1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Bitcode/BitcodeReader.h" 24 #include "llvm/Bitcode/BitcodeWriter.h" 25 #include "llvm/Bitcode/BitcodeWriterPass.h" 26 #include "llvm/CodeGen/RegAllocRegistry.h" 27 #include "llvm/CodeGen/SchedulerRegistry.h" 28 #include "llvm/CodeGen/TargetSubtargetInfo.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/IRPrintingPasses.h" 31 #include "llvm/IR/LegacyPassManager.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSummaryIndex.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/LTO/LTOBackend.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/SubtargetFeature.h" 38 #include "llvm/Passes/PassBuilder.h" 39 #include "llvm/Passes/PassPlugin.h" 40 #include "llvm/Support/BuryPointer.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/MemoryBuffer.h" 43 #include "llvm/Support/PrettyStackTrace.h" 44 #include "llvm/Support/TargetRegistry.h" 45 #include "llvm/Support/Timer.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include "llvm/Transforms/Coroutines.h" 50 #include "llvm/Transforms/IPO.h" 51 #include "llvm/Transforms/IPO/AlwaysInliner.h" 52 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 53 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 54 #include "llvm/Transforms/InstCombine/InstCombine.h" 55 #include "llvm/Transforms/Instrumentation.h" 56 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 57 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 58 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 59 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 60 #include "llvm/Transforms/ObjCARC.h" 61 #include "llvm/Transforms/Scalar.h" 62 #include "llvm/Transforms/Scalar/GVN.h" 63 #include "llvm/Transforms/Utils.h" 64 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 65 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 66 #include "llvm/Transforms/Utils/SymbolRewriter.h" 67 #include <memory> 68 using namespace clang; 69 using namespace llvm; 70 71 namespace { 72 73 // Default filename used for profile generation. 74 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 75 76 class EmitAssemblyHelper { 77 DiagnosticsEngine &Diags; 78 const HeaderSearchOptions &HSOpts; 79 const CodeGenOptions &CodeGenOpts; 80 const clang::TargetOptions &TargetOpts; 81 const LangOptions &LangOpts; 82 Module *TheModule; 83 84 Timer CodeGenerationTime; 85 86 std::unique_ptr<raw_pwrite_stream> OS; 87 88 TargetIRAnalysis getTargetIRAnalysis() const { 89 if (TM) 90 return TM->getTargetIRAnalysis(); 91 92 return TargetIRAnalysis(); 93 } 94 95 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 96 97 /// Generates the TargetMachine. 98 /// Leaves TM unchanged if it is unable to create the target machine. 99 /// Some of our clang tests specify triples which are not built 100 /// into clang. This is okay because these tests check the generated 101 /// IR, and they require DataLayout which depends on the triple. 102 /// In this case, we allow this method to fail and not report an error. 103 /// When MustCreateTM is used, we print an error if we are unable to load 104 /// the requested target. 105 void CreateTargetMachine(bool MustCreateTM); 106 107 /// Add passes necessary to emit assembly or LLVM IR. 108 /// 109 /// \return True on success. 110 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 111 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 112 113 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 114 std::error_code EC; 115 auto F = llvm::make_unique<llvm::ToolOutputFile>(Path, EC, 116 llvm::sys::fs::F_None); 117 if (EC) { 118 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 119 F.reset(); 120 } 121 return F; 122 } 123 124 public: 125 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 126 const HeaderSearchOptions &HeaderSearchOpts, 127 const CodeGenOptions &CGOpts, 128 const clang::TargetOptions &TOpts, 129 const LangOptions &LOpts, Module *M) 130 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 131 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 132 CodeGenerationTime("codegen", "Code Generation Time") {} 133 134 ~EmitAssemblyHelper() { 135 if (CodeGenOpts.DisableFree) 136 BuryPointer(std::move(TM)); 137 } 138 139 std::unique_ptr<TargetMachine> TM; 140 141 void EmitAssembly(BackendAction Action, 142 std::unique_ptr<raw_pwrite_stream> OS); 143 144 void EmitAssemblyWithNewPassManager(BackendAction Action, 145 std::unique_ptr<raw_pwrite_stream> OS); 146 }; 147 148 // We need this wrapper to access LangOpts and CGOpts from extension functions 149 // that we add to the PassManagerBuilder. 150 class PassManagerBuilderWrapper : public PassManagerBuilder { 151 public: 152 PassManagerBuilderWrapper(const Triple &TargetTriple, 153 const CodeGenOptions &CGOpts, 154 const LangOptions &LangOpts) 155 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 156 LangOpts(LangOpts) {} 157 const Triple &getTargetTriple() const { return TargetTriple; } 158 const CodeGenOptions &getCGOpts() const { return CGOpts; } 159 const LangOptions &getLangOpts() const { return LangOpts; } 160 161 private: 162 const Triple &TargetTriple; 163 const CodeGenOptions &CGOpts; 164 const LangOptions &LangOpts; 165 }; 166 } 167 168 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 169 if (Builder.OptLevel > 0) 170 PM.add(createObjCARCAPElimPass()); 171 } 172 173 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 174 if (Builder.OptLevel > 0) 175 PM.add(createObjCARCExpandPass()); 176 } 177 178 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 179 if (Builder.OptLevel > 0) 180 PM.add(createObjCARCOptPass()); 181 } 182 183 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 184 legacy::PassManagerBase &PM) { 185 PM.add(createAddDiscriminatorsPass()); 186 } 187 188 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 189 legacy::PassManagerBase &PM) { 190 PM.add(createBoundsCheckingLegacyPass()); 191 } 192 193 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 194 legacy::PassManagerBase &PM) { 195 const PassManagerBuilderWrapper &BuilderWrapper = 196 static_cast<const PassManagerBuilderWrapper&>(Builder); 197 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 198 SanitizerCoverageOptions Opts; 199 Opts.CoverageType = 200 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 201 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 202 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 203 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 204 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 205 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 206 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 207 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 208 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 209 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 210 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 211 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 212 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 213 PM.add(createSanitizerCoverageModulePass(Opts)); 214 } 215 216 // Check if ASan should use GC-friendly instrumentation for globals. 