1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/StackSafetyAnalysis.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/Bitcode/BitcodeReader.h" 26 #include "llvm/Bitcode/BitcodeWriter.h" 27 #include "llvm/Bitcode/BitcodeWriterPass.h" 28 #include "llvm/CodeGen/RegAllocRegistry.h" 29 #include "llvm/CodeGen/SchedulerRegistry.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/IRPrintingPasses.h" 33 #include "llvm/IR/LegacyPassManager.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/ModuleSummaryIndex.h" 36 #include "llvm/IR/PassManager.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/LTO/LTOBackend.h" 39 #include "llvm/MC/MCAsmInfo.h" 40 #include "llvm/MC/SubtargetFeature.h" 41 #include "llvm/MC/TargetRegistry.h" 42 #include "llvm/Passes/PassBuilder.h" 43 #include "llvm/Passes/PassPlugin.h" 44 #include "llvm/Passes/StandardInstrumentations.h" 45 #include "llvm/Support/BuryPointer.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/MemoryBuffer.h" 48 #include "llvm/Support/PrettyStackTrace.h" 49 #include "llvm/Support/TimeProfiler.h" 50 #include "llvm/Support/Timer.h" 51 #include "llvm/Support/ToolOutputFile.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include "llvm/Target/TargetOptions.h" 55 #include "llvm/Transforms/Coroutines.h" 56 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 57 #include "llvm/Transforms/Coroutines/CoroEarly.h" 58 #include "llvm/Transforms/Coroutines/CoroElide.h" 59 #include "llvm/Transforms/Coroutines/CoroSplit.h" 60 #include "llvm/Transforms/IPO.h" 61 #include "llvm/Transforms/IPO/AlwaysInliner.h" 62 #include "llvm/Transforms/IPO/LowerTypeTests.h" 63 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 64 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 65 #include "llvm/Transforms/InstCombine/InstCombine.h" 66 #include "llvm/Transforms/Instrumentation.h" 67 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 68 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" 69 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 70 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 71 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 72 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 73 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 74 #include "llvm/Transforms/Instrumentation/MemProfiler.h" 75 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 76 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 77 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 78 #include "llvm/Transforms/ObjCARC.h" 79 #include "llvm/Transforms/Scalar.h" 80 #include "llvm/Transforms/Scalar/EarlyCSE.h" 81 #include "llvm/Transforms/Scalar/GVN.h" 82 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" 83 #include "llvm/Transforms/Utils.h" 84 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 85 #include "llvm/Transforms/Utils/Debugify.h" 86 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 87 #include "llvm/Transforms/Utils/ModuleUtils.h" 88 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 89 #include "llvm/Transforms/Utils/SymbolRewriter.h" 90 #include <memory> 91 using namespace clang; 92 using namespace llvm; 93 94 #define HANDLE_EXTENSION(Ext) \ 95 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 96 #include "llvm/Support/Extension.def" 97 98 namespace llvm { 99 extern cl::opt<bool> DebugInfoCorrelate; 100 } 101 102 namespace { 103 104 // Default filename used for profile generation. 105 std::string getDefaultProfileGenName() { 106 return DebugInfoCorrelate ? "default_%p.proflite" : "default_%m.profraw"; 107 } 108 109 class EmitAssemblyHelper { 110 DiagnosticsEngine &Diags; 111 const HeaderSearchOptions &HSOpts; 112 const CodeGenOptions &CodeGenOpts; 113 const clang::TargetOptions &TargetOpts; 114 const LangOptions &LangOpts; 115 Module *TheModule; 116 117 Timer CodeGenerationTime; 118 119 std::unique_ptr<raw_pwrite_stream> OS; 120 121 Triple TargetTriple; 122 123 TargetIRAnalysis getTargetIRAnalysis() const { 124 if (TM) 125 return TM->getTargetIRAnalysis(); 126 127 return TargetIRAnalysis(); 128 } 129 130 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 131 132 /// Generates the TargetMachine. 133 /// Leaves TM unchanged if it is unable to create the target machine. 134 /// Some of our clang tests specify triples which are not built 135 /// into clang. This is okay because these tests check the generated 136 /// IR, and they require DataLayout which depends on the triple. 137 /// In this case, we allow this method to fail and not report an error. 138 /// When MustCreateTM is used, we print an error if we are unable to load 139 /// the requested target. 140 void CreateTargetMachine(bool MustCreateTM); 141 142 /// Add passes necessary to emit assembly or LLVM IR. 143 /// 144 /// \return True on success. 