::ThreadModel::Single); 418 419 // Set float ABI type. 420 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 421 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 422 "Invalid Floating Point ABI!"); 423 Options.FloatABIType = 424 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 425 .Case("soft", llvm::FloatABI::Soft) 426 .Case("softfp", llvm::FloatABI::Soft) 427 .Case("hard", llvm::FloatABI::Hard) 428 .Default(llvm::FloatABI::Default); 429 430 // Set FP fusion mode. 431 switch (LangOpts.getDefaultFPContractMode()) { 432 case LangOptions::FPC_Off: 433 // Preserve any contraction performed by the front-end. (Strict performs 434 // splitting of the muladd intrinsic in the backend.) 435 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 436 break; 437 case LangOptions::FPC_On: 438 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 439 break; 440 case LangOptions::FPC_Fast: 441 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 442 break; 443 } 444 445 Options.UseInitArray = CodeGenOpts.UseInitArray; 446 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 447 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 448 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 449 450 // Set EABI version. 451 Options.EABIVersion = TargetOpts.EABIVersion; 452 453 if (LangOpts.SjLjExceptions) 454 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 455 if (LangOpts.SEHExceptions) 456 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 457 if (LangOpts.DWARFExceptions) 458 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 459 460 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 461 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 462 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 463 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 464 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 465 Options.FunctionSections = CodeGenOpts.FunctionSections; 466 Options.DataSections = CodeGenOpts.DataSections; 467 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 468 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 469 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 470 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 471 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 472 Options.EmitAddrsig = CodeGenOpts.Addrsig; 473 474 if (CodeGenOpts.getSplitDwarfMode() != CodeGenOptions::NoFission) 475 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 476 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 477 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 478 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 479 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 480 Options.MCOptions.MCIncrementalLinkerCompatible = 481 CodeGenOpts.IncrementalLinkerCompatible; 482 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 483 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 484 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 485 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 486 Options.MCOptions.ABIName = TargetOpts.ABI; 487 for (const auto &Entry : HSOpts.UserEntries) 488 if (!Entry.IsFramework && 489 (Entry.Group == frontend::IncludeDirGroup::Quoted || 490 Entry.Group == frontend::IncludeDirGroup::Angled || 491 Entry.Group == frontend::IncludeDirGroup::System)) 492 Options.MCOptions.IASSearchPaths.push_back( 493 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 494 } 495 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 496 if (CodeGenOpts.DisableGCov) 497 return None; 498 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 499 return None; 500 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 501 // LLVM's -default-gcov-version flag is set to something invalid. 502 GCOVOptions Options; 503 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 504 Options.EmitData = CodeGenOpts.EmitGcovArcs; 505 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 506 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 507 Options.NoRedZone = CodeGenOpts.DisableRedZone; 508 Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData; 509 Options.Filter = CodeGenOpts.ProfileFilterFiles; 510 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 511 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 512 return Options; 513 } 514 515 static Optional<InstrProfOptions> 516 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 517 const LangOptions &LangOpts) { 518 if (!CodeGenOpts.hasProfileClangInstr()) 519 return None; 520 InstrProfOptions Options; 521 Options.NoRedZone = CodeGenOpts.DisableRedZone; 522 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 523 524 // TODO: Surface the option to emit atomic profile counter increments at 525 // the driver level. 526 Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread); 527 return Options; 528 } 529 530 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 531 legacy::FunctionPassManager &FPM) { 532 // Handle disabling of all LLVM passes, where we want to preserve the 533 // internal module before any optimization. 534 if (CodeGenOpts.DisableLLVMPasses) 535 return; 536 537 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 538 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 539 // are inserted before PMBuilder ones - they'd get the default-constructed 540 // TLI with an unknown target otherwise. 541 Triple TargetTriple(TheModule->getTargetTriple()); 542 std::unique_ptr<TargetLibraryInfoImpl> TLII( 543 createTLII(TargetTriple, CodeGenOpts)); 544 545 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 546 547 // At O0 and O1 we only run the always inliner which is more efficient. At 548 // higher optimization levels we run the normal inliner. 