217 // First of all, there is no point if -fdata-sections is off (expect for MachO, 218 // where this is not a factor). Also, on ELF this feature requires an assembler 219 // extension that only works with -integrated-as at the moment. 220 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 221 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 222 return false; 223 switch (T.getObjectFormat()) { 224 case Triple::MachO: 225 case Triple::COFF: 226 return true; 227 case Triple::ELF: 228 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 229 default: 230 return false; 231 } 232 } 233 234 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 235 legacy::PassManagerBase &PM) { 236 const PassManagerBuilderWrapper &BuilderWrapper = 237 static_cast<const PassManagerBuilderWrapper&>(Builder); 238 const Triple &T = BuilderWrapper.getTargetTriple(); 239 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 240 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 241 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 242 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 243 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 244 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 245 UseAfterScope)); 246 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/ false, Recover, 247 UseGlobalsGC, UseOdrIndicator)); 248 } 249 250 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 251 legacy::PassManagerBase &PM) { 252 PM.add(createAddressSanitizerFunctionPass( 253 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 254 PM.add(createAddressSanitizerModulePass( 255 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 256 /*UseOdrIndicator*/ false)); 257 } 258 259 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 260 legacy::PassManagerBase &PM) { 261 const PassManagerBuilderWrapper &BuilderWrapper = 262 static_cast<const PassManagerBuilderWrapper &>(Builder); 263 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 264 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 265 PM.add(createHWAddressSanitizerPass(/*CompileKernel*/ false, Recover)); 266 } 267 268 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 269 legacy::PassManagerBase &PM) { 270 PM.add(createHWAddressSanitizerPass( 271 /*CompileKernel*/ true, /*Recover*/ true)); 272 } 273 274 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 275 legacy::PassManagerBase &PM, 276 bool CompileKernel) { 277 const PassManagerBuilderWrapper &BuilderWrapper = 278 static_cast<const PassManagerBuilderWrapper&>(Builder); 279 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 280 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 281 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 282 PM.add(createMemorySanitizerLegacyPassPass(TrackOrigins, Recover, CompileKernel)); 283 284 // MemorySanitizer inserts complex instrumentation that mostly follows 285 // the logic of the original code, but operates on "shadow" values. 286 // It can benefit from re-running some general purpose optimization passes. 287 if (Builder.OptLevel > 0) { 288 PM.add(createEarlyCSEPass()); 289 PM.add(createReassociatePass()); 290 PM.add(createLICMPass()); 291 PM.add(createGVNPass()); 292 PM.add(createInstructionCombiningPass()); 293 PM.add(createDeadStoreEliminationPass()); 294 } 295 } 296 297 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 298 legacy::PassManagerBase &PM) { 299 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 300 } 301 302 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 303 legacy::PassManagerBase &PM) { 304 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 305 } 306 307 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 308 legacy::PassManagerBase &PM) { 309 PM.add(createThreadSanitizerLegacyPassPass()); 310 } 311 312 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 313 legacy::PassManagerBase &PM) { 314 const PassManagerBuilderWrapper &BuilderWrapper = 315 static_cast<const PassManagerBuilderWrapper&>(Builder); 316 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 317 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 318 } 319 320 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 321 legacy::PassManagerBase &PM) { 322 const PassManagerBuilderWrapper &BuilderWrapper = 323 static_cast<const PassManagerBuilderWrapper&>(Builder); 324 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 325 EfficiencySanitizerOptions Opts; 326 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 327 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 328 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 329 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 330 PM.add(createEfficiencySanitizerPass(Opts)); 331 } 332 333 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 334 const CodeGenOptions &CodeGenOpts) { 335 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 336 if (!CodeGenOpts.SimplifyLibCalls) 337 TLII->disableAllFunctions(); 338 else { 339 // Disable individual libc/libm calls in TargetLibraryInfo. 340 LibFunc F; 341 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 342 if (TLII->getLibFunc(FuncName, F)) 343 TLII->setUnavailable(F); 344 } 345 346 switch (CodeGenOpts.getVecLib()) { 347 case CodeGenOptions::Accelerate: 348 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 349 break; 350 case CodeGenOptions::SVML: 351 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 352 break; 353 default: 354 break; 355 } 356 return TLII; 357 } 358 359 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 360 legacy::PassManager *MPM) { 361 llvm::SymbolRewriter::RewriteDescriptorList DL; 362 363 llvm::SymbolRewriter::RewriteMapParser MapParser; 364 for (const auto &MapFile : Opts.RewriteMapFiles) 365 MapParser.parse(MapFile, &DL); 366 367 MPM->add(createRewriteSymbolsPass(DL)); 368 } 369 370 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 371 switch (CodeGenOpts.OptimizationLevel) { 372 default: 373 llvm_unreachable("Invalid optimization level!"); 374 case 0: 375 return CodeGenOpt::None; 376 case 1: 377 return CodeGenOpt::Less; 378 case 2: 379 return CodeGenOpt::Default; // O2/Os/Oz 380 case 3: 381 return CodeGenOpt::Aggressive; 382 } 383 } 384 385 static Optional<llvm::CodeModel::Model> 386 getCodeModel(const CodeGenOptions &CodeGenOpts) { 387 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 388 .Case("tiny", llvm::CodeModel::Tiny) 389 .Case("small", llvm::CodeModel::Small) 390 .Case("kernel", llvm::CodeModel::Kernel) 391 .Case("medium", llvm::CodeModel::Medium) 392 .Case("large", llvm::CodeModel::Large) 393 .Case("default", ~1u) 394 .Default(~0u); 395 assert(CodeModel != ~0u && "invalid code model!"); 396 if (CodeModel == ~1u) 397 return None; 398 return static_cast<llvm::CodeModel::Model>(CodeModel); 399 } 400 401 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 402 if (Action == Backend_EmitObj) 403 return TargetMachine::CGFT_ObjectFile; 404 else if (Action == Backend_EmitMCNull) 405 return TargetMachine::CGFT_Null; 406 else { 407 assert(Action == Backend_EmitAssembly && "Invalid action!"); 408 return TargetMachine::CGFT_AssemblyFile; 409 } 410 } 411 412 static void initTargetOptions(llvm::TargetOptions &Options, 413 const CodeGenOptions &CodeGenOpts, 414 const clang::TargetOptions &TargetOpts, 415 const LangOptions &LangOpts, 416 const HeaderSearchOptions &HSOpts) { 417 Options.ThreadModel = 418 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 419 .Case("posix", llvm::ThreadModel::POSIX) 420 .Case("single", llvm::ThreadModel::Single); 421 422 // Set float ABI type. 423 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 424 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 425 "Invalid Floating Point ABI!"); 426 Options.FloatABIType = 427 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 428 .Case("soft", llvm::FloatABI::Soft) 429 .Case("softfp", llvm::FloatABI::Soft) 430 .Case("hard", llvm::FloatABI::Hard) 431 .Default(llvm::FloatABI::Default); 432 433 // Set FP fusion mode. 434 switch (LangOpts.getDefaultFPContractMode()) { 435 case LangOptions::FPC_Off: 436 // Preserve any contraction performed by the front-end. (Strict performs 437 // splitting of the muladd intrinsic in the backend.) 438 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 439 break; 440 case LangOptions::FPC_On: 441 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 442 break; 443 case LangOptions::FPC_Fast: 444 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 445 break; 446 } 447 448 Options.UseInitArray = CodeGenOpts.UseInitArray; 449 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 450 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 451 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 452 453 // Set EABI version. 454 Options.EABIVersion = TargetOpts.EABIVersion; 455 456 if (LangOpts.SjLjExceptions) 457 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 458 if (LangOpts.SEHExceptions) 459 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 460 if (LangOpts.DWARFExceptions) 461 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 462 463 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 464 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 465 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 466 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 467 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 468 Options.FunctionSections = CodeGenOpts.FunctionSections; 469 Options.DataSections = CodeGenOpts.DataSections; 470 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 471 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 472 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 473 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 474 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 475 Options.EmitAddrsig = CodeGenOpts.Addrsig; 476 477 if (CodeGenOpts.getSplitDwarfMode() != CodeGenOptions::NoFission) 478 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 479 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 480 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 481 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 482 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 483 Options.MCOptions.MCIncrementalLinkerCompatible = 484 CodeGenOpts.IncrementalLinkerCompatible; 485 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 486 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 487 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 488 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 489 Options.MCOptions.ABIName = TargetOpts.ABI; 490 for (const auto &Entry : HSOpts.UserEntries) 491 if (!Entry.IsFramework && 492 (Entry.Group == frontend::IncludeDirGroup::Quoted || 493 Entry.Group == frontend::IncludeDirGroup::Angled || 494 Entry.Group == frontend::IncludeDirGroup::System)) 495 Options.MCOptions.IASSearchPaths.push_back( 496 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 497 } 498 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 499 if (CodeGenOpts.DisableGCov) 500 return None; 501 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 502 return None; 503 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 504 // LLVM's -default-gcov-version flag is set to something invalid. 505 GCOVOptions Options; 506 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 507 Options.EmitData = CodeGenOpts.EmitGcovArcs; 508 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 509 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 510 Options.NoRedZone = CodeGenOpts.DisableRedZone; 511 Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData; 512 Options.Filter = CodeGenOpts.ProfileFilterFiles; 513 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 514 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 515 return Options; 516 } 517 518 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 519 legacy::FunctionPassManager &FPM) { 520 // Handle disabling of all LLVM passes, where we want to preserve the 521 // internal module before any optimization. 522 if (CodeGenOpts.DisableLLVMPasses) 523 return; 524 525 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 526 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 527 // are inserted before PMBuilder ones - they'd get the default-constructed 528 // TLI with an unknown target otherwise. 529 Triple TargetTriple(TheModule->getTargetTriple()); 530 std::unique_ptr<TargetLibraryInfoImpl> TLII( 531 createTLII(TargetTriple, CodeGenOpts)); 532 533 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 534 535 // At O0 and O1 we only run the always inliner which is more efficient. At 536 // higher optimization levels we run the normal inliner. 