1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "clang/Lex/HeaderSearchOptions.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/ADT/StringSwitch.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/IRPrintingPasses.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/ModuleSummaryIndex.h" 35 #include "llvm/IR/Verifier.h" 36 #include "llvm/LTO/LTOBackend.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/SubtargetFeature.h" 39 #include "llvm/Passes/PassBuilder.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/MemoryBuffer.h" 42 #include "llvm/Support/PrettyStackTrace.h" 43 #include "llvm/Support/TargetRegistry.h" 44 #include "llvm/Support/Timer.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include "llvm/Transforms/Coroutines.h" 49 #include "llvm/Transforms/IPO.h" 50 #include "llvm/Transforms/IPO/AlwaysInliner.h" 51 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 52 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 53 #include "llvm/Transforms/InstCombine/InstCombine.h" 54 #include "llvm/Transforms/Instrumentation.h" 55 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 56 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 57 #include "llvm/Transforms/ObjCARC.h" 58 #include "llvm/Transforms/Scalar.h" 59 #include "llvm/Transforms/Scalar/GVN.h" 60 #include "llvm/Transforms/Utils.h" 61 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 62 #include "llvm/Transforms/Utils/SymbolRewriter.h" 63 #include <memory> 64 using namespace clang; 65 using namespace llvm; 66 67 namespace { 68 69 // Default filename used for profile generation. 70 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 71 72 class EmitAssemblyHelper { 73 DiagnosticsEngine &Diags; 74 const HeaderSearchOptions &HSOpts; 75 const CodeGenOptions &CodeGenOpts; 76 const clang::TargetOptions &TargetOpts; 77 const LangOptions &LangOpts; 78 Module *TheModule; 79 80 Timer CodeGenerationTime; 81 82 std::unique_ptr<raw_pwrite_stream> OS; 83 84 TargetIRAnalysis getTargetIRAnalysis() const { 85 if (TM) 86 return TM->getTargetIRAnalysis(); 87 88 return TargetIRAnalysis(); 89 } 90 91 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 92 93 /// Generates the TargetMachine. 94 /// Leaves TM unchanged if it is unable to create the target machine. 95 /// Some of our clang tests specify triples which are not built 96 /// into clang. This is okay because these tests check the generated 97 /// IR, and they require DataLayout which depends on the triple. 98 /// In this case, we allow this method to fail and not report an error. 99 /// When MustCreateTM is used, we print an error if we are unable to load 100 /// the requested target. 101 void CreateTargetMachine(bool MustCreateTM); 102 103 /// Add passes necessary to emit assembly or LLVM IR. 104 /// 105 /// \return True on success. 106 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 107 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 108 109 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 110 std::error_code EC; 111 auto F = llvm::make_unique<llvm::ToolOutputFile>(Path, EC, 112 llvm::sys::fs::F_None); 113 if (EC) { 114 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 115 F.reset(); 116 } 117 return F; 118 } 119 120 public: 121 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 122 const HeaderSearchOptions &HeaderSearchOpts, 123 const CodeGenOptions &CGOpts, 124 const clang::TargetOptions &TOpts, 125 const LangOptions &LOpts, Module *M) 126 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 127 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 128 CodeGenerationTime("codegen", "Code Generation Time") {} 129 130 ~EmitAssemblyHelper() { 131 if (CodeGenOpts.DisableFree) 132 BuryPointer(std::move(TM)); 133 } 134 135 std::unique_ptr<TargetMachine> TM; 136 137 void EmitAssembly(BackendAction Action, 138 std::unique_ptr<raw_pwrite_stream> OS); 139 140 void EmitAssemblyWithNewPassManager(BackendAction Action, 141 std::unique_ptr<raw_pwrite_stream> OS); 142 }; 143 144 // We need this wrapper to access LangOpts and CGOpts from extension functions 145 // that we add to the PassManagerBuilder. 146 class PassManagerBuilderWrapper : public PassManagerBuilder { 147 public: 148 PassManagerBuilderWrapper(const Triple &TargetTriple, 149 const CodeGenOptions &CGOpts, 150 const LangOptions &LangOpts) 151 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 152 LangOpts(LangOpts) {} 153 const Triple &getTargetTriple() const { return TargetTriple; } 154 const CodeGenOptions &getCGOpts() const { return CGOpts; } 155 const LangOptions &getLangOpts() const { return LangOpts; } 156 157 private: 158 const Triple &TargetTriple; 159 const CodeGenOptions &CGOpts; 160 const LangOptions &LangOpts; 161 }; 162 } 163 164 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 165 if (Builder.OptLevel > 0) 166 PM.add(createObjCARCAPElimPass()); 167 } 168 169 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 170 if (Builder.OptLevel > 0) 171 PM.add(createObjCARCExpandPass()); 172 } 173 174 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 175 if (Builder.OptLevel > 0) 176 PM.add(createObjCARCOptPass()); 177 } 178 179 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 180 legacy::PassManagerBase &PM) { 181 PM.add(createAddDiscriminatorsPass()); 182 } 183 184 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 185 legacy::PassManagerBase &PM) { 186 PM.add(createBoundsCheckingLegacyPass()); 187 } 188 189 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 190 legacy::PassManagerBase &PM) { 191 const PassManagerBuilderWrapper &BuilderWrapper = 192 static_cast<const PassManagerBuilderWrapper&>(Builder); 193 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 194 SanitizerCoverageOptions Opts; 195 Opts.CoverageType = 196 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 197 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 198 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 199 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 200 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 201 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 202 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 203 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 204 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 205 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 206 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 207 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 208 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 209 PM.add(createSanitizerCoverageModulePass(Opts)); 210 } 211 212 // Check if ASan should use GC-friendly instrumentation for globals. 