549 if (CodeGenOpts.OptimizationLevel <= 1) { 550 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 551 !CodeGenOpts.DisableLifetimeMarkers); 552 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 553 } else { 554 // We do not want to inline hot callsites for SamplePGO module-summary build 555 // because profile annotation will happen again in ThinLTO backend, and we 556 // want the IR of the hot path to match the profile. 557 PMBuilder.Inliner = createFunctionInliningPass( 558 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 559 (!CodeGenOpts.SampleProfileFile.empty() && 560 CodeGenOpts.PrepareForThinLTO)); 561 } 562 563 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 564 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 565 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 566 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 567 568 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 569 // Loop interleaving in the loop vectorizer has historically been set to be 570 // enabled when loop unrolling is enabled. 571 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 572 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 573 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 574 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 575 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 576 577 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 578 579 if (TM) 580 TM->adjustPassManager(PMBuilder); 581 582 if (CodeGenOpts.DebugInfoForProfiling || 583 !CodeGenOpts.SampleProfileFile.empty()) 584 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 585 addAddDiscriminatorsPass); 586 587 // In ObjC ARC mode, add the main ARC optimization passes. 588 if (LangOpts.ObjCAutoRefCount) { 589 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 590 addObjCARCExpandPass); 591 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 592 addObjCARCAPElimPass); 593 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 594 addObjCARCOptPass); 595 } 596 597 if (LangOpts.Coroutines) 598 addCoroutinePassesToExtensionPoints(PMBuilder); 599 600 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 601 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 602 addBoundsCheckingPass); 603 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 604 addBoundsCheckingPass); 605 } 606 607 if (CodeGenOpts.SanitizeCoverageType || 608 CodeGenOpts.SanitizeCoverageIndirectCalls || 609 CodeGenOpts.SanitizeCoverageTraceCmp) { 610 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 611 addSanitizerCoveragePass); 612 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 613 addSanitizerCoveragePass); 614 } 615 616 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 617 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 618 addAddressSanitizerPasses); 619 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 620 addAddressSanitizerPasses); 621 } 622 623 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 624 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 625 addKernelAddressSanitizerPasses); 626 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 627 addKernelAddressSanitizerPasses); 628 } 629 630 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 631 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 632 addHWAddressSanitizerPasses); 633 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 634 addHWAddressSanitizerPasses); 635 } 636 637 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 638 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 639 addKernelHWAddressSanitizerPasses); 640 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 641 addKernelHWAddressSanitizerPasses); 642 } 643 644 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 645 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 646 addMemorySanitizerPass); 647 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 648 addMemorySanitizerPass); 649 } 650 651 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 652 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 653 addKernelMemorySanitizerPass); 654 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 655 addKernelMemorySanitizerPass); 656 } 657 658 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 659 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 660 addThreadSanitizerPass); 661 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 662 addThreadSanitizerPass); 663 } 664 665 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 666 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 667 addDataFlowSanitizerPass); 668 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 669 addDataFlowSanitizerPass); 670 } 671 672 // Set up the per-function pass manager. 673 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 674 if (CodeGenOpts.VerifyModule) 675 FPM.add(createVerifierPass()); 676 677 // Set up the per-module pass manager. 678 if (!CodeGenOpts.RewriteMapFiles.empty()) 679 addSymbolRewriterPass(CodeGenOpts, &MPM); 680 681 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 682 MPM.add(createGCOVProfilerPass(*Options)); 683 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 684 MPM.add(createStripSymbolsPass(true)); 685 } 686 687 if (Optional<InstrProfOptions> Options = 688 getInstrProfOptions(CodeGenOpts, LangOpts)) 689 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 690 691 bool hasIRInstr = false; 692 if (CodeGenOpts.hasProfileIRInstr()) { 693 PMBuilder.EnablePGOInstrGen = true; 694 hasIRInstr = true; 695 } 696 if (CodeGenOpts.hasProfileCSIRInstr()) { 697 assert(!CodeGenOpts.hasProfileCSIRUse() && 698 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 699 "same time"); 700 assert(!hasIRInstr && 701 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 702 "same time"); 