537 if (CodeGenOpts.OptimizationLevel <= 1) { 538 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 539 !CodeGenOpts.DisableLifetimeMarkers); 540 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 541 } else { 542 // We do not want to inline hot callsites for SamplePGO module-summary build 543 // because profile annotation will happen again in ThinLTO backend, and we 544 // want the IR of the hot path to match the profile. 545 PMBuilder.Inliner = createFunctionInliningPass( 546 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 547 (!CodeGenOpts.SampleProfileFile.empty() && 548 CodeGenOpts.PrepareForThinLTO)); 549 } 550 551 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 552 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 553 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 554 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 555 556 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 557 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 558 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 559 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 560 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 561 562 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 563 564 if (TM) 565 TM->adjustPassManager(PMBuilder); 566 567 if (CodeGenOpts.DebugInfoForProfiling || 568 !CodeGenOpts.SampleProfileFile.empty()) 569 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 570 addAddDiscriminatorsPass); 571 572 // In ObjC ARC mode, add the main ARC optimization passes. 573 if (LangOpts.ObjCAutoRefCount) { 574 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 575 addObjCARCExpandPass); 576 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 577 addObjCARCAPElimPass); 578 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 579 addObjCARCOptPass); 580 } 581 582 if (LangOpts.CoroutinesTS) 583 addCoroutinePassesToExtensionPoints(PMBuilder); 584 585 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 586 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 587 addBoundsCheckingPass); 588 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 589 addBoundsCheckingPass); 590 } 591 592 if (CodeGenOpts.SanitizeCoverageType || 593 CodeGenOpts.SanitizeCoverageIndirectCalls || 594 CodeGenOpts.SanitizeCoverageTraceCmp) { 595 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 596 addSanitizerCoveragePass); 597 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 598 addSanitizerCoveragePass); 599 } 600 601 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 602 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 603 addAddressSanitizerPasses); 604 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 605 addAddressSanitizerPasses); 606 } 607 608 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 609 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 610 addKernelAddressSanitizerPasses); 611 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 612 addKernelAddressSanitizerPasses); 613 } 614 615 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 616 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 617 addHWAddressSanitizerPasses); 618 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 619 addHWAddressSanitizerPasses); 620 } 621 622 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 623 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 624 addKernelHWAddressSanitizerPasses); 625 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 626 addKernelHWAddressSanitizerPasses); 627 } 628 629 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 630 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 631 addMemorySanitizerPass); 632 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 633 addMemorySanitizerPass); 634 } 635 636 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 637 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 638 addKernelMemorySanitizerPass); 639 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 640 addKernelMemorySanitizerPass); 641 } 642 643 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 644 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 645 addThreadSanitizerPass); 646 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 647 addThreadSanitizerPass); 648 } 649 650 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 651 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 652 addDataFlowSanitizerPass); 653 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 654 addDataFlowSanitizerPass); 655 } 656 657 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 658 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 659 addEfficiencySanitizerPass); 660 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 661 addEfficiencySanitizerPass); 662 } 663 664 // Set up the per-function pass manager. 665 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 666 if (CodeGenOpts.VerifyModule) 667 FPM.add(createVerifierPass()); 668 669 // Set up the per-module pass manager. 670 if (!CodeGenOpts.RewriteMapFiles.empty()) 671 addSymbolRewriterPass(CodeGenOpts, &MPM); 672 673 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 674 MPM.add(createGCOVProfilerPass(*Options)); 675 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 676 MPM.add(createStripSymbolsPass(true)); 677 } 678 679 if (CodeGenOpts.hasProfileClangInstr()) { 680 InstrProfOptions Options; 681 Options.NoRedZone = CodeGenOpts.DisableRedZone; 682 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 683 684 // TODO: Surface the option to emit atomic profile counter increments at 685 // the driver level. 686 Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread); 687 688 MPM.add(createInstrProfilingLegacyPass(Options)); 689 } 690 if (CodeGenOpts.hasProfileIRInstr()) { 691 PMBuilder.EnablePGOInstrGen = true; 692 if (!CodeGenOpts.InstrProfileOutput.empty()) 693 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 694 else 695 PMBuilder.PGOInstrGen = DefaultProfileGenName; 696 } 697 if (CodeGenOpts.hasProfileIRUse()) 698 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 699 700 if (!CodeGenOpts.SampleProfileFile.empty()) 701 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 702 703 PMBuilder.populateFunctionPassManager(FPM); 704 PMBuilder.populateModulePassManager(MPM); 705 } 706 707 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 708 SmallVector<const char *, 16> BackendArgs; 709 BackendArgs.push_back("clang"); // Fake program name. 710 if (!CodeGenOpts.DebugPass.empty()) { 711 BackendArgs.push_back("-debug-pass"); 712 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 713 } 714 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 715 BackendArgs.push_back("-limit-float-precision"); 716 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 717 } 718 BackendArgs.push_back(nullptr); 