213 // First of all, there is no point if -fdata-sections is off (expect for MachO, 214 // where this is not a factor). Also, on ELF this feature requires an assembler 215 // extension that only works with -integrated-as at the moment. 216 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 217 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 218 return false; 219 switch (T.getObjectFormat()) { 220 case Triple::MachO: 221 case Triple::COFF: 222 return true; 223 case Triple::ELF: 224 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 225 default: 226 return false; 227 } 228 } 229 230 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 231 legacy::PassManagerBase &PM) { 232 const PassManagerBuilderWrapper &BuilderWrapper = 233 static_cast<const PassManagerBuilderWrapper&>(Builder); 234 const Triple &T = BuilderWrapper.getTargetTriple(); 235 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 236 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 237 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 238 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 239 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 240 UseAfterScope)); 241 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/ false, Recover, 242 UseGlobalsGC)); 243 } 244 245 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 246 legacy::PassManagerBase &PM) { 247 PM.add(createAddressSanitizerFunctionPass( 248 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 249 PM.add(createAddressSanitizerModulePass( 250 /*CompileKernel*/ true, /*Recover*/ true)); 251 } 252 253 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 254 legacy::PassManagerBase &PM) { 255 const PassManagerBuilderWrapper &BuilderWrapper = 256 static_cast<const PassManagerBuilderWrapper &>(Builder); 257 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 258 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 259 PM.add(createHWAddressSanitizerPass(/*CompileKernel*/ false, Recover)); 260 } 261 262 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 263 legacy::PassManagerBase &PM) { 264 PM.add(createHWAddressSanitizerPass( 265 /*CompileKernel*/ true, /*Recover*/ true)); 266 } 267 268 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 269 legacy::PassManagerBase &PM) { 270 const PassManagerBuilderWrapper &BuilderWrapper = 271 static_cast<const PassManagerBuilderWrapper&>(Builder); 272 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 273 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 274 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 275 PM.add(createMemorySanitizerPass(TrackOrigins, Recover)); 276 277 // MemorySanitizer inserts complex instrumentation that mostly follows 278 // the logic of the original code, but operates on "shadow" values. 279 // It can benefit from re-running some general purpose optimization passes. 280 if (Builder.OptLevel > 0) { 281 PM.add(createEarlyCSEPass()); 282 PM.add(createReassociatePass()); 283 PM.add(createLICMPass()); 284 PM.add(createGVNPass()); 285 PM.add(createInstructionCombiningPass()); 286 PM.add(createDeadStoreEliminationPass()); 287 } 288 } 289 290 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 291 legacy::PassManagerBase &PM) { 292 PM.add(createThreadSanitizerPass()); 293 } 294 295 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 296 legacy::PassManagerBase &PM) { 297 const PassManagerBuilderWrapper &BuilderWrapper = 298 static_cast<const PassManagerBuilderWrapper&>(Builder); 299 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 300 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 301 } 302 303 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 304 legacy::PassManagerBase &PM) { 305 const PassManagerBuilderWrapper &BuilderWrapper = 306 static_cast<const PassManagerBuilderWrapper&>(Builder); 307 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 308 EfficiencySanitizerOptions Opts; 309 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 310 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 311 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 312 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 313 PM.add(createEfficiencySanitizerPass(Opts)); 314 } 315 316 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 317 const CodeGenOptions &CodeGenOpts) { 318 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 319 if (!CodeGenOpts.SimplifyLibCalls) 320 TLII->disableAllFunctions(); 321 else { 322 // Disable individual libc/libm calls in TargetLibraryInfo. 323 LibFunc F; 324 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 325 if (TLII->getLibFunc(FuncName, F)) 326 TLII->setUnavailable(F); 327 } 328 329 switch (CodeGenOpts.getVecLib()) { 330 case CodeGenOptions::Accelerate: 331 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 332 break; 333 case CodeGenOptions::SVML: 334 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 335 break; 336 default: 337 break; 338 } 339 return TLII; 340 } 341 342 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 343 legacy::PassManager *MPM) { 344 llvm::SymbolRewriter::RewriteDescriptorList DL; 345 346 llvm::SymbolRewriter::RewriteMapParser MapParser; 347 for (const auto &MapFile : Opts.RewriteMapFiles) 348 MapParser.parse(MapFile, &DL); 349 350 MPM->add(createRewriteSymbolsPass(DL)); 351 } 352 353 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 354 switch (CodeGenOpts.OptimizationLevel) { 355 default: 356 llvm_unreachable("Invalid optimization level!"); 357 case 0: 358 return CodeGenOpt::None; 359 case 1: 360 return CodeGenOpt::Less; 361 case 2: 362 return CodeGenOpt::Default; // O2/Os/Oz 363 case 3: 364 return CodeGenOpt::Aggressive; 365 } 366 } 367 368 static Optional<llvm::CodeModel::Model> 369 getCodeModel(const CodeGenOptions &CodeGenOpts) { 370 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 371 .Case("tiny", llvm::CodeModel::Tiny) 372 .Case("small", llvm::CodeModel::Small) 373 .Case("kernel", llvm::CodeModel::Kernel) 374 .Case("medium", llvm::CodeModel::Medium) 375 .Case("large", llvm::CodeModel::Large) 376 .Case("default", ~1u) 377 .Default(~0u); 378 assert(CodeModel != ~0u && "invalid code model!"); 379 if (CodeModel == ~1u) 380 return None; 381 return static_cast<llvm::CodeModel::Model>(CodeModel); 382 } 383 384 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 385 if (Action == Backend_EmitObj) 386 return TargetMachine::CGFT_ObjectFile; 387 else if (Action == Backend_EmitMCNull) 388 return TargetMachine::CGFT_Null; 389 else { 390 assert(Action == Backend_EmitAssembly && "Invalid action!"); 391 return TargetMachine::CGFT_AssemblyFile; 392 } 393 } 394 395 static void initTargetOptions(llvm::TargetOptions &Options, 396 const CodeGenOptions &CodeGenOpts, 397 const clang::TargetOptions &TargetOpts, 398 const LangOptions &LangOpts, 399 const HeaderSearchOptions &HSOpts) { 400 Options.ThreadModel = 401 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 402 .Case("posix", llvm::ThreadModel::POSIX) 403 .Case("single", llvm::ThreadModel::Single); 404 405 // Set float ABI type. 406 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 407 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 408 "Invalid Floating Point ABI!"); 409 Options.FloatABIType = 410 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 411 .Case("soft", llvm::FloatABI::Soft) 412 .Case("softfp", llvm::FloatABI::Soft) 413 .Case("hard", llvm::FloatABI::Hard) 414 .Default(llvm::FloatABI::Default); 415 416 // Set FP fusion mode. 417 switch (LangOpts.getDefaultFPContractMode()) { 418 case LangOptions::FPC_Off: 419 // Preserve any contraction performed by the front-end. (Strict performs 420 // splitting of the muladd instrinsic in the backend.) 421 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 422 break; 423 case LangOptions::FPC_On: 424 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 425 break; 426 case LangOptions::FPC_Fast: 427 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 428 break; 429 } 430 431 Options.UseInitArray = CodeGenOpts.UseInitArray; 432 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 433 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 434 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 435 436 // Set EABI version. 437 Options.EABIVersion = TargetOpts.EABIVersion; 438 439 if (LangOpts.SjLjExceptions) 440 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 441 if (LangOpts.SEHExceptions) 442 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 443 if (LangOpts.DWARFExceptions) 444 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 445 446 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 447 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 448 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 449 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 450 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 451 Options.FunctionSections = CodeGenOpts.FunctionSections; 452 Options.DataSections = CodeGenOpts.DataSections; 453 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 454 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 455 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 456 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 457 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 458 Options.EmitAddrsig = CodeGenOpts.Addrsig; 459 460 if (CodeGenOpts.EnableSplitDwarf) 461 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 462 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 463 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 464 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 465 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 466 Options.MCOptions.MCIncrementalLinkerCompatible = 467 CodeGenOpts.IncrementalLinkerCompatible; 468 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 469 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 470 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 471 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 472 Options.MCOptions.ABIName = TargetOpts.ABI; 473 for (const auto &Entry : HSOpts.UserEntries) 474 if (!Entry.IsFramework && 475 (Entry.Group == frontend::IncludeDirGroup::Quoted || 476 Entry.Group == frontend::IncludeDirGroup::Angled || 477 Entry.Group == frontend::IncludeDirGroup::System)) 478 Options.MCOptions.IASSearchPaths.push_back( 479 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 480 } 481 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 482 if (CodeGenOpts.DisableGCov) 483 return None; 484 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 485 return None; 486 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 487 // LLVM's -default-gcov-version flag is set to something invalid. 488 GCOVOptions Options; 489 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 490 Options.EmitData = CodeGenOpts.EmitGcovArcs; 491 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 492 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 493 Options.NoRedZone = CodeGenOpts.DisableRedZone; 494 Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData; 495 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 496 return Options; 497 } 498 499 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 500 legacy::FunctionPassManager &FPM) { 501 // Handle disabling of all LLVM passes, where we want to preserve the 502 // internal module before any optimization. 503 if (CodeGenOpts.DisableLLVMPasses) 504 return; 505 506 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 507 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 508 // are inserted before PMBuilder ones - they'd get the default-constructed 509 // TLI with an unknown target otherwise. 510 Triple TargetTriple(TheModule->getTargetTriple()); 511 std::unique_ptr<TargetLibraryInfoImpl> TLII( 512 createTLII(TargetTriple, CodeGenOpts)); 513 514 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 515 516 // At O0 and O1 we only run the always inliner which is more efficient. At 517 // higher optimization levels we run the normal inliner. 