703 PMBuilder.EnablePGOCSInstrGen = true; 704 hasIRInstr = true; 705 } 706 if (hasIRInstr) { 707 if (!CodeGenOpts.InstrProfileOutput.empty()) 708 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 709 else 710 PMBuilder.PGOInstrGen = DefaultProfileGenName; 711 } 712 if (CodeGenOpts.hasProfileIRUse()) { 713 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 714 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 715 } 716 717 if (!CodeGenOpts.SampleProfileFile.empty()) 718 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 719 720 PMBuilder.populateFunctionPassManager(FPM); 721 PMBuilder.populateModulePassManager(MPM); 722 } 723 724 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 725 SmallVector<const char *, 16> BackendArgs; 726 BackendArgs.push_back("clang"); // Fake program name. 727 if (!CodeGenOpts.DebugPass.empty()) { 728 BackendArgs.push_back("-debug-pass"); 729 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 730 } 731 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 732 BackendArgs.push_back("-limit-float-precision"); 733 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 734 } 735 BackendArgs.push_back(nullptr); 736 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 737 BackendArgs.data()); 738 } 739 740 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 741 // Create the TargetMachine for generating code. 742 std::string Error; 743 std::string Triple = TheModule->getTargetTriple(); 744 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 745 if (!TheTarget) { 746 if (MustCreateTM) 747 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 748 return; 749 } 750 751 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 752 std::string FeaturesStr = 753 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 754 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 755 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 756 757 llvm::TargetOptions Options; 758 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 759 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 760 Options, RM, CM, OptLevel)); 761 } 762 763 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 764 BackendAction Action, 765 raw_pwrite_stream &OS, 766 raw_pwrite_stream *DwoOS) { 767 // Add LibraryInfo. 768 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 769 std::unique_ptr<TargetLibraryInfoImpl> TLII( 770 createTLII(TargetTriple, CodeGenOpts)); 771 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 772 773 // Normal mode, emit a .s or .o file by running the code generator. Note, 774 // this also adds codegenerator level optimization passes. 775 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 776 777 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 778 // "codegen" passes so that it isn't run multiple times when there is 779 // inlining happening. 780 if (CodeGenOpts.OptimizationLevel > 0) 781 CodeGenPasses.add(createObjCARCContractPass()); 782 783 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 784 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 785 Diags.Report(diag::err_fe_unable_to_interface_with_target); 786 return false; 787 } 788 789 return true; 790 } 791 792 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 793 std::unique_ptr<raw_pwrite_stream> OS) { 794 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 795 796 setCommandLineOpts(CodeGenOpts); 797 798 bool UsesCodeGen = (Action != Backend_EmitNothing && 799 Action != Backend_EmitBC && 800 Action != Backend_EmitLL); 801 CreateTargetMachine(UsesCodeGen); 802 803 if (UsesCodeGen && !TM) 804 return; 805 if (TM) 806 TheModule->setDataLayout(TM->createDataLayout()); 807 808 legacy::PassManager PerModulePasses; 809 PerModulePasses.add( 810 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 811 812 legacy::FunctionPassManager PerFunctionPasses(TheModule); 813 PerFunctionPasses.add( 814 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 815 816 CreatePasses(PerModulePasses, PerFunctionPasses); 817 818 legacy::PassManager CodeGenPasses; 819 CodeGenPasses.add( 820 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 821 822 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 823 824 switch (Action) { 825 case Backend_EmitNothing: 826 break; 827 828 case Backend_EmitBC: 829 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 830 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 831 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 832 if (!ThinLinkOS) 833 return; 834 } 835 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 836 CodeGenOpts.EnableSplitLTOUnit); 837 PerModulePasses.add(createWriteThinLTOBitcodePass( 838 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 839 } else { 840 // Emit a module summary by default for Regular LTO except for ld64 841 // targets 842 bool EmitLTOSummary = 843 (CodeGenOpts.PrepareForLTO && 844 !CodeGenOpts.DisableLLVMPasses && 845 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 846 llvm::Triple::Apple); 847 if (EmitLTOSummary) { 848 if (!TheModule->getModuleFlag("ThinLTO")) 849 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 850 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 851 CodeGenOpts.EnableSplitLTOUnit); 852 } 853 854 PerModulePasses.add(createBitcodeWriterPass( 855 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 856 } 857 break; 858 859 case Backend_EmitLL: 860 PerModulePasses.add( 861 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 862 break; 863 864 default: 865 if (!CodeGenOpts.SplitDwarfOutput.empty() && 866 (CodeGenOpts.getSplitDwarfMode() == CodeGenOptions::SplitFileFission)) { 867 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 868 if (!DwoOS) 869 return; 870 } 871 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 872 DwoOS ? &DwoOS->os() : nullptr)) 873 return; 874 } 875 876 // Before executing passes, print the final values of the LLVM options. 