719 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 720 BackendArgs.data()); 721 } 722 723 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 724 // Create the TargetMachine for generating code. 725 std::string Error; 726 std::string Triple = TheModule->getTargetTriple(); 727 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 728 if (!TheTarget) { 729 if (MustCreateTM) 730 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 731 return; 732 } 733 734 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 735 std::string FeaturesStr = 736 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 737 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 738 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 739 740 llvm::TargetOptions Options; 741 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 742 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 743 Options, RM, CM, OptLevel)); 744 } 745 746 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 747 BackendAction Action, 748 raw_pwrite_stream &OS, 749 raw_pwrite_stream *DwoOS) { 750 // Add LibraryInfo. 751 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 752 std::unique_ptr<TargetLibraryInfoImpl> TLII( 753 createTLII(TargetTriple, CodeGenOpts)); 754 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 755 756 // Normal mode, emit a .s or .o file by running the code generator. Note, 757 // this also adds codegenerator level optimization passes. 758 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 759 760 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 761 // "codegen" passes so that it isn't run multiple times when there is 762 // inlining happening. 763 if (CodeGenOpts.OptimizationLevel > 0) 764 CodeGenPasses.add(createObjCARCContractPass()); 765 766 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 767 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 768 Diags.Report(diag::err_fe_unable_to_interface_with_target); 769 return false; 770 } 771 772 return true; 773 } 774 775 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 776 std::unique_ptr<raw_pwrite_stream> OS) { 777 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 778 779 setCommandLineOpts(CodeGenOpts); 780 781 bool UsesCodeGen = (Action != Backend_EmitNothing && 782 Action != Backend_EmitBC && 783 Action != Backend_EmitLL); 784 CreateTargetMachine(UsesCodeGen); 785 786 if (UsesCodeGen && !TM) 787 return; 788 if (TM) 789 TheModule->setDataLayout(TM->createDataLayout()); 790 791 legacy::PassManager PerModulePasses; 792 PerModulePasses.add( 793 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 794 795 legacy::FunctionPassManager PerFunctionPasses(TheModule); 796 PerFunctionPasses.add( 797 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 798 799 CreatePasses(PerModulePasses, PerFunctionPasses); 800 801 legacy::PassManager CodeGenPasses; 802 CodeGenPasses.add( 803 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 804 805 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 806 807 switch (Action) { 808 case Backend_EmitNothing: 809 break; 810 811 case Backend_EmitBC: 812 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 813 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 814 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 815 if (!ThinLinkOS) 816 return; 817 } 818 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 819 CodeGenOpts.EnableSplitLTOUnit); 820 PerModulePasses.add(createWriteThinLTOBitcodePass( 821 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 822 } else { 823 // Emit a module summary by default for Regular LTO except for ld64 824 // targets 825 bool EmitLTOSummary = 826 (CodeGenOpts.PrepareForLTO && 827 !CodeGenOpts.DisableLLVMPasses && 828 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 829 llvm::Triple::Apple); 830 if (EmitLTOSummary) { 831 if (!TheModule->getModuleFlag("ThinLTO")) 832 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 833 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 834 CodeGenOpts.EnableSplitLTOUnit); 835 } 836 837 PerModulePasses.add(createBitcodeWriterPass( 838 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 839 } 840 break; 841 842 case Backend_EmitLL: 843 PerModulePasses.add( 844 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 845 break; 846 847 default: 848 if (!CodeGenOpts.SplitDwarfFile.empty() && 849 (CodeGenOpts.getSplitDwarfMode() == CodeGenOptions::SplitFileFission)) { 850 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfFile); 851 if (!DwoOS) 852 return; 853 } 854 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 855 DwoOS ? &DwoOS->os() : nullptr)) 856 return; 857 } 858 859 // Before executing passes, print the final values of the LLVM options. 860 cl::PrintOptionValues(); 861 862 // Run passes. For now we do all passes at once, but eventually we 863 // would like to have the option of streaming code generation. 864 865 { 866 PrettyStackTraceString CrashInfo("Per-function optimization"); 867 868 PerFunctionPasses.doInitialization(); 869 for (Function &F : *TheModule) 870 if (!F.isDeclaration()) 871 PerFunctionPasses.run(F); 872 PerFunctionPasses.doFinalization(); 873 } 874 875 { 876 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 877 PerModulePasses.run(*TheModule); 878 } 879 880 { 881 PrettyStackTraceString CrashInfo("Code generation"); 882 CodeGenPasses.run(*TheModule); 883 } 884 885 if (ThinLinkOS) 886 ThinLinkOS->keep(); 887 if (DwoOS) 888 DwoOS->keep(); 889 } 890 891 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 892 switch (Opts.OptimizationLevel) { 893 default: 894 llvm_unreachable("Invalid optimization level!"); 895 896 case 1: 897 return PassBuilder::O1; 898 899 case 2: 900 switch (Opts.OptimizeSize) { 901 default: 902 llvm_unreachable("Invalid optimization level for size!"); 903 904 case 0: 905 return PassBuilder::O2; 906 907 case 1: 908 return PassBuilder::Os; 909 910 case 2: 911 return PassBuilder::Oz; 912 } 913 914 case 3: 915 return PassBuilder::O3; 916 } 917 } 918 919 /// A clean version of `EmitAssembly` that uses the new pass manager. 920 /// 921 /// Not all features are currently supported in this system, but where 922 /// necessary it falls back to the legacy pass manager to at least provide 923 /// basic functionality. 924 /// 925 /// This API is planned to have its functionality finished and then to replace 926 /// `EmitAssembly` at some point in the future when the default switches. 927 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 928 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 929 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 930 setCommandLineOpts(CodeGenOpts); 931 932 // The new pass manager always makes a target machine available to passes 933 // during construction. 