518 if (CodeGenOpts.OptimizationLevel <= 1) { 519 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 520 !CodeGenOpts.DisableLifetimeMarkers); 521 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 522 } else { 523 // We do not want to inline hot callsites for SamplePGO module-summary build 524 // because profile annotation will happen again in ThinLTO backend, and we 525 // want the IR of the hot path to match the profile. 526 PMBuilder.Inliner = createFunctionInliningPass( 527 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 528 (!CodeGenOpts.SampleProfileFile.empty() && 529 CodeGenOpts.PrepareForThinLTO)); 530 } 531 532 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 533 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 534 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 535 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 536 537 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 538 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 539 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 540 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 541 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 542 543 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 544 545 if (TM) 546 TM->adjustPassManager(PMBuilder); 547 548 if (CodeGenOpts.DebugInfoForProfiling || 549 !CodeGenOpts.SampleProfileFile.empty()) 550 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 551 addAddDiscriminatorsPass); 552 553 // In ObjC ARC mode, add the main ARC optimization passes. 554 if (LangOpts.ObjCAutoRefCount) { 555 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 556 addObjCARCExpandPass); 557 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 558 addObjCARCAPElimPass); 559 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 560 addObjCARCOptPass); 561 } 562 563 if (LangOpts.CoroutinesTS) 564 addCoroutinePassesToExtensionPoints(PMBuilder); 565 566 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 567 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 568 addBoundsCheckingPass); 569 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 570 addBoundsCheckingPass); 571 } 572 573 if (CodeGenOpts.SanitizeCoverageType || 574 CodeGenOpts.SanitizeCoverageIndirectCalls || 575 CodeGenOpts.SanitizeCoverageTraceCmp) { 576 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 577 addSanitizerCoveragePass); 578 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 579 addSanitizerCoveragePass); 580 } 581 582 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 583 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 584 addAddressSanitizerPasses); 585 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 586 addAddressSanitizerPasses); 587 } 588 589 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 590 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 591 addKernelAddressSanitizerPasses); 592 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 593 addKernelAddressSanitizerPasses); 594 } 595 596 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 597 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 598 addHWAddressSanitizerPasses); 599 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 600 addHWAddressSanitizerPasses); 601 } 602 603 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 604 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 605 addKernelHWAddressSanitizerPasses); 606 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 607 addKernelHWAddressSanitizerPasses); 608 } 609 610 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 611 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 612 addMemorySanitizerPass); 613 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 614 addMemorySanitizerPass); 615 } 616 617 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 618 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 619 addThreadSanitizerPass); 620 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 621 addThreadSanitizerPass); 622 } 623 624 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 625 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 626 addDataFlowSanitizerPass); 627 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 628 addDataFlowSanitizerPass); 629 } 630 631 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 632 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 633 addEfficiencySanitizerPass); 634 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 635 addEfficiencySanitizerPass); 636 } 637 638 // Set up the per-function pass manager. 639 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 640 if (CodeGenOpts.VerifyModule) 641 FPM.add(createVerifierPass()); 642 643 // Set up the per-module pass manager. 644 if (!CodeGenOpts.RewriteMapFiles.empty()) 645 addSymbolRewriterPass(CodeGenOpts, &MPM); 646 647 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 648 MPM.add(createGCOVProfilerPass(*Options)); 649 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 650 MPM.add(createStripSymbolsPass(true)); 651 } 652 653 if (CodeGenOpts.hasProfileClangInstr()) { 654 InstrProfOptions Options; 655 Options.NoRedZone = CodeGenOpts.DisableRedZone; 656 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 657 658 // TODO: Surface the option to emit atomic profile counter increments at 659 // the driver level. 660 Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread); 661 662 MPM.add(createInstrProfilingLegacyPass(Options)); 663 } 664 if (CodeGenOpts.hasProfileIRInstr()) { 665 PMBuilder.EnablePGOInstrGen = true; 666 if (!CodeGenOpts.InstrProfileOutput.empty()) 667 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 668 else 669 PMBuilder.PGOInstrGen = DefaultProfileGenName; 670 } 671 if (CodeGenOpts.hasProfileIRUse()) 672 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 673 674 if (!CodeGenOpts.SampleProfileFile.empty()) 675 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 676 677 PMBuilder.populateFunctionPassManager(FPM); 678 PMBuilder.populateModulePassManager(MPM); 679 } 680 681 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 682 SmallVector<const char *, 16> BackendArgs; 683 BackendArgs.push_back("clang"); // Fake program name. 684 if (!CodeGenOpts.DebugPass.empty()) { 685 BackendArgs.push_back("-debug-pass"); 686 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 687 } 688 