145 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 146 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 147 148 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 149 std::error_code EC; 150 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 151 llvm::sys::fs::OF_None); 152 if (EC) { 153 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 154 F.reset(); 155 } 156 return F; 157 } 158 159 void 160 RunOptimizationPipeline(BackendAction Action, 161 std::unique_ptr<raw_pwrite_stream> &OS, 162 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS); 163 void RunCodegenPipeline(BackendAction Action, 164 std::unique_ptr<raw_pwrite_stream> &OS, 165 std::unique_ptr<llvm::ToolOutputFile> &DwoOS); 166 167 public: 168 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 169 const HeaderSearchOptions &HeaderSearchOpts, 170 const CodeGenOptions &CGOpts, 171 const clang::TargetOptions &TOpts, 172 const LangOptions &LOpts, Module *M) 173 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 174 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 175 CodeGenerationTime("codegen", "Code Generation Time"), 176 TargetTriple(TheModule->getTargetTriple()) {} 177 178 ~EmitAssemblyHelper() { 179 if (CodeGenOpts.DisableFree) 180 BuryPointer(std::move(TM)); 181 } 182 183 std::unique_ptr<TargetMachine> TM; 184 185 // Emit output using the legacy pass manager for the optimization pipeline. 186 // This will be removed soon when using the legacy pass manager for the 187 // optimization pipeline is no longer supported. 188 void EmitAssemblyWithLegacyPassManager(BackendAction Action, 189 std::unique_ptr<raw_pwrite_stream> OS); 190 191 // Emit output using the new pass manager for the optimization pipeline. This 192 // is the default. 193 void EmitAssembly(BackendAction Action, 194 std::unique_ptr<raw_pwrite_stream> OS); 195 }; 196 197 // We need this wrapper to access LangOpts and CGOpts from extension functions 198 // that we add to the PassManagerBuilder. 199 class PassManagerBuilderWrapper : public PassManagerBuilder { 200 public: 201 PassManagerBuilderWrapper(const Triple &TargetTriple, 202 const CodeGenOptions &CGOpts, 203 const LangOptions &LangOpts) 204 : TargetTriple(TargetTriple), CGOpts(CGOpts), LangOpts(LangOpts) {} 205 const Triple &getTargetTriple() const { return TargetTriple; } 206 const CodeGenOptions &getCGOpts() const { return CGOpts; } 207 const LangOptions &getLangOpts() const { return LangOpts; } 208 209 private: 210 const Triple &TargetTriple; 211 const CodeGenOptions &CGOpts; 212 const LangOptions &LangOpts; 213 }; 214 } 215 216 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 217 if (Builder.OptLevel > 0) 218 PM.add(createObjCARCAPElimPass()); 219 } 220 221 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 222 if (Builder.OptLevel > 0) 223 PM.add(createObjCARCExpandPass()); 224 } 225 226 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 227 if (Builder.OptLevel > 0) 228 PM.add(createObjCARCOptPass()); 229 } 230 231 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 232 legacy::PassManagerBase &PM) { 233 PM.add(createAddDiscriminatorsPass()); 234 } 235 236 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 237 legacy::PassManagerBase &PM) { 238 PM.add(createBoundsCheckingLegacyPass()); 239 } 240 241 static SanitizerCoverageOptions 242 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 243 SanitizerCoverageOptions Opts; 244 Opts.CoverageType = 245 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 246 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 247 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 248 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 249 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 250 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 251 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 252 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 253 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 254 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 255 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 256 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 257 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 258 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 259 Opts.TraceLoads = CGOpts.SanitizeCoverageTraceLoads; 260 Opts.TraceStores = CGOpts.SanitizeCoverageTraceStores; 261 return Opts; 262 } 263 264 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 265 legacy::PassManagerBase &PM) { 266 const PassManagerBuilderWrapper &BuilderWrapper = 267 static_cast<const PassManagerBuilderWrapper &>(Builder); 268 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 269 auto Opts = getSancovOptsFromCGOpts(CGOpts); 270 PM.add(createModuleSanitizerCoverageLegacyPassPass( 271 Opts, CGOpts.SanitizeCoverageAllowlistFiles, 272 CGOpts.SanitizeCoverageIgnorelistFiles)); 273 } 274 275 // Check if ASan should use GC-friendly instrumentation for globals. 276 // First of all, there is no point if -fdata-sections is off (expect for MachO, 277 // where this is not a factor). Also, on ELF this feature requires an assembler 278 // extension that only works with -integrated-as at the moment. 