934 CreateTargetMachine(/*MustCreateTM*/ true); 935 if (!TM) 936 // This will already be diagnosed, just bail. 937 return; 938 TheModule->setDataLayout(TM->createDataLayout()); 939 940 Optional<PGOOptions> PGOOpt; 941 942 if (CodeGenOpts.hasProfileIRInstr()) 943 // -fprofile-generate. 944 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 945 ? DefaultProfileGenName 946 : CodeGenOpts.InstrProfileOutput, 947 "", "", "", true, 948 CodeGenOpts.DebugInfoForProfiling); 949 else if (CodeGenOpts.hasProfileIRUse()) 950 // -fprofile-use. 951 PGOOpt = PGOOptions("", CodeGenOpts.ProfileInstrumentUsePath, "", 952 CodeGenOpts.ProfileRemappingFile, false, 953 CodeGenOpts.DebugInfoForProfiling); 954 else if (!CodeGenOpts.SampleProfileFile.empty()) 955 // -fprofile-sample-use 956 PGOOpt = PGOOptions("", "", CodeGenOpts.SampleProfileFile, 957 CodeGenOpts.ProfileRemappingFile, false, 958 CodeGenOpts.DebugInfoForProfiling); 959 else if (CodeGenOpts.DebugInfoForProfiling) 960 // -fdebug-info-for-profiling 961 PGOOpt = PGOOptions("", "", "", "", false, true); 962 963 PassBuilder PB(TM.get(), PGOOpt); 964 965 // Attempt to load pass plugins and register their callbacks with PB. 966 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 967 auto PassPlugin = PassPlugin::Load(PluginFN); 968 if (PassPlugin) { 969 PassPlugin->registerPassBuilderCallbacks(PB); 970 } else { 971 Diags.Report(diag::err_fe_unable_to_load_plugin) 972 << PluginFN << toString(PassPlugin.takeError()); 973 } 974 } 975 976 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 977 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 978 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 979 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 980 981 // Register the AA manager first so that our version is the one used. 982 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 983 984 // Register the target library analysis directly and give it a customized 985 // preset TLI. 986 Triple TargetTriple(TheModule->getTargetTriple()); 987 std::unique_ptr<TargetLibraryInfoImpl> TLII( 988 createTLII(TargetTriple, CodeGenOpts)); 989 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 990 MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 991 992 // Register all the basic analyses with the managers. 993 PB.registerModuleAnalyses(MAM); 994 PB.registerCGSCCAnalyses(CGAM); 995 PB.registerFunctionAnalyses(FAM); 996 PB.registerLoopAnalyses(LAM); 997 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 998 999 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 1000 1001 if (!CodeGenOpts.DisableLLVMPasses) { 1002 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1003 bool IsLTO = CodeGenOpts.PrepareForLTO; 1004 1005 if (CodeGenOpts.OptimizationLevel == 0) { 1006 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1007 MPM.addPass(GCOVProfilerPass(*Options)); 1008 1009 // Build a minimal pipeline based on the semantics required by Clang, 1010 // which is just that always inlining occurs. 1011 MPM.addPass(AlwaysInlinerPass()); 1012 1013 // At -O0 we directly run necessary sanitizer passes. 1014 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1015 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 1016 1017 // Lastly, add semantically necessary passes for LTO. 1018 if (IsLTO || IsThinLTO) { 1019 MPM.addPass(CanonicalizeAliasesPass()); 1020 MPM.addPass(NameAnonGlobalPass()); 1021 } 1022 } else { 1023 // Map our optimization levels into one of the distinct levels used to 1024 // configure the pipeline. 1025 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1026 1027 // Register callbacks to schedule sanitizer passes at the appropriate part of 1028 // the pipeline. 1029 // FIXME: either handle asan/the remaining sanitizers or error out 1030 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1031 PB.registerScalarOptimizerLateEPCallback( 1032 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1033 FPM.addPass(BoundsCheckingPass()); 1034 }); 1035 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 1036 PB.registerOptimizerLastEPCallback( 1037 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1038 FPM.addPass(MemorySanitizerPass()); 1039 }); 1040 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) 1041 PB.registerOptimizerLastEPCallback( 1042 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1043 FPM.addPass(ThreadSanitizerPass()); 1044 }); 1045 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1046 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1047 MPM.addPass(GCOVProfilerPass(*Options)); 1048 }); 1049 1050 if (IsThinLTO) { 1051 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 1052 Level, CodeGenOpts.DebugPassManager); 1053 MPM.addPass(CanonicalizeAliasesPass()); 1054 MPM.addPass(NameAnonGlobalPass()); 1055 } else if (IsLTO) { 1056 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 1057 CodeGenOpts.DebugPassManager); 1058 MPM.addPass(CanonicalizeAliasesPass()); 1059 MPM.addPass(NameAnonGlobalPass()); 1060 } else { 1061 MPM = PB.buildPerModuleDefaultPipeline(Level, 1062 CodeGenOpts.DebugPassManager); 1063 } 1064 } 1065 } 1066 1067 // FIXME: We still use the legacy pass manager to do code generation. We 1068 // create that pass manager here and use it as needed below. 1069 legacy::PassManager CodeGenPasses; 1070 bool NeedCodeGen = false; 1071 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1072 1073 // Append any output we need to the pass manager. 1074 switch (Action) { 1075 case Backend_EmitNothing: 1076 break; 1077 1078 case Backend_EmitBC: 1079 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1080 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1081 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1082 if (!ThinLinkOS) 1083 return; 1084 } 1085 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1086 CodeGenOpts.EnableSplitLTOUnit); 1087 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1088 : nullptr)); 1089 } else { 1090 // Emit a module summary by default for Regular LTO except for ld64 1091 // targets 1092 bool EmitLTOSummary = 1093 (CodeGenOpts.PrepareForLTO && 1094 !CodeGenOpts.DisableLLVMPasses && 1095 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1096 llvm::Triple::Apple); 1097 if (EmitLTOSummary) { 1098 if (!TheModule->getModuleFlag("ThinLTO")) 1099 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1100 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1101 CodeGenOpts.EnableSplitLTOUnit); 1102 } 1103 MPM.addPass( 1104 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1105 } 1106 break; 1107 1108 case Backend_EmitLL: 1109 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1110 break; 1111 1112 case Backend_EmitAssembly: 1113 case Backend_EmitMCNull: 1114 case Backend_EmitObj: 1115 NeedCodeGen = true; 1116 CodeGenPasses.add( 1117 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1118 if (!CodeGenOpts.SplitDwarfFile.empty()) { 1119 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfFile); 1120 if (!DwoOS) 1121 return; 1122 } 1123 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1124 DwoOS ? &DwoOS->os() : nullptr)) 1125 // FIXME: Should we handle this error differently? 