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 689 BackendArgs.push_back("-limit-float-precision"); 690 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 691 } 692 BackendArgs.push_back(nullptr); 693 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 694 BackendArgs.data()); 695 } 696 697 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 698 // Create the TargetMachine for generating code. 699 std::string Error; 700 std::string Triple = TheModule->getTargetTriple(); 701 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 702 if (!TheTarget) { 703 if (MustCreateTM) 704 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 705 return; 706 } 707 708 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 709 std::string FeaturesStr = 710 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 711 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 712 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 713 714 llvm::TargetOptions Options; 715 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 716 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 717 Options, RM, CM, OptLevel)); 718 } 719 720 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 721 BackendAction Action, 722 raw_pwrite_stream &OS, 723 raw_pwrite_stream *DwoOS) { 724 // Add LibraryInfo. 725 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 726 std::unique_ptr<TargetLibraryInfoImpl> TLII( 727 createTLII(TargetTriple, CodeGenOpts)); 728 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 729 730 // Normal mode, emit a .s or .o file by running the code generator. Note, 731 // this also adds codegenerator level optimization passes. 732 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 733 734 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 735 // "codegen" passes so that it isn't run multiple times when there is 736 // inlining happening. 737 if (CodeGenOpts.OptimizationLevel > 0) 738 CodeGenPasses.add(createObjCARCContractPass()); 739 740 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 741 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 742 Diags.Report(diag::err_fe_unable_to_interface_with_target); 743 return false; 744 } 745 746 return true; 747 } 748 749 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 750 std::unique_ptr<raw_pwrite_stream> OS) { 751 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 752 753 setCommandLineOpts(CodeGenOpts); 754 755 bool UsesCodeGen = (Action != Backend_EmitNothing && 756 Action != Backend_EmitBC && 757 Action != Backend_EmitLL); 758 CreateTargetMachine(UsesCodeGen); 759 760 if (UsesCodeGen && !TM) 761 return; 762 if (TM) 763 TheModule->setDataLayout(TM->createDataLayout()); 764 765 legacy::PassManager PerModulePasses; 766 PerModulePasses.add( 767 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 768 769 legacy::FunctionPassManager PerFunctionPasses(TheModule); 770 PerFunctionPasses.add( 771 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 772 773 CreatePasses(PerModulePasses, PerFunctionPasses); 774 775 legacy::PassManager CodeGenPasses; 776 CodeGenPasses.add( 777 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 778 779 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 780 781 switch (Action) { 782 case Backend_EmitNothing: 783 break; 784 785 case Backend_EmitBC: 786 if (CodeGenOpts.PrepareForThinLTO) { 787 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 788 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 789 if (!ThinLinkOS) 790 return; 791 } 792 PerModulePasses.add(createWriteThinLTOBitcodePass( 793 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 794 } else { 795 // Emit a module summary by default for Regular LTO except for ld64 796 // targets 797 bool EmitLTOSummary = 798 (CodeGenOpts.PrepareForLTO && 799 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 800 llvm::Triple::Apple); 801 if (EmitLTOSummary && !TheModule->getModuleFlag("ThinLTO")) 802 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 803 804 PerModulePasses.add( 805 createBitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 806 EmitLTOSummary)); 807 } 808 break; 809 810 case Backend_EmitLL: 811 PerModulePasses.add( 812 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 813 break; 814 815 default: 816 if (!CodeGenOpts.SplitDwarfFile.empty()) { 817 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfFile); 818 if (!DwoOS) 819 return; 820 } 821 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 822 DwoOS ? &DwoOS->os() : nullptr)) 823 return; 824 } 825 826 // Before executing passes, print the final values of the LLVM options. 827 cl::PrintOptionValues(); 828 829 // Run passes. For now we do all passes at once, but eventually we 830 // would like to have the option of streaming code generation. 831 832 { 833 PrettyStackTraceString CrashInfo("Per-function optimization"); 834 835 PerFunctionPasses.doInitialization(); 836 for (Function &F : *TheModule) 837 if (!F.isDeclaration()) 838 PerFunctionPasses.run(F); 839 PerFunctionPasses.doFinalization(); 840 } 841 842 { 843 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 844 PerModulePasses.run(*TheModule); 845 } 846 847 { 848 PrettyStackTraceString CrashInfo("Code generation"); 849 CodeGenPasses.run(*TheModule); 850 } 851 852 if (ThinLinkOS) 853 ThinLinkOS->keep(); 854 if (DwoOS) 855 DwoOS->keep(); 856 } 857 858 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 859 switch (Opts.OptimizationLevel) { 860 default: 861 llvm_unreachable("Invalid optimization level!"); 862 863 case 1: 864 return PassBuilder::O1; 865 866 case 2: 867 switch (Opts.OptimizeSize) { 868 default: 869 llvm_unreachable("Invalid optimization level for size!"); 870 871 case 0: 872 return PassBuilder::O2; 873 874 case 1: 875 return PassBuilder::Os; 876 877 case 2: 878 return PassBuilder::Oz; 879 } 880 881 case 3: 882 return PassBuilder::O3; 883 } 884 } 885 886 /// A clean version of `EmitAssembly` that uses the new pass manager. 887 /// 888 /// Not all features are currently supported in this system, but where 889 /// necessary it falls back to the legacy pass manager to at least provide 890 /// basic functionality. 891 /// 892 /// This API is planned to have its functionality finished and then to replace 893 /// `EmitAssembly` at some point in the future when the default switches. 