279 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 280 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 281 return false; 282 switch (T.getObjectFormat()) { 283 case Triple::MachO: 284 case Triple::COFF: 285 return true; 286 case Triple::ELF: 287 return !CGOpts.DisableIntegratedAS; 288 case Triple::GOFF: 289 llvm::report_fatal_error("ASan not implemented for GOFF"); 290 case Triple::XCOFF: 291 llvm::report_fatal_error("ASan not implemented for XCOFF."); 292 case Triple::Wasm: 293 case Triple::DXContainer: 294 case Triple::UnknownObjectFormat: 295 break; 296 } 297 return false; 298 } 299 300 static void addMemProfilerPasses(const PassManagerBuilder &Builder, 301 legacy::PassManagerBase &PM) { 302 PM.add(createMemProfilerFunctionPass()); 303 PM.add(createModuleMemProfilerLegacyPassPass()); 304 } 305 306 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 307 legacy::PassManagerBase &PM) { 308 const PassManagerBuilderWrapper &BuilderWrapper = 309 static_cast<const PassManagerBuilderWrapper&>(Builder); 310 const Triple &T = BuilderWrapper.getTargetTriple(); 311 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 312 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 313 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 314 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 315 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 316 llvm::AsanDtorKind DestructorKind = CGOpts.getSanitizeAddressDtor(); 317 llvm::AsanDetectStackUseAfterReturnMode UseAfterReturn = 318 CGOpts.getSanitizeAddressUseAfterReturn(); 319 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 320 UseAfterScope, UseAfterReturn)); 321 PM.add(createModuleAddressSanitizerLegacyPassPass( 322 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator, 323 DestructorKind)); 324 } 325 326 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 327 legacy::PassManagerBase &PM) { 328 PM.add(createAddressSanitizerFunctionPass( 329 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false, 330 /*UseAfterReturn*/ llvm::AsanDetectStackUseAfterReturnMode::Never)); 331 PM.add(createModuleAddressSanitizerLegacyPassPass( 332 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 333 /*UseOdrIndicator*/ false)); 334 } 335 336 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 337 legacy::PassManagerBase &PM) { 338 const PassManagerBuilderWrapper &BuilderWrapper = 339 static_cast<const PassManagerBuilderWrapper &>(Builder); 340 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 341 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 342 PM.add(createHWAddressSanitizerLegacyPassPass( 343 /*CompileKernel*/ false, Recover, 344 /*DisableOptimization*/ CGOpts.OptimizationLevel == 0)); 345 } 346 347 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 348 legacy::PassManagerBase &PM) { 349 const PassManagerBuilderWrapper &BuilderWrapper = 350 static_cast<const PassManagerBuilderWrapper &>(Builder); 351 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 352 PM.add(createHWAddressSanitizerLegacyPassPass( 353 /*CompileKernel*/ true, /*Recover*/ true, 354 /*DisableOptimization*/ CGOpts.OptimizationLevel == 0)); 355 } 356 357 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 358 legacy::PassManagerBase &PM, 359 bool CompileKernel) { 360 const PassManagerBuilderWrapper &BuilderWrapper = 361 static_cast<const PassManagerBuilderWrapper&>(Builder); 362 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 363 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 364 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 365 PM.add(createMemorySanitizerLegacyPassPass( 366 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel, 367 CGOpts.SanitizeMemoryParamRetval != 0})); 368 369 // MemorySanitizer inserts complex instrumentation that mostly follows 370 // the logic of the original code, but operates on "shadow" values. 371 // It can benefit from re-running some general purpose optimization passes. 372 if (Builder.OptLevel > 0) { 373 PM.add(createEarlyCSEPass()); 374 PM.add(createReassociatePass()); 375 PM.add(createLICMPass()); 376 PM.add(createGVNPass()); 377 PM.add(createInstructionCombiningPass()); 378 PM.add(createDeadStoreEliminationPass()); 379 } 380 } 381 382 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 383 legacy::PassManagerBase &PM) { 384 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 385 } 386 387 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 388 legacy::PassManagerBase &PM) { 389 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 390 } 391 392 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 393 legacy::PassManagerBase &PM) { 394 PM.add(createThreadSanitizerLegacyPassPass()); 395 } 396 397 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 398 legacy::PassManagerBase &PM) { 399 const PassManagerBuilderWrapper &BuilderWrapper = 400 static_cast<const PassManagerBuilderWrapper&>(Builder); 401 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 402 PM.add(createDataFlowSanitizerLegacyPassPass(LangOpts.NoSanitizeFiles)); 403 } 404 405 static void addEntryExitInstrumentationPass(const PassManagerBuilder &Builder, 406 legacy::PassManagerBase &PM) { 407 PM.add(createEntryExitInstrumenterPass()); 408 } 409 410 static void 411 addPostInlineEntryExitInstrumentationPass(const PassManagerBuilder &Builder, 412 legacy::PassManagerBase &PM) { 413 PM.add(createPostInlineEntryExitInstrumenterPass()); 414 } 415 416 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 417 const CodeGenOptions &CodeGenOpts) { 418 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 419 420 switch (CodeGenOpts.getVecLib()) { 421 case CodeGenOptions::Accelerate: 422 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 423 break; 424 case CodeGenOptions::LIBMVEC: 425 switch(TargetTriple.getArch()) { 