1126 return; 1127 break; 1128 } 1129 1130 // Before executing passes, print the final values of the LLVM options. 1131 cl::PrintOptionValues(); 1132 1133 // Now that we have all of the passes ready, run them. 1134 { 1135 PrettyStackTraceString CrashInfo("Optimizer"); 1136 MPM.run(*TheModule, MAM); 1137 } 1138 1139 // Now if needed, run the legacy PM for codegen. 1140 if (NeedCodeGen) { 1141 PrettyStackTraceString CrashInfo("Code generation"); 1142 CodeGenPasses.run(*TheModule); 1143 } 1144 1145 if (ThinLinkOS) 1146 ThinLinkOS->keep(); 1147 if (DwoOS) 1148 DwoOS->keep(); 1149 } 1150 1151 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1152 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1153 if (!BMsOrErr) 1154 return BMsOrErr.takeError(); 1155 1156 // The bitcode file may contain multiple modules, we want the one that is 1157 // marked as being the ThinLTO module. 1158 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1159 return *Bm; 1160 1161 return make_error<StringError>("Could not find module summary", 1162 inconvertibleErrorCode()); 1163 } 1164 1165 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1166 for (BitcodeModule &BM : BMs) { 1167 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1168 if (LTOInfo && LTOInfo->IsThinLTO) 1169 return &BM; 1170 } 1171 return nullptr; 1172 } 1173 1174 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1175 const HeaderSearchOptions &HeaderOpts, 1176 const CodeGenOptions &CGOpts, 1177 const clang::TargetOptions &TOpts, 1178 const LangOptions &LOpts, 1179 std::unique_ptr<raw_pwrite_stream> OS, 1180 std::string SampleProfile, 1181 std::string ProfileRemapping, 1182 BackendAction Action) { 1183 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1184 ModuleToDefinedGVSummaries; 1185 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1186 1187 setCommandLineOpts(CGOpts); 1188 1189 // We can simply import the values mentioned in the combined index, since 1190 // we should only invoke this using the individual indexes written out 1191 // via a WriteIndexesThinBackend. 1192 FunctionImporter::ImportMapTy ImportList; 1193 for (auto &GlobalList : *CombinedIndex) { 1194 // Ignore entries for undefined references. 1195 if (GlobalList.second.SummaryList.empty()) 1196 continue; 1197 1198 auto GUID = GlobalList.first; 1199 for (auto &Summary : GlobalList.second.SummaryList) { 1200 // Skip the summaries for the importing module. These are included to 1201 // e.g. record required linkage changes. 1202 if (Summary->modulePath() == M->getModuleIdentifier()) 1203 continue; 1204 // Add an entry to provoke importing by thinBackend. 1205 ImportList[Summary->modulePath()].insert(GUID); 1206 } 1207 } 1208 1209 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1210 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1211 1212 for (auto &I : ImportList) { 1213 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1214 llvm::MemoryBuffer::getFile(I.first()); 1215 if (!MBOrErr) { 1216 errs() << "Error loading imported file '" << I.first() 1217 << "': " << MBOrErr.getError().message() << "\n"; 1218 return; 1219 } 1220 1221 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1222 if (!BMOrErr) { 1223 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1224 errs() << "Error loading imported file '" << I.first() 1225 << "': " << EIB.message() << '\n'; 1226 }); 1227 return; 1228 } 1229 ModuleMap.insert({I.first(), *BMOrErr}); 1230 1231 OwnedImports.push_back(std::move(*MBOrErr)); 1232 } 1233 auto AddStream = [&](size_t Task) { 1234 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 1235 }; 1236 lto::Config Conf; 1237 if (CGOpts.SaveTempsFilePrefix != "") { 1238 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1239 /* UseInputModulePath */ false)) { 1240 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1241 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1242 << '\n'; 1243 }); 1244 } 1245 } 1246 Conf.CPU = TOpts.CPU; 1247 Conf.CodeModel = getCodeModel(CGOpts); 1248 Conf.MAttrs = TOpts.Features; 1249 Conf.RelocModel = CGOpts.RelocationModel; 1250 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1251 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1252 Conf.SampleProfile = std::move(SampleProfile); 1253 Conf.ProfileRemapping = std::move(ProfileRemapping); 1254 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1255 Conf.DebugPassManager = CGOpts.DebugPassManager; 1256 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1257 Conf.RemarksFilename = CGOpts.OptRecordFile; 1258 Conf.DwoPath = CGOpts.SplitDwarfFile; 1259 switch (Action) { 1260 case Backend_EmitNothing: 1261 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1262 return false; 1263 }; 1264 break; 1265 case Backend_EmitLL: 1266 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1267 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1268 return false; 1269 }; 1270 break; 1271 case Backend_EmitBC: 1272 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1273 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1274 return false; 1275 }; 1276 break; 1277 default: 1278 Conf.CGFileType = getCodeGenFileType(Action); 1279 break; 1280 } 1281 if (Error E = thinBackend( 1282 Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1283 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1284 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1285 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1286 }); 1287 } 1288 } 1289 1290 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1291 const HeaderSearchOptions &HeaderOpts, 1292 const CodeGenOptions &CGOpts, 1293 const clang::TargetOptions &TOpts, 1294 const LangOptions &LOpts, 1295 const llvm::DataLayout &TDesc, Module *M, 1296 BackendAction Action, 1297 std::unique_ptr<raw_pwrite_stream> OS) { 1298 std::unique_ptr<llvm::Module> EmptyModule; 1299 if (!CGOpts.ThinLTOIndexFile.empty()) { 1300 // If we are performing a ThinLTO importing compile, load the function index 1301 // into memory and pass it into runThinLTOBackend, which will run the 1302 // function importer and invoke LTO passes. 