894 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 895 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 896 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 897 setCommandLineOpts(CodeGenOpts); 898 899 // The new pass manager always makes a target machine available to passes 900 // during construction. 901 CreateTargetMachine(/*MustCreateTM*/ true); 902 if (!TM) 903 // This will already be diagnosed, just bail. 904 return; 905 TheModule->setDataLayout(TM->createDataLayout()); 906 907 Optional<PGOOptions> PGOOpt; 908 909 if (CodeGenOpts.hasProfileIRInstr()) 910 // -fprofile-generate. 911 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 912 ? DefaultProfileGenName 913 : CodeGenOpts.InstrProfileOutput, 914 "", "", true, CodeGenOpts.DebugInfoForProfiling); 915 else if (CodeGenOpts.hasProfileIRUse()) 916 // -fprofile-use. 917 PGOOpt = PGOOptions("", CodeGenOpts.ProfileInstrumentUsePath, "", false, 918 CodeGenOpts.DebugInfoForProfiling); 919 else if (!CodeGenOpts.SampleProfileFile.empty()) 920 // -fprofile-sample-use 921 PGOOpt = PGOOptions("", "", CodeGenOpts.SampleProfileFile, false, 922 CodeGenOpts.DebugInfoForProfiling); 923 else if (CodeGenOpts.DebugInfoForProfiling) 924 // -fdebug-info-for-profiling 925 PGOOpt = PGOOptions("", "", "", false, true); 926 927 PassBuilder PB(TM.get(), PGOOpt); 928 929 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 930 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 931 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 932 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 933 934 // Register the AA manager first so that our version is the one used. 935 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 936 937 // Register the target library analysis directly and give it a customized 938 // preset TLI. 939 Triple TargetTriple(TheModule->getTargetTriple()); 940 std::unique_ptr<TargetLibraryInfoImpl> TLII( 941 createTLII(TargetTriple, CodeGenOpts)); 942 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 943 MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 944 945 // Register all the basic analyses with the managers. 946 PB.registerModuleAnalyses(MAM); 947 PB.registerCGSCCAnalyses(CGAM); 948 PB.registerFunctionAnalyses(FAM); 949 PB.registerLoopAnalyses(LAM); 950 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 951 952 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 953 954 if (!CodeGenOpts.DisableLLVMPasses) { 955 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 956 bool IsLTO = CodeGenOpts.PrepareForLTO; 957 958 if (CodeGenOpts.OptimizationLevel == 0) { 959 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 960 MPM.addPass(GCOVProfilerPass(*Options)); 961 962 // Build a minimal pipeline based on the semantics required by Clang, 963 // which is just that always inlining occurs. 964 MPM.addPass(AlwaysInlinerPass()); 965 966 // At -O0 we directly run necessary sanitizer passes. 967 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 968 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 969 970 // Lastly, add a semantically necessary pass for LTO. 971 if (IsLTO || IsThinLTO) 972 MPM.addPass(NameAnonGlobalPass()); 973 } else { 974 // Map our optimization levels into one of the distinct levels used to 975 // configure the pipeline. 976 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 977 978 // Register callbacks to schedule sanitizer passes at the appropriate part of 979 // the pipeline. 980 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 981 PB.registerScalarOptimizerLateEPCallback( 982 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 983 FPM.addPass(BoundsCheckingPass()); 984 }); 985 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 986 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 987 MPM.addPass(GCOVProfilerPass(*Options)); 988 }); 989 990 if (IsThinLTO) { 991 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 992 Level, CodeGenOpts.DebugPassManager); 993 MPM.addPass(NameAnonGlobalPass()); 994 } else if (IsLTO) { 995 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 996 CodeGenOpts.DebugPassManager); 997 MPM.addPass(NameAnonGlobalPass()); 998 } else { 999 MPM = PB.buildPerModuleDefaultPipeline(Level, 1000 CodeGenOpts.DebugPassManager); 1001 } 1002 } 1003 } 1004 1005 // FIXME: We still use the legacy pass manager to do code generation. We 1006 // create that pass manager here and use it as needed below. 1007 legacy::PassManager CodeGenPasses; 1008 bool NeedCodeGen = false; 1009 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1010 1011 // Append any output we need to the pass manager. 1012 switch (Action) { 1013 case Backend_EmitNothing: 1014 break; 1015 1016 case Backend_EmitBC: 1017 if (CodeGenOpts.PrepareForThinLTO) { 1018 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1019 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1020 if (!ThinLinkOS) 1021 return; 1022 } 1023 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1024 : nullptr)); 1025 } else { 1026 // Emit a module summary by default for Regular LTO except for ld64 1027 // targets 1028 bool EmitLTOSummary = 1029 (CodeGenOpts.PrepareForLTO && 1030 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1031 llvm::Triple::Apple); 1032 if (EmitLTOSummary && !TheModule->getModuleFlag("ThinLTO")) 1033 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1034 1035 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 1036 EmitLTOSummary)); 1037 } 1038 break; 1039 1040 case Backend_EmitLL: 1041 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1042 break; 1043 1044 case Backend_EmitAssembly: 1045 case Backend_EmitMCNull: 1046 case Backend_EmitObj: 1047 NeedCodeGen = true; 1048 CodeGenPasses.add( 1049 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1050 if (!CodeGenOpts.SplitDwarfFile.empty()) { 1051 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfFile); 1052 if (!DwoOS) 1053 return; 1054 } 1055 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1056 DwoOS ? &DwoOS->os() : nullptr)) 1057 // FIXME: Should we handle this error differently? 1058 return; 1059 break; 1060 } 1061 1062 // Before executing passes, print the final values of the LLVM options. 