426 default: 427 break; 428 case llvm::Triple::x86_64: 429 TLII->addVectorizableFunctionsFromVecLib 430 (TargetLibraryInfoImpl::LIBMVEC_X86); 431 break; 432 } 433 break; 434 case CodeGenOptions::MASSV: 435 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 436 break; 437 case CodeGenOptions::SVML: 438 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 439 break; 440 case CodeGenOptions::Darwin_libsystem_m: 441 TLII->addVectorizableFunctionsFromVecLib( 442 TargetLibraryInfoImpl::DarwinLibSystemM); 443 break; 444 default: 445 break; 446 } 447 return TLII; 448 } 449 450 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 451 legacy::PassManager *MPM) { 452 llvm::SymbolRewriter::RewriteDescriptorList DL; 453 454 llvm::SymbolRewriter::RewriteMapParser MapParser; 455 for (const auto &MapFile : Opts.RewriteMapFiles) 456 MapParser.parse(MapFile, &DL); 457 458 MPM->add(createRewriteSymbolsPass(DL)); 459 } 460 461 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 462 switch (CodeGenOpts.OptimizationLevel) { 463 default: 464 llvm_unreachable("Invalid optimization level!"); 465 case 0: 466 return CodeGenOpt::None; 467 case 1: 468 return CodeGenOpt::Less; 469 case 2: 470 return CodeGenOpt::Default; // O2/Os/Oz 471 case 3: 472 return CodeGenOpt::Aggressive; 473 } 474 } 475 476 static Optional<llvm::CodeModel::Model> 477 getCodeModel(const CodeGenOptions &CodeGenOpts) { 478 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 479 .Case("tiny", llvm::CodeModel::Tiny) 480 .Case("small", llvm::CodeModel::Small) 481 .Case("kernel", llvm::CodeModel::Kernel) 482 .Case("medium", llvm::CodeModel::Medium) 483 .Case("large", llvm::CodeModel::Large) 484 .Case("default", ~1u) 485 .Default(~0u); 486 assert(CodeModel != ~0u && "invalid code model!"); 487 if (CodeModel == ~1u) 488 return None; 489 return static_cast<llvm::CodeModel::Model>(CodeModel); 490 } 491 492 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 493 if (Action == Backend_EmitObj) 494 return CGFT_ObjectFile; 495 else if (Action == Backend_EmitMCNull) 496 return CGFT_Null; 497 else { 498 assert(Action == Backend_EmitAssembly && "Invalid action!"); 499 return CGFT_AssemblyFile; 500 } 501 } 502 503 static bool actionRequiresCodeGen(BackendAction Action) { 504 return Action != Backend_EmitNothing && Action != Backend_EmitBC && 505 Action != Backend_EmitLL; 506 } 507 508 static bool initTargetOptions(DiagnosticsEngine &Diags, 509 llvm::TargetOptions &Options, 510 const CodeGenOptions &CodeGenOpts, 511 const clang::TargetOptions &TargetOpts, 512 const LangOptions &LangOpts, 513 const HeaderSearchOptions &HSOpts) { 514 switch (LangOpts.getThreadModel()) { 515 case LangOptions::ThreadModelKind::POSIX: 516 Options.ThreadModel = llvm::ThreadModel::POSIX; 517 break; 518 case LangOptions::ThreadModelKind::Single: 519 Options.ThreadModel = llvm::ThreadModel::Single; 520 break; 521 } 522 523 // Set float ABI type. 524 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 525 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 526 "Invalid Floating Point ABI!"); 527 Options.FloatABIType = 528 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 529 .Case("soft", llvm::FloatABI::Soft) 530 .Case("softfp", llvm::FloatABI::Soft) 531 .Case("hard", llvm::FloatABI::Hard) 532 .Default(llvm::FloatABI::Default); 533 534 // Set FP fusion mode. 535 switch (LangOpts.getDefaultFPContractMode()) { 536 case LangOptions::FPM_Off: 537 // Preserve any contraction performed by the front-end. (Strict performs 538 // splitting of the muladd intrinsic in the backend.) 539 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 540 break; 541 case LangOptions::FPM_On: 542 case LangOptions::FPM_FastHonorPragmas: 543 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 544 break; 545 case LangOptions::FPM_Fast: 546 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 547 break; 548 } 549 550 Options.BinutilsVersion = 551 llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion); 552 Options.UseInitArray = CodeGenOpts.UseInitArray; 553 Options.LowerGlobalDtorsViaCxaAtExit = 554 CodeGenOpts.RegisterGlobalDtorsWithAtExit; 555 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 556 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 557 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 558 559 // Set EABI version. 560 Options.EABIVersion = TargetOpts.EABIVersion; 561 562 if (LangOpts.hasSjLjExceptions()) 563 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 564 if (LangOpts.hasSEHExceptions()) 565 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 566 if (LangOpts.hasDWARFExceptions()) 567 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 568 if (LangOpts.hasWasmExceptions()) 569 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 570 571 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 572 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 573 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 574 Options.UnsafeFPMath = LangOpts.UnsafeFPMath; 575 Options.ApproxFuncFPMath = LangOpts.ApproxFunc; 576 577 Options.BBSections = 578 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 579 .Case("all", llvm::BasicBlockSection::All) 580 .Case("labels", llvm::BasicBlockSection::Labels) 581 .StartsWith("list=", llvm::BasicBlockSection::List) 582 .Case("none", llvm::BasicBlockSection::None) 583 .Default(llvm::BasicBlockSection::None); 584 585 if (Options.BBSections == llvm::BasicBlockSection::List) { 586 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 587 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 588 if (!MBOrErr) { 589 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 590 << MBOrErr.getError().message(); 591 return false; 592 } 593 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 594 } 595 596 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions; 597 Options.FunctionSections = CodeGenOpts.FunctionSections; 598 Options.DataSections = CodeGenOpts.DataSections; 599 Options.IgnoreXCOFFVisibility = LangOpts.IgnoreXCOFFVisibility; 600 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 601 Options.UniqueBasicBlockSectionNames = 602 CodeGenOpts.UniqueBasicBlockSectionNames; 603 Options.TLSSize = CodeGenOpts.TLSSize; 604 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 605 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 606 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 607 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 608 Options.StackUsageOutput = CodeGenOpts.StackUsageOutput; 609 Options.EmitAddrsig = CodeGenOpts.Addrsig; 610 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 611 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 612 Options.EnableAIXExtendedAltivecABI = CodeGenOpts.EnableAIXExtendedAltivecABI; 613 Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex; 614 Options.LoopAlignment = CodeGenOpts.LoopAlignment; 615 Options.DebugStrictDwarf = CodeGenOpts.DebugStrictDwarf; 616 Options.ObjectFilenameForDebug = CodeGenOpts.ObjectFilenameForDebug; 617 Options.Hotpatch = CodeGenOpts.HotPatch; 618 Options.JMCInstrument = CodeGenOpts.JMCInstrument; 619 620 switch (CodeGenOpts.getSwiftAsyncFramePointer()) { 621 case CodeGenOptions::SwiftAsyncFramePointerKind::Auto: 622 Options.SwiftAsyncFramePointer = 623 SwiftAsyncFramePointerMode::DeploymentBased; 624 break; 625 626 case CodeGenOptions::SwiftAsyncFramePointerKind::Always: 627 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Always; 628 break; 629 630 case CodeGenOptions::SwiftAsyncFramePointerKind::Never: 631 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Never; 632 break; 633 } 634 635 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 636 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 637 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 638 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 639 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 640 Options.MCOptions.MCIncrementalLinkerCompatible = 641 CodeGenOpts.IncrementalLinkerCompatible; 642 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 643 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 644 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 645 Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64; 646 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 647 Options.MCOptions.ABIName = TargetOpts.ABI; 648 for (const auto &Entry : HSOpts.UserEntries) 649 if (!Entry.IsFramework && 650 (Entry.Group == frontend::IncludeDirGroup::Quoted || 651 Entry.Group == frontend::IncludeDirGroup::Angled || 652 Entry.Group == frontend::IncludeDirGroup::System)) 653 Options.MCOptions.IASSearchPaths.push_back( 654 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 655 Options.MCOptions.Argv0 = CodeGenOpts.Argv0; 656 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; 657 658 return true; 659 } 660 661 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts, 662 const LangOptions &LangOpts) { 663 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 664 return None; 665 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 666 // LLVM's -default-gcov-version flag is set to something invalid. 667 GCOVOptions Options; 668 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 669 Options.EmitData = CodeGenOpts.EmitGcovArcs; 670 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 671 Options.NoRedZone = CodeGenOpts.DisableRedZone; 672 Options.Filter = CodeGenOpts.ProfileFilterFiles; 673 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 674 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 675 return Options; 676 } 677 678 static Optional<InstrProfOptions> 679 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 680 const LangOptions &LangOpts) { 681 if (!CodeGenOpts.hasProfileClangInstr()) 682 return None; 683 InstrProfOptions Options; 684 Options.NoRedZone = CodeGenOpts.DisableRedZone; 685 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 686 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 687 return Options; 688 } 689 690 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 691 legacy::FunctionPassManager &FPM) { 692 // Handle disabling of all LLVM passes, where we want to preserve the 693 // internal module before any optimization. 694 if (CodeGenOpts.DisableLLVMPasses) 695 return; 696 697 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 698 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 699 // are inserted before PMBuilder ones - they'd get the default-constructed 700 // TLI with an unknown target otherwise. 