877 cl::PrintOptionValues(); 878 879 // Run passes. For now we do all passes at once, but eventually we 880 // would like to have the option of streaming code generation. 881 882 { 883 PrettyStackTraceString CrashInfo("Per-function optimization"); 884 885 PerFunctionPasses.doInitialization(); 886 for (Function &F : *TheModule) 887 if (!F.isDeclaration()) 888 PerFunctionPasses.run(F); 889 PerFunctionPasses.doFinalization(); 890 } 891 892 { 893 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 894 PerModulePasses.run(*TheModule); 895 } 896 897 { 898 PrettyStackTraceString CrashInfo("Code generation"); 899 CodeGenPasses.run(*TheModule); 900 } 901 902 if (ThinLinkOS) 903 ThinLinkOS->keep(); 904 if (DwoOS) 905 DwoOS->keep(); 906 } 907 908 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 909 switch (Opts.OptimizationLevel) { 910 default: 911 llvm_unreachable("Invalid optimization level!"); 912 913 case 1: 914 return PassBuilder::O1; 915 916 case 2: 917 switch (Opts.OptimizeSize) { 918 default: 919 llvm_unreachable("Invalid optimization level for size!"); 920 921 case 0: 922 return PassBuilder::O2; 923 924 case 1: 925 return PassBuilder::Os; 926 927 case 2: 928 return PassBuilder::Oz; 929 } 930 931 case 3: 932 return PassBuilder::O3; 933 } 934 } 935 936 static void addSanitizersAtO0(ModulePassManager &MPM, 937 const Triple &TargetTriple, 938 const LangOptions &LangOpts, 939 const CodeGenOptions &CodeGenOpts) { 940 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 941 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 942 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 943 MPM.addPass(createModuleToFunctionPassAdaptor(AddressSanitizerPass( 944 CompileKernel, Recover, CodeGenOpts.SanitizeAddressUseAfterScope))); 945 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 946 MPM.addPass( 947 ModuleAddressSanitizerPass(CompileKernel, Recover, ModuleUseAfterScope, 948 CodeGenOpts.SanitizeAddressUseOdrIndicator)); 949 }; 950 951 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 952 ASanPass(SanitizerKind::Address, /*CompileKernel=*/false); 953 } 954 955 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 956 ASanPass(SanitizerKind::KernelAddress, /*CompileKernel=*/true); 957 } 958 959 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 960 MPM.addPass(createModuleToFunctionPassAdaptor(MemorySanitizerPass({}))); 961 } 962 963 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 964 MPM.addPass(createModuleToFunctionPassAdaptor( 965 MemorySanitizerPass({0, false, /*Kernel=*/true}))); 966 } 967 968 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 969 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 970 } 971 972 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 973 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 974 MPM.addPass(createModuleToFunctionPassAdaptor( 975 HWAddressSanitizerPass(/*CompileKernel=*/false, Recover))); 976 } 977 978 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 979 MPM.addPass(createModuleToFunctionPassAdaptor( 980 HWAddressSanitizerPass(/*CompileKernel=*/true, /*Recover=*/true))); 981 } 982 } 983 984 /// A clean version of `EmitAssembly` that uses the new pass manager. 985 /// 986 /// Not all features are currently supported in this system, but where 987 /// necessary it falls back to the legacy pass manager to at least provide 988 /// basic functionality. 989 /// 990 /// This API is planned to have its functionality finished and then to replace 991 /// `EmitAssembly` at some point in the future when the default switches. 992 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 993 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 994 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 995 setCommandLineOpts(CodeGenOpts); 996 997 bool RequiresCodeGen = (Action != Backend_EmitNothing && 998 Action != Backend_EmitBC && 999 Action != Backend_EmitLL); 1000 CreateTargetMachine(RequiresCodeGen); 1001 1002 if (RequiresCodeGen && !TM) 1003 return; 1004 if (TM) 1005 TheModule->setDataLayout(TM->createDataLayout()); 1006 1007 Optional<PGOOptions> PGOOpt; 1008 1009 if (CodeGenOpts.hasProfileIRInstr()) 1010 // -fprofile-generate. 1011 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1012 ? DefaultProfileGenName 1013 : CodeGenOpts.InstrProfileOutput, 1014 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1015 CodeGenOpts.DebugInfoForProfiling); 1016 else if (CodeGenOpts.hasProfileIRUse()) { 1017 // -fprofile-use. 1018 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1019 : PGOOptions::NoCSAction; 1020 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1021 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1022 CSAction, CodeGenOpts.DebugInfoForProfiling); 1023 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1024 // -fprofile-sample-use 1025 PGOOpt = 1026 PGOOptions(CodeGenOpts.SampleProfileFile, "", 1027 CodeGenOpts.ProfileRemappingFile, PGOOptions::SampleUse, 1028 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling); 1029 else if (CodeGenOpts.DebugInfoForProfiling) 1030 // -fdebug-info-for-profiling 1031 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1032 PGOOptions::NoCSAction, true); 1033 1034 // Check to see if we want to generate a CS profile. 