1063 cl::PrintOptionValues(); 1064 1065 // Now that we have all of the passes ready, run them. 1066 { 1067 PrettyStackTraceString CrashInfo("Optimizer"); 1068 MPM.run(*TheModule, MAM); 1069 } 1070 1071 // Now if needed, run the legacy PM for codegen. 1072 if (NeedCodeGen) { 1073 PrettyStackTraceString CrashInfo("Code generation"); 1074 CodeGenPasses.run(*TheModule); 1075 } 1076 1077 if (ThinLinkOS) 1078 ThinLinkOS->keep(); 1079 if (DwoOS) 1080 DwoOS->keep(); 1081 } 1082 1083 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1084 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1085 if (!BMsOrErr) 1086 return BMsOrErr.takeError(); 1087 1088 // The bitcode file may contain multiple modules, we want the one that is 1089 // marked as being the ThinLTO module. 1090 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1091 return *Bm; 1092 1093 return make_error<StringError>("Could not find module summary", 1094 inconvertibleErrorCode()); 1095 } 1096 1097 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1098 for (BitcodeModule &BM : BMs) { 1099 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1100 if (LTOInfo && LTOInfo->IsThinLTO) 1101 return &BM; 1102 } 1103 return nullptr; 1104 } 1105 1106 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1107 const HeaderSearchOptions &HeaderOpts, 1108 const CodeGenOptions &CGOpts, 1109 const clang::TargetOptions &TOpts, 1110 const LangOptions &LOpts, 1111 std::unique_ptr<raw_pwrite_stream> OS, 1112 std::string SampleProfile, 1113 BackendAction Action) { 1114 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1115 ModuleToDefinedGVSummaries; 1116 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1117 1118 setCommandLineOpts(CGOpts); 1119 1120 // We can simply import the values mentioned in the combined index, since 1121 // we should only invoke this using the individual indexes written out 1122 // via a WriteIndexesThinBackend. 1123 FunctionImporter::ImportMapTy ImportList; 1124 for (auto &GlobalList : *CombinedIndex) { 1125 // Ignore entries for undefined references. 1126 if (GlobalList.second.SummaryList.empty()) 1127 continue; 1128 1129 auto GUID = GlobalList.first; 1130 assert(GlobalList.second.SummaryList.size() == 1 && 1131 "Expected individual combined index to have one summary per GUID"); 1132 auto &Summary = GlobalList.second.SummaryList[0]; 1133 // Skip the summaries for the importing module. These are included to 1134 // e.g. record required linkage changes. 1135 if (Summary->modulePath() == M->getModuleIdentifier()) 1136 continue; 1137 // Add an entry to provoke importing by thinBackend. 1138 ImportList[Summary->modulePath()].insert(GUID); 1139 } 1140 1141 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1142 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1143 1144 for (auto &I : ImportList) { 1145 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1146 llvm::MemoryBuffer::getFile(I.first()); 1147 if (!MBOrErr) { 1148 errs() << "Error loading imported file '" << I.first() 1149 << "': " << MBOrErr.getError().message() << "\n"; 1150 return; 1151 } 1152 1153 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1154 if (!BMOrErr) { 1155 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1156 errs() << "Error loading imported file '" << I.first() 1157 << "': " << EIB.message() << '\n'; 1158 }); 1159 return; 1160 } 1161 ModuleMap.insert({I.first(), *BMOrErr}); 1162 1163 OwnedImports.push_back(std::move(*MBOrErr)); 1164 } 1165 auto AddStream = [&](size_t Task) { 1166 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 1167 }; 1168 lto::Config Conf; 1169 if (CGOpts.SaveTempsFilePrefix != "") { 1170 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1171 /* UseInputModulePath */ false)) { 1172 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1173 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1174 << '\n'; 1175 }); 1176 } 1177 } 1178 Conf.CPU = TOpts.CPU; 1179 Conf.CodeModel = getCodeModel(CGOpts); 1180 Conf.MAttrs = TOpts.Features; 1181 Conf.RelocModel = CGOpts.RelocationModel; 1182 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1183 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1184 Conf.SampleProfile = std::move(SampleProfile); 1185 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1186 Conf.DebugPassManager = CGOpts.DebugPassManager; 1187 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1188 Conf.RemarksFilename = CGOpts.OptRecordFile; 1189 Conf.DwoPath = CGOpts.SplitDwarfFile; 1190 switch (Action) { 1191 case Backend_EmitNothing: 1192 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1193 return false; 1194 }; 1195 break; 1196 case Backend_EmitLL: 1197 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1198 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1199 return false; 1200 }; 1201 break; 1202 case Backend_EmitBC: 1203 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1204 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1205 return false; 1206 }; 1207 break; 1208 default: 1209 Conf.CGFileType = getCodeGenFileType(Action); 1210 break; 1211 } 1212 if (Error E = thinBackend( 1213 Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1214 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1215 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1216 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1217 }); 1218 } 1219 } 1220 1221 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1222 const HeaderSearchOptions &HeaderOpts, 1223 const CodeGenOptions &CGOpts, 1224 const clang::TargetOptions &TOpts, 1225 const LangOptions &LOpts, 1226 const llvm::DataLayout &TDesc, Module *M, 1227 BackendAction Action, 1228 std::unique_ptr<raw_pwrite_stream> OS) { 1229 std::unique_ptr<llvm::Module> EmptyModule; 1230 if (!CGOpts.ThinLTOIndexFile.empty()) { 1231 // If we are performing a ThinLTO importing compile, load the function index 1232 // into memory and pass it into runThinLTOBackend, which will run the 1233 // function importer and invoke LTO passes. 