701 std::unique_ptr<TargetLibraryInfoImpl> TLII( 702 createTLII(TargetTriple, CodeGenOpts)); 703 704 // If we reached here with a non-empty index file name, then the index file 705 // was empty and we are not performing ThinLTO backend compilation (used in 706 // testing in a distributed build environment). Drop any the type test 707 // assume sequences inserted for whole program vtables so that codegen doesn't 708 // complain. 709 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 710 MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr, 711 /*ImportSummary=*/nullptr, 712 /*DropTypeTests=*/true)); 713 714 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 715 716 // At O0 and O1 we only run the always inliner which is more efficient. At 717 // higher optimization levels we run the normal inliner. 718 if (CodeGenOpts.OptimizationLevel <= 1) { 719 bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 && 720 !CodeGenOpts.DisableLifetimeMarkers) || 721 LangOpts.Coroutines); 722 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 723 } else { 724 // We do not want to inline hot callsites for SamplePGO module-summary build 725 // because profile annotation will happen again in ThinLTO backend, and we 726 // want the IR of the hot path to match the profile. 727 PMBuilder.Inliner = createFunctionInliningPass( 728 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 729 (!CodeGenOpts.SampleProfileFile.empty() && 730 CodeGenOpts.PrepareForThinLTO)); 731 } 732 733 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 734 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 735 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 736 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 737 // Only enable CGProfilePass when using integrated assembler, since 738 // non-integrated assemblers don't recognize .cgprofile section. 739 PMBuilder.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 740 741 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 742 // Loop interleaving in the loop vectorizer has historically been set to be 743 // enabled when loop unrolling is enabled. 744 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 745 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 746 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 747 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 748 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 749 750 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 751 752 if (TM) 753 TM->adjustPassManager(PMBuilder); 754 755 if (CodeGenOpts.DebugInfoForProfiling || 756 !CodeGenOpts.SampleProfileFile.empty()) 757 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 758 addAddDiscriminatorsPass); 759 760 // In ObjC ARC mode, add the main ARC optimization passes. 761 if (LangOpts.ObjCAutoRefCount) { 762 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 763 addObjCARCExpandPass); 764 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 765 addObjCARCAPElimPass); 766 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 767 addObjCARCOptPass); 768 } 769 770 if (LangOpts.Coroutines) 771 addCoroutinePassesToExtensionPoints(PMBuilder); 772 773 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 774 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 775 addMemProfilerPasses); 776 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 777 addMemProfilerPasses); 778 } 779 780 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 781 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 782 addBoundsCheckingPass); 783 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 784 addBoundsCheckingPass); 785 } 786 787 if (CodeGenOpts.hasSanitizeCoverage()) { 788 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 789 addSanitizerCoveragePass); 790 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 791 addSanitizerCoveragePass); 792 } 793 794 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 795 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 796 addAddressSanitizerPasses); 797 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 798 addAddressSanitizerPasses); 799 } 800 801 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 802 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 803 addKernelAddressSanitizerPasses); 804 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 805 addKernelAddressSanitizerPasses); 806 } 807 808 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 809 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 810 addHWAddressSanitizerPasses); 811 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 812 addHWAddressSanitizerPasses); 813 } 814 815 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 816 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 817 addKernelHWAddressSanitizerPasses); 818 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 819 addKernelHWAddressSanitizerPasses); 820 } 821 822 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 823 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 824 addMemorySanitizerPass); 825 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 826 addMemorySanitizerPass); 827 } 828 829 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 830 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 