1303 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1304 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1305 /*IgnoreEmptyThinLTOIndexFile*/true); 1306 if (!IndexOrErr) { 1307 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1308 "Error loading index file '" + 1309 CGOpts.ThinLTOIndexFile + "': "); 1310 return; 1311 } 1312 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1313 // A null CombinedIndex means we should skip ThinLTO compilation 1314 // (LLVM will optionally ignore empty index files, returning null instead 1315 // of an error). 1316 if (CombinedIndex) { 1317 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1318 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1319 LOpts, std::move(OS), CGOpts.SampleProfileFile, 1320 CGOpts.ProfileRemappingFile, Action); 1321 return; 1322 } 1323 // Distributed indexing detected that nothing from the module is needed 1324 // for the final linking. So we can skip the compilation. We sill need to 1325 // output an empty object file to make sure that a linker does not fail 1326 // trying to read it. Also for some features, like CFI, we must skip 1327 // the compilation as CombinedIndex does not contain all required 1328 // information. 1329 EmptyModule = llvm::make_unique<llvm::Module>("empty", M->getContext()); 1330 EmptyModule->setTargetTriple(M->getTargetTriple()); 1331 M = EmptyModule.get(); 1332 } 1333 } 1334 1335 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1336 1337 if (CGOpts.ExperimentalNewPassManager) 1338 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1339 else 1340 AsmHelper.EmitAssembly(Action, std::move(OS)); 1341 1342 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1343 // DataLayout. 1344 if (AsmHelper.TM) { 1345 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1346 if (DLDesc != TDesc.getStringRepresentation()) { 1347 unsigned DiagID = Diags.getCustomDiagID( 1348 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1349 "expected target description '%1'"); 1350 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1351 } 1352 } 1353 } 1354 1355 static const char* getSectionNameForBitcode(const Triple &T) { 1356 switch (T.getObjectFormat()) { 1357 case Triple::MachO: 1358 return "__LLVM,__bitcode"; 1359 case Triple::COFF: 1360 case Triple::ELF: 1361 case Triple::Wasm: 1362 case Triple::UnknownObjectFormat: 1363 return ".llvmbc"; 1364 } 1365 llvm_unreachable("Unimplemented ObjectFormatType"); 1366 } 1367 1368 static const char* getSectionNameForCommandline(const Triple &T) { 1369 switch (T.getObjectFormat()) { 1370 case Triple::MachO: 1371 return "__LLVM,__cmdline"; 1372 case Triple::COFF: 1373 case Triple::ELF: 1374 case Triple::Wasm: 1375 case Triple::UnknownObjectFormat: 1376 return ".llvmcmd"; 1377 } 1378 llvm_unreachable("Unimplemented ObjectFormatType"); 1379 } 1380 1381 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1382 // __LLVM,__bitcode section. 1383 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1384 llvm::MemoryBufferRef Buf) { 1385 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1386 return; 1387 1388 // Save llvm.compiler.used and remote it. 1389 SmallVector<Constant*, 2> UsedArray; 1390 SmallPtrSet<GlobalValue*, 4> UsedGlobals; 1391 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1392 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1393 for (auto *GV : UsedGlobals) { 1394 if (GV->getName() != "llvm.embedded.module" && 1395 GV->getName() != "llvm.cmdline") 1396 UsedArray.push_back( 1397 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1398 } 1399 if (Used) 1400 Used->eraseFromParent(); 1401 1402 // Embed the bitcode for the llvm module. 1403 std::string Data; 1404 ArrayRef<uint8_t> ModuleData; 1405 Triple T(M->getTargetTriple()); 1406 // Create a constant that contains the bitcode. 1407 // In case of embedding a marker, ignore the input Buf and use the empty 1408 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1409 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1410 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1411 (const unsigned char *)Buf.getBufferEnd())) { 1412 // If the input is LLVM Assembly, bitcode is produced by serializing 1413 // the module. Use-lists order need to be perserved in this case. 1414 llvm::raw_string_ostream OS(Data); 1415 llvm::WriteBitcodeToFile(*M, OS, /* ShouldPreserveUseListOrder */ true); 1416 ModuleData = 1417 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1418 } else 1419 // If the input is LLVM bitcode, write the input byte stream directly. 1420 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1421 Buf.getBufferSize()); 1422 } 1423 llvm::Constant *ModuleConstant = 1424 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1425 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1426 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1427 ModuleConstant); 1428 GV->setSection(getSectionNameForBitcode(T)); 1429 UsedArray.push_back( 1430 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1431 if (llvm::GlobalVariable *Old = 1432 M->getGlobalVariable("llvm.embedded.module", true)) { 1433 assert(Old->hasOneUse() && 1434 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1435 GV->takeName(Old); 1436 Old->eraseFromParent(); 1437 } else { 1438 GV->setName("llvm.embedded.module"); 1439 } 1440 1441 // Skip if only bitcode needs to be embedded. 1442 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1443 // Embed command-line options. 1444 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1445 CGOpts.CmdArgs.size()); 1446 llvm::Constant *CmdConstant = 1447 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1448 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1449 llvm::GlobalValue::PrivateLinkage, 1450 CmdConstant); 1451 GV->setSection(getSectionNameForCommandline(T)); 1452 UsedArray.push_back( 1453 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1454 if (llvm::GlobalVariable *Old = 1455 M->getGlobalVariable("llvm.cmdline", true)) { 1456 assert(Old->hasOneUse() && 1457 "llvm.cmdline can only be used once in llvm.compiler.used"); 1458 GV->takeName(Old); 1459 Old->eraseFromParent(); 1460 } else { 1461 GV->setName("llvm.cmdline"); 1462 } 1463 } 1464 1465 if (UsedArray.empty()) 1466 return; 1467 1468 // Recreate llvm.compiler.used. 1469 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1470 auto *NewUsed = new GlobalVariable( 1471 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1472 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1473 NewUsed->setSection("llvm.metadata"); 1474 } 1475