1035 if (CodeGenOpts.hasProfileCSIRInstr()) { 1036 assert(!CodeGenOpts.hasProfileCSIRUse() && 1037 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1038 "the same time"); 1039 if (PGOOpt.hasValue()) { 1040 assert(PGOOpt->Action != PGOOptions::IRInstr && 1041 PGOOpt->Action != PGOOptions::SampleUse && 1042 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1043 " pass"); 1044 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1045 ? DefaultProfileGenName 1046 : CodeGenOpts.InstrProfileOutput; 1047 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1048 } else 1049 PGOOpt = PGOOptions("", 1050 CodeGenOpts.InstrProfileOutput.empty() 1051 ? DefaultProfileGenName 1052 : CodeGenOpts.InstrProfileOutput, 1053 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1054 CodeGenOpts.DebugInfoForProfiling); 1055 } 1056 1057 PipelineTuningOptions PTO; 1058 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1059 // For historical reasons, loop interleaving is set to mirror setting for loop 1060 // unrolling. 1061 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1062 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1063 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1064 1065 PassBuilder PB(TM.get(), PTO, PGOOpt); 1066 1067 // Attempt to load pass plugins and register their callbacks with PB. 1068 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1069 auto PassPlugin = PassPlugin::Load(PluginFN); 1070 if (PassPlugin) { 1071 PassPlugin->registerPassBuilderCallbacks(PB); 1072 } else { 1073 Diags.Report(diag::err_fe_unable_to_load_plugin) 1074 << PluginFN << toString(PassPlugin.takeError()); 1075 } 1076 } 1077 1078 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 1079 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 1080 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 1081 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 1082 1083 // Register the AA manager first so that our version is the one used. 1084 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1085 1086 // Register the target library analysis directly and give it a customized 1087 // preset TLI. 1088 Triple TargetTriple(TheModule->getTargetTriple()); 1089 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1090 createTLII(TargetTriple, CodeGenOpts)); 1091 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1092 MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1093 1094 // Register all the basic analyses with the managers. 1095 PB.registerModuleAnalyses(MAM); 1096 PB.registerCGSCCAnalyses(CGAM); 1097 PB.registerFunctionAnalyses(FAM); 1098 PB.registerLoopAnalyses(LAM); 1099 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1100 1101 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 1102 1103 if (!CodeGenOpts.DisableLLVMPasses) { 1104 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1105 bool IsLTO = CodeGenOpts.PrepareForLTO; 1106 1107 if (CodeGenOpts.OptimizationLevel == 0) { 1108 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1109 MPM.addPass(GCOVProfilerPass(*Options)); 1110 if (Optional<InstrProfOptions> Options = 1111 getInstrProfOptions(CodeGenOpts, LangOpts)) 1112 MPM.addPass(InstrProfiling(*Options, false)); 1113 1114 // Build a minimal pipeline based on the semantics required by Clang, 1115 // which is just that always inlining occurs. Further, disable generating 1116 // lifetime intrinsics to avoid enabling further optimizations during 1117 // code generation. 1118 MPM.addPass(AlwaysInlinerPass(/*InsertLifetimeIntrinsics=*/false)); 1119 1120 // At -O0 we directly run necessary sanitizer passes. 1121 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1122 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 1123 1124 // Lastly, add semantically necessary passes for LTO. 1125 if (IsLTO || IsThinLTO) { 1126 MPM.addPass(CanonicalizeAliasesPass()); 1127 MPM.addPass(NameAnonGlobalPass()); 1128 } 1129 } else { 1130 // Map our optimization levels into one of the distinct levels used to 1131 // configure the pipeline. 1132 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1133 1134 // Register callbacks to schedule sanitizer passes at the appropriate part of 1135 // the pipeline. 1136 // FIXME: either handle asan/the remaining sanitizers or error out 1137 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1138 PB.registerScalarOptimizerLateEPCallback( 1139 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1140 FPM.addPass(BoundsCheckingPass()); 1141 }); 1142 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 1143 PB.registerOptimizerLastEPCallback( 1144 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1145 FPM.addPass(MemorySanitizerPass({})); 1146 }); 1147 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) 1148 PB.registerOptimizerLastEPCallback( 1149 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1150 FPM.addPass(ThreadSanitizerPass()); 1151 }); 1152 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1153 PB.registerPipelineStartEPCallback([&](ModulePassManager &MPM) { 1154 MPM.addPass( 1155 RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1156 }); 1157 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address); 1158 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1159 PB.registerOptimizerLastEPCallback( 1160 [Recover, UseAfterScope](FunctionPassManager &FPM, 1161 PassBuilder::OptimizationLevel Level) { 1162 FPM.addPass(AddressSanitizerPass( 1163 /*CompileKernel=*/false, Recover, UseAfterScope)); 1164 }); 1165 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1166 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1167 PB.registerPipelineStartEPCallback( 1168 [Recover, ModuleUseAfterScope, 1169 UseOdrIndicator](ModulePassManager &MPM) { 1170 MPM.addPass(ModuleAddressSanitizerPass( 1171 /*CompileKernel=*/false, Recover, ModuleUseAfterScope, 1172 UseOdrIndicator)); 1173 }); 1174 } 1175 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 1176 bool Recover = 1177 CodeGenOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 1178 PB.registerOptimizerLastEPCallback( 1179 [Recover](FunctionPassManager &FPM, 1180 PassBuilder::OptimizationLevel Level) { 1181 FPM.addPass(HWAddressSanitizerPass( 1182 /*CompileKernel=*/false, Recover)); 1183 }); 1184 } 1185 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 1186 PB.registerOptimizerLastEPCallback( 1187 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1188 FPM.addPass(HWAddressSanitizerPass( 1189 /*CompileKernel=*/true, /*Recover=*/true)); 1190 }); 1191 } 1192 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1193 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1194 MPM.addPass(GCOVProfilerPass(*Options)); 1195 }); 1196 if (Optional<InstrProfOptions> Options = 1197 getInstrProfOptions(CodeGenOpts, LangOpts)) 1198 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1199 MPM.addPass(InstrProfiling(*Options, false)); 1200 }); 1201 1202 if (IsThinLTO) { 1203 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 1204 Level, CodeGenOpts.DebugPassManager); 1205 MPM.addPass(CanonicalizeAliasesPass()); 1206 MPM.addPass(NameAnonGlobalPass()); 1207 } else if (IsLTO) { 1208 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 1209 CodeGenOpts.DebugPassManager); 1210 MPM.addPass(CanonicalizeAliasesPass()); 1211 MPM.addPass(NameAnonGlobalPass()); 1212 } else { 1213 MPM = PB.buildPerModuleDefaultPipeline(Level, 1214 CodeGenOpts.DebugPassManager); 1215 } 1216 } 1217 1218 if (CodeGenOpts.OptimizationLevel == 0) 1219 addSanitizersAtO0(MPM, TargetTriple, LangOpts, CodeGenOpts); 1220 1221 if (CodeGenOpts.hasProfileIRInstr()) { 1222 // This file is stored as the ProfileFile. 1223 MPM.addPass(PGOInstrumentationGenCreateVar(PGOOpt->ProfileFile)); 1224 } 1225 } 1226 1227 // FIXME: We still use the legacy pass manager to do code generation. We 1228 // create that pass manager here and use it as needed below. 1229 legacy::PassManager CodeGenPasses; 1230 bool NeedCodeGen = false; 1231 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1232 1233 // Append any output we need to the pass manager. 1234 switch (Action) { 1235 case Backend_EmitNothing: 1236 break; 1237 1238 case Backend_EmitBC: 1239 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1240 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1241 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1242 if (!ThinLinkOS) 1243 return; 1244 } 1245 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1246 CodeGenOpts.EnableSplitLTOUnit); 1247 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1248 : nullptr)); 1249 } else { 1250 // Emit a module summary by default for Regular LTO except for ld64 1251 // targets 1252 bool EmitLTOSummary = 1253 (CodeGenOpts.PrepareForLTO && 1254 !CodeGenOpts.DisableLLVMPasses && 1255 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1256 llvm::Triple::Apple); 1257 if (EmitLTOSummary) { 1258 if (!TheModule->getModuleFlag("ThinLTO")) 1259 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1260 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1261 CodeGenOpts.EnableSplitLTOUnit); 1262 } 1263 MPM.addPass( 1264 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1265 } 1266 break; 1267 1268 case Backend_EmitLL: 1269 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1270 break; 1271 1272 case Backend_EmitAssembly: 1273 case Backend_EmitMCNull: 1274 case Backend_EmitObj: 1275 NeedCodeGen = true; 1276 CodeGenPasses.add( 1277 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1278 if (!CodeGenOpts.SplitDwarfOutput.empty() && 1279 CodeGenOpts.getSplitDwarfMode() == CodeGenOptions::SplitFileFission) { 1280 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1281 if (!DwoOS) 1282 return; 1283 } 1284 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1285 DwoOS ? &DwoOS->os() : nullptr)) 1286 // FIXME: Should we handle this error differently? 1287 return; 1288 break; 1289 } 1290 1291 // Before executing passes, print the final values of the LLVM options. 1292 cl::PrintOptionValues(); 1293 1294 // Now that we have all of the passes ready, run them. 1295 { 1296 PrettyStackTraceString CrashInfo("Optimizer"); 1297 MPM.run(*TheModule, MAM); 1298 } 1299 1300 // Now if needed, run the legacy PM for codegen. 1301 if (NeedCodeGen) { 1302 PrettyStackTraceString CrashInfo("Code generation"); 1303 CodeGenPasses.run(*TheModule); 1304 } 1305 1306 if (ThinLinkOS) 1307 ThinLinkOS->keep(); 1308 if (DwoOS) 1309 DwoOS->keep(); 1310 } 1311 1312 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1313 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1314 if (!BMsOrErr) 1315 return BMsOrErr.takeError(); 1316 1317 // The bitcode file may contain multiple modules, we want the one that is 1318 // marked as being the ThinLTO module. 1319 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1320 return *Bm; 1321 1322 return make_error<StringError>("Could not find module summary", 1323 inconvertibleErrorCode()); 1324 } 1325 1326 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1327 for (BitcodeModule &BM : BMs) { 1328 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1329 if (LTOInfo && LTOInfo->IsThinLTO) 1330 return &BM; 1331 } 1332 return nullptr; 1333 } 1334 1335 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1336 const HeaderSearchOptions &HeaderOpts, 1337 const CodeGenOptions &CGOpts, 1338 const clang::TargetOptions &TOpts, 1339 const LangOptions &LOpts, 1340 std::unique_ptr<raw_pwrite_stream> OS, 1341 std::string SampleProfile, 1342 std::string ProfileRemapping, 1343 BackendAction Action) { 1344 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1345 ModuleToDefinedGVSummaries; 1346 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1347 1348 setCommandLineOpts(CGOpts); 1349 1350 // We can simply import the values mentioned in the combined index, since 1351 // we should only invoke this using the individual indexes written out 1352 // via a WriteIndexesThinBackend. 