831 addKernelMemorySanitizerPass); 832 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 833 addKernelMemorySanitizerPass); 834 } 835 836 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 837 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 838 addThreadSanitizerPass); 839 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 840 addThreadSanitizerPass); 841 } 842 843 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 844 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 845 addDataFlowSanitizerPass); 846 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 847 addDataFlowSanitizerPass); 848 } 849 850 if (CodeGenOpts.InstrumentFunctions || 851 CodeGenOpts.InstrumentFunctionEntryBare || 852 CodeGenOpts.InstrumentFunctionsAfterInlining || 853 CodeGenOpts.InstrumentForProfiling) { 854 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 855 addEntryExitInstrumentationPass); 856 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 857 addEntryExitInstrumentationPass); 858 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 859 addPostInlineEntryExitInstrumentationPass); 860 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 861 addPostInlineEntryExitInstrumentationPass); 862 } 863 864 // Set up the per-function pass manager. 865 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 866 if (CodeGenOpts.VerifyModule) 867 FPM.add(createVerifierPass()); 868 869 // Set up the per-module pass manager. 870 if (!CodeGenOpts.RewriteMapFiles.empty()) 871 addSymbolRewriterPass(CodeGenOpts, &MPM); 872 873 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) { 874 MPM.add(createGCOVProfilerPass(*Options)); 875 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 876 MPM.add(createStripSymbolsPass(true)); 877 } 878 879 if (Optional<InstrProfOptions> Options = 880 getInstrProfOptions(CodeGenOpts, LangOpts)) 881 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 882 883 bool hasIRInstr = false; 884 if (CodeGenOpts.hasProfileIRInstr()) { 885 PMBuilder.EnablePGOInstrGen = true; 886 hasIRInstr = true; 887 } 888 if (CodeGenOpts.hasProfileCSIRInstr()) { 889 assert(!CodeGenOpts.hasProfileCSIRUse() && 890 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 891 "same time"); 892 assert(!hasIRInstr && 893 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 894 "same time"); 895 PMBuilder.EnablePGOCSInstrGen = true; 896 hasIRInstr = true; 897 } 898 if (hasIRInstr) { 899 if (!CodeGenOpts.InstrProfileOutput.empty()) 900 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 901 else 902 PMBuilder.PGOInstrGen = getDefaultProfileGenName(); 903 } 904 if (CodeGenOpts.hasProfileIRUse()) { 905 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 906 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 907 } 908 909 if (!CodeGenOpts.SampleProfileFile.empty()) 910 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 911 912 PMBuilder.populateFunctionPassManager(FPM); 913 PMBuilder.populateModulePassManager(MPM); 914 } 915 916 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 917 SmallVector<const char *, 16> BackendArgs; 918 BackendArgs.push_back("clang"); // Fake program name. 919 if (!CodeGenOpts.DebugPass.empty()) { 920 BackendArgs.push_back("-debug-pass"); 921 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 922 } 923 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 924 BackendArgs.push_back("-limit-float-precision"); 925 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 926 } 927 // Check for the default "clang" invocation that won't set any cl::opt values. 928 // Skip trying to parse the command line invocation to avoid the issues 929 // described below. 930 if (BackendArgs.size() == 1) 931 return; 932 BackendArgs.push_back(nullptr); 933 // FIXME: The command line parser below is not thread-safe and shares a global 934 // state, so this call might crash or overwrite the options of another Clang 935 // instance in the same process. 936 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 937 BackendArgs.data()); 938 } 939 940 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 941 // Create the TargetMachine for generating code. 942 std::string Error; 943 std::string Triple = TheModule->getTargetTriple(); 944 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 945 if (!TheTarget) { 946 if (MustCreateTM) 947 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 948 return; 949 } 950 951 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 952 std::string FeaturesStr = 953 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 954 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 955 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 956 957 llvm::TargetOptions Options; 958 if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, 959 HSOpts)) 960 return; 961 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 962 Options, RM, CM, OptLevel)); 963 } 964 965 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 966 BackendAction Action, 967 raw_pwrite_stream &OS, 968 raw_pwrite_stream *DwoOS) { 969 // Add LibraryInfo. 970 std::unique_ptr<TargetLibraryInfoImpl> TLII( 971 createTLII(TargetTriple, CodeGenOpts)); 972 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 973 974 // Normal mode, emit a .s or .o file by running the code generator. Note, 975 // this also adds codegenerator level optimization passes. 