1234 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1235 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1236 /*IgnoreEmptyThinLTOIndexFile*/true); 1237 if (!IndexOrErr) { 1238 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1239 "Error loading index file '" + 1240 CGOpts.ThinLTOIndexFile + "': "); 1241 return; 1242 } 1243 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1244 // A null CombinedIndex means we should skip ThinLTO compilation 1245 // (LLVM will optionally ignore empty index files, returning null instead 1246 // of an error). 1247 if (CombinedIndex) { 1248 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1249 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1250 LOpts, std::move(OS), CGOpts.SampleProfileFile, 1251 Action); 1252 return; 1253 } 1254 // Distributed indexing detected that nothing from the module is needed 1255 // for the final linking. So we can skip the compilation. We sill need to 1256 // output an empty object file to make sure that a linker does not fail 1257 // trying to read it. Also for some features, like CFI, we must skip 1258 // the compilation as CombinedIndex does not contain all required 1259 // information. 1260 EmptyModule = llvm::make_unique<llvm::Module>("empty", M->getContext()); 1261 EmptyModule->setTargetTriple(M->getTargetTriple()); 1262 M = EmptyModule.get(); 1263 } 1264 } 1265 1266 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1267 1268 if (CGOpts.ExperimentalNewPassManager) 1269 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1270 else 1271 AsmHelper.EmitAssembly(Action, std::move(OS)); 1272 1273 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1274 // DataLayout. 1275 if (AsmHelper.TM) { 1276 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1277 if (DLDesc != TDesc.getStringRepresentation()) { 1278 unsigned DiagID = Diags.getCustomDiagID( 1279 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1280 "expected target description '%1'"); 1281 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1282 } 1283 } 1284 } 1285 1286 static const char* getSectionNameForBitcode(const Triple &T) { 1287 switch (T.getObjectFormat()) { 1288 case Triple::MachO: 1289 return "__LLVM,__bitcode"; 1290 case Triple::COFF: 1291 case Triple::ELF: 1292 case Triple::Wasm: 1293 case Triple::UnknownObjectFormat: 1294 return ".llvmbc"; 1295 } 1296 llvm_unreachable("Unimplemented ObjectFormatType"); 1297 } 1298 1299 static const char* getSectionNameForCommandline(const Triple &T) { 1300 switch (T.getObjectFormat()) { 1301 case Triple::MachO: 1302 return "__LLVM,__cmdline"; 1303 case Triple::COFF: 1304 case Triple::ELF: 1305 case Triple::Wasm: 1306 case Triple::UnknownObjectFormat: 1307 return ".llvmcmd"; 1308 } 1309 llvm_unreachable("Unimplemented ObjectFormatType"); 1310 } 1311 1312 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1313 // __LLVM,__bitcode section. 1314 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1315 llvm::MemoryBufferRef Buf) { 1316 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1317 return; 1318 1319 // Save llvm.compiler.used and remote it. 1320 SmallVector<Constant*, 2> UsedArray; 1321 SmallPtrSet<GlobalValue*, 4> UsedGlobals; 1322 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1323 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1324 for (auto *GV : UsedGlobals) { 1325 if (GV->getName() != "llvm.embedded.module" && 1326 GV->getName() != "llvm.cmdline") 1327 UsedArray.push_back( 1328 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1329 } 1330 if (Used) 1331 Used->eraseFromParent(); 1332 1333 // Embed the bitcode for the llvm module. 1334 std::string Data; 1335 ArrayRef<uint8_t> ModuleData; 1336 Triple T(M->getTargetTriple()); 1337 // Create a constant that contains the bitcode. 1338 // In case of embedding a marker, ignore the input Buf and use the empty 1339 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1340 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1341 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1342 (const unsigned char *)Buf.getBufferEnd())) { 1343 // If the input is LLVM Assembly, bitcode is produced by serializing 1344 // the module. Use-lists order need to be perserved in this case. 1345 llvm::raw_string_ostream OS(Data); 1346 llvm::WriteBitcodeToFile(*M, OS, /* ShouldPreserveUseListOrder */ true); 1347 ModuleData = 1348 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1349 } else 1350 // If the input is LLVM bitcode, write the input byte stream directly. 1351 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1352 Buf.getBufferSize()); 1353 } 1354 llvm::Constant *ModuleConstant = 1355 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1356 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1357 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1358 ModuleConstant); 1359 GV->setSection(getSectionNameForBitcode(T)); 1360 UsedArray.push_back( 1361 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1362 if (llvm::GlobalVariable *Old = 1363 M->getGlobalVariable("llvm.embedded.module", true)) { 1364 assert(Old->hasOneUse() && 1365 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1366 GV->takeName(Old); 1367 Old->eraseFromParent(); 1368 } else { 1369 GV->setName("llvm.embedded.module"); 1370 } 1371 1372 // Skip if only bitcode needs to be embedded. 1373 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1374 // Embed command-line options. 1375 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1376 CGOpts.CmdArgs.size()); 1377 llvm::Constant *CmdConstant = 1378 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1379 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1380 llvm::GlobalValue::PrivateLinkage, 1381 CmdConstant); 1382 GV->setSection(getSectionNameForCommandline(T)); 1383 UsedArray.push_back( 1384 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1385 if (llvm::GlobalVariable *Old = 1386 M->getGlobalVariable("llvm.cmdline", true)) { 1387 assert(Old->hasOneUse() && 1388 "llvm.cmdline can only be used once in llvm.compiler.used"); 1389 GV->takeName(Old); 1390 Old->eraseFromParent(); 1391 } else { 1392 GV->setName("llvm.cmdline"); 1393 } 1394 } 1395 1396 if (UsedArray.empty()) 1397 return; 1398 1399 // Recreate llvm.compiler.used. 1400 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1401 auto *NewUsed = new GlobalVariable( 1402 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1403 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1404 NewUsed->setSection("llvm.metadata"); 1405 } 1406