1353 FunctionImporter::ImportMapTy ImportList; 1354 for (auto &GlobalList : *CombinedIndex) { 1355 // Ignore entries for undefined references. 1356 if (GlobalList.second.SummaryList.empty()) 1357 continue; 1358 1359 auto GUID = GlobalList.first; 1360 for (auto &Summary : GlobalList.second.SummaryList) { 1361 // Skip the summaries for the importing module. These are included to 1362 // e.g. record required linkage changes. 1363 if (Summary->modulePath() == M->getModuleIdentifier()) 1364 continue; 1365 // Add an entry to provoke importing by thinBackend. 1366 ImportList[Summary->modulePath()].insert(GUID); 1367 } 1368 } 1369 1370 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1371 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1372 1373 for (auto &I : ImportList) { 1374 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1375 llvm::MemoryBuffer::getFile(I.first()); 1376 if (!MBOrErr) { 1377 errs() << "Error loading imported file '" << I.first() 1378 << "': " << MBOrErr.getError().message() << "\n"; 1379 return; 1380 } 1381 1382 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1383 if (!BMOrErr) { 1384 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1385 errs() << "Error loading imported file '" << I.first() 1386 << "': " << EIB.message() << '\n'; 1387 }); 1388 return; 1389 } 1390 ModuleMap.insert({I.first(), *BMOrErr}); 1391 1392 OwnedImports.push_back(std::move(*MBOrErr)); 1393 } 1394 auto AddStream = [&](size_t Task) { 1395 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 1396 }; 1397 lto::Config Conf; 1398 if (CGOpts.SaveTempsFilePrefix != "") { 1399 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1400 /* UseInputModulePath */ false)) { 1401 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1402 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1403 << '\n'; 1404 }); 1405 } 1406 } 1407 Conf.CPU = TOpts.CPU; 1408 Conf.CodeModel = getCodeModel(CGOpts); 1409 Conf.MAttrs = TOpts.Features; 1410 Conf.RelocModel = CGOpts.RelocationModel; 1411 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1412 Conf.OptLevel = CGOpts.OptimizationLevel; 1413 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1414 Conf.SampleProfile = std::move(SampleProfile); 1415 1416 // Context sensitive profile. 1417 if (CGOpts.hasProfileCSIRInstr()) { 1418 Conf.RunCSIRInstr = true; 1419 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1420 } else if (CGOpts.hasProfileCSIRUse()) { 1421 Conf.RunCSIRInstr = false; 1422 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1423 } 1424 1425 Conf.ProfileRemapping = std::move(ProfileRemapping); 1426 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1427 Conf.DebugPassManager = CGOpts.DebugPassManager; 1428 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1429 Conf.RemarksFilename = CGOpts.OptRecordFile; 1430 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1431 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1432 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1433 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1434 switch (Action) { 1435 case Backend_EmitNothing: 1436 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1437 return false; 1438 }; 1439 break; 1440 case Backend_EmitLL: 1441 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1442 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1443 return false; 1444 }; 1445 break; 1446 case Backend_EmitBC: 1447 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1448 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1449 return false; 1450 }; 1451 break; 1452 default: 1453 Conf.CGFileType = getCodeGenFileType(Action); 1454 break; 1455 } 1456 if (Error E = thinBackend( 1457 Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1458 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1459 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1460 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1461 }); 1462 } 1463 } 1464 1465 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1466 const HeaderSearchOptions &HeaderOpts, 1467 const CodeGenOptions &CGOpts, 1468 const clang::TargetOptions &TOpts, 1469 const LangOptions &LOpts, 1470 const llvm::DataLayout &TDesc, Module *M, 1471 BackendAction Action, 1472 std::unique_ptr<raw_pwrite_stream> OS) { 1473 1474 llvm::TimeTraceScope TimeScope("Backend", StringRef("")); 1475 1476 std::unique_ptr<llvm::Module> EmptyModule; 1477 if (!CGOpts.ThinLTOIndexFile.empty()) { 1478 // If we are performing a ThinLTO importing compile, load the function index 1479 // into memory and pass it into runThinLTOBackend, which will run the 1480 // function importer and invoke LTO passes. 1481 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1482 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1483 /*IgnoreEmptyThinLTOIndexFile*/true); 1484 if (!IndexOrErr) { 1485 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1486 "Error loading index file '" + 1487 CGOpts.ThinLTOIndexFile + "': "); 1488 return; 1489 } 1490 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1491 // A null CombinedIndex means we should skip ThinLTO compilation 1492 // (LLVM will optionally ignore empty index files, returning null instead 1493 // of an error). 1494 if (CombinedIndex) { 1495 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1496 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1497 LOpts, std::move(OS), CGOpts.SampleProfileFile, 1498 CGOpts.ProfileRemappingFile, Action); 1499 return; 1500 } 1501 // Distributed indexing detected that nothing from the module is needed 1502 // for the final linking. So we can skip the compilation. We sill need to 1503 // output an empty object file to make sure that a linker does not fail 1504 // trying to read it. Also for some features, like CFI, we must skip 1505 // the compilation as CombinedIndex does not contain all required 1506 // information. 1507 EmptyModule = llvm::make_unique<llvm::Module>("empty", M->getContext()); 1508 EmptyModule->setTargetTriple(M->getTargetTriple()); 1509 M = EmptyModule.get(); 1510 } 1511 } 1512 1513 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1514 1515 if (CGOpts.ExperimentalNewPassManager) 1516 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1517 else 1518 AsmHelper.EmitAssembly(Action, std::move(OS)); 1519 1520 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1521 // DataLayout. 1522 if (AsmHelper.TM) { 1523 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1524 if (DLDesc != TDesc.getStringRepresentation()) { 1525 unsigned DiagID = Diags.getCustomDiagID( 1526 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1527 "expected target description '%1'"); 1528 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1529 } 1530 } 1531 } 1532 1533 static const char* getSectionNameForBitcode(const Triple &T) { 1534 switch (T.getObjectFormat()) { 1535 case Triple::MachO: 1536 return "__LLVM,__bitcode"; 1537 case Triple::COFF: 1538 case Triple::ELF: 1539 case Triple::Wasm: 1540 case Triple::UnknownObjectFormat: 1541 return ".llvmbc"; 1542 case Triple::XCOFF: 1543 llvm_unreachable("XCOFF is not yet implemented"); 1544 break; 1545 } 1546 llvm_unreachable("Unimplemented ObjectFormatType"); 1547 } 1548 1549 static const char* getSectionNameForCommandline(const Triple &T) { 1550 switch (T.getObjectFormat()) { 1551 case Triple::MachO: 1552 return "__LLVM,__cmdline"; 1553 case Triple::COFF: 1554 case Triple::ELF: 1555 case Triple::Wasm: 1556 case Triple::UnknownObjectFormat: 1557 return ".llvmcmd"; 1558 case Triple::XCOFF: 1559 llvm_unreachable("XCOFF is not yet implemented"); 1560 break; 1561 } 1562 llvm_unreachable("Unimplemented ObjectFormatType"); 1563 } 1564 1565 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1566 // __LLVM,__bitcode section. 1567 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1568 llvm::MemoryBufferRef Buf) { 1569 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1570 return; 1571 1572 // Save llvm.compiler.used and remote it. 1573 SmallVector<Constant*, 2> UsedArray; 1574 SmallPtrSet<GlobalValue*, 4> UsedGlobals; 1575 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1576 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1577 for (auto *GV : UsedGlobals) { 1578 if (GV->getName() != "llvm.embedded.module" && 1579 GV->getName() != "llvm.cmdline") 1580 UsedArray.push_back( 1581 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1582 } 1583 if (Used) 1584 Used->eraseFromParent(); 1585 1586 // Embed the bitcode for the llvm module. 1587 std::string Data; 1588 ArrayRef<uint8_t> ModuleData; 1589 Triple T(M->getTargetTriple()); 1590 // Create a constant that contains the bitcode. 1591 // In case of embedding a marker, ignore the input Buf and use the empty 1592 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1593 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1594 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1595 (const unsigned char *)Buf.getBufferEnd())) { 1596 // If the input is LLVM Assembly, bitcode is produced by serializing 1597 // the module. Use-lists order need to be perserved in this case. 1598 llvm::raw_string_ostream OS(Data); 1599 llvm::WriteBitcodeToFile(*M, OS, /* ShouldPreserveUseListOrder */ true); 1600 ModuleData = 1601 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1602 } else 1603 // If the input is LLVM bitcode, write the input byte stream directly. 1604 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1605 Buf.getBufferSize()); 1606 } 1607 llvm::Constant *ModuleConstant = 1608 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1609 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1610 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1611 ModuleConstant); 1612 GV->setSection(getSectionNameForBitcode(T)); 1613 UsedArray.push_back( 1614 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1615 if (llvm::GlobalVariable *Old = 1616 M->getGlobalVariable("llvm.embedded.module", true)) { 1617 assert(Old->hasOneUse() && 1618 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1619 GV->takeName(Old); 1620 Old->eraseFromParent(); 1621 } else { 1622 GV->setName("llvm.embedded.module"); 1623 } 1624 1625 // Skip if only bitcode needs to be embedded. 1626 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1627 // Embed command-line options. 1628 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1629 CGOpts.CmdArgs.size()); 1630 llvm::Constant *CmdConstant = 1631 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1632 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1633 llvm::GlobalValue::PrivateLinkage, 1634 CmdConstant); 1635 GV->setSection(getSectionNameForCommandline(T)); 1636 UsedArray.push_back( 1637 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1638 if (llvm::GlobalVariable *Old = 1639 M->getGlobalVariable("llvm.cmdline", true)) { 1640 assert(Old->hasOneUse() && 1641 "llvm.cmdline can only be used once in llvm.compiler.used"); 1642 GV->takeName(Old); 1643 Old->eraseFromParent(); 1644 } else { 1645 GV->setName("llvm.cmdline"); 1646 } 1647 } 1648 1649 if (UsedArray.empty()) 1650 return; 1651 1652 // Recreate llvm.compiler.used. 1653 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1654 auto *NewUsed = new GlobalVariable( 1655 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1656 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1657 NewUsed->setSection("llvm.metadata"); 1658 } 1659