976 CodeGenFileType CGFT = getCodeGenFileType(Action); 977 978 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 979 // "codegen" passes so that it isn't run multiple times when there is 980 // inlining happening. 981 if (CodeGenOpts.OptimizationLevel > 0) 982 CodeGenPasses.add(createObjCARCContractPass()); 983 984 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 985 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 986 Diags.Report(diag::err_fe_unable_to_interface_with_target); 987 return false; 988 } 989 990 return true; 991 } 992 993 void EmitAssemblyHelper::EmitAssemblyWithLegacyPassManager( 994 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 995 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 996 997 setCommandLineOpts(CodeGenOpts); 998 999 bool UsesCodeGen = actionRequiresCodeGen(Action); 1000 CreateTargetMachine(UsesCodeGen); 1001 1002 if (UsesCodeGen && !TM) 1003 return; 1004 if (TM) 1005 TheModule->setDataLayout(TM->createDataLayout()); 1006 1007 DebugifyCustomPassManager PerModulePasses; 1008 DebugInfoPerPass DebugInfoBeforePass; 1009 if (CodeGenOpts.EnableDIPreservationVerify) { 1010 PerModulePasses.setDebugifyMode(DebugifyMode::OriginalDebugInfo); 1011 PerModulePasses.setDebugInfoBeforePass(DebugInfoBeforePass); 1012 1013 if (!CodeGenOpts.DIBugsReportFilePath.empty()) 1014 PerModulePasses.setOrigDIVerifyBugsReportFilePath( 1015 CodeGenOpts.DIBugsReportFilePath); 1016 } 1017 PerModulePasses.add( 1018 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1019 1020 legacy::FunctionPassManager PerFunctionPasses(TheModule); 1021 PerFunctionPasses.add( 1022 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1023 1024 CreatePasses(PerModulePasses, PerFunctionPasses); 1025 1026 // Add a verifier pass if requested. We don't have to do this if the action 1027 // requires code generation because there will already be a verifier pass in 1028 // the code-generation pipeline. 1029 if (!UsesCodeGen && CodeGenOpts.VerifyModule) 1030 PerModulePasses.add(createVerifierPass()); 1031 1032 legacy::PassManager CodeGenPasses; 1033 CodeGenPasses.add( 1034 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1035 1036 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1037 1038 switch (Action) { 1039 case Backend_EmitNothing: 1040 break; 1041 1042 case Backend_EmitBC: 1043 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1044 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1045 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1046 if (!ThinLinkOS) 1047 return; 1048 } 1049 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1050 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1051 CodeGenOpts.EnableSplitLTOUnit); 1052 PerModulePasses.add(createWriteThinLTOBitcodePass( 1053 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 1054 } else { 1055 // Emit a module summary by default for Regular LTO except for ld64 1056 // targets 1057 bool EmitLTOSummary = 1058 (CodeGenOpts.PrepareForLTO && !CodeGenOpts.DisableLLVMPasses && 1059 TargetTriple.getVendor() != llvm::Triple::Apple); 1060 if (EmitLTOSummary) { 1061 if (!TheModule->getModuleFlag("ThinLTO")) 1062 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1063 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1064 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1065 uint32_t(1)); 1066 } 1067 1068 PerModulePasses.add(createBitcodeWriterPass( 1069 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1070 } 1071 break; 1072 1073 case Backend_EmitLL: 1074 PerModulePasses.add( 1075 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1076 break; 1077 1078 default: 1079 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1080 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1081 if (!DwoOS) 1082 return; 1083 } 1084 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1085 DwoOS ? &DwoOS->os() : nullptr)) 1086 return; 1087 } 1088 1089 // Before executing passes, print the final values of the LLVM options. 1090 cl::PrintOptionValues(); 1091 1092 // Run passes. For now we do all passes at once, but eventually we 1093 // would like to have the option of streaming code generation. 1094 1095 { 1096 PrettyStackTraceString CrashInfo("Per-function optimization"); 1097 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 1098 1099 PerFunctionPasses.doInitialization(); 1100 for (Function &F : *TheModule) 1101 if (!F.isDeclaration()) 1102 PerFunctionPasses.run(F); 1103 PerFunctionPasses.doFinalization(); 1104 } 1105 1106 { 1107 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 1108 llvm::TimeTraceScope TimeScope("PerModulePasses"); 1109 PerModulePasses.run(*TheModule); 1110 } 1111 1112 { 1113 PrettyStackTraceString CrashInfo("Code generation"); 1114 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1115 CodeGenPasses.run(*TheModule); 1116 } 1117 1118 if (ThinLinkOS) 1119 ThinLinkOS->keep(); 1120 if (DwoOS) 1121 DwoOS->keep(); 1122 } 1123 1124 static OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 1125 switch (Opts.OptimizationLevel) { 1126 default: 1127 llvm_unreachable("Invalid optimization level!"); 1128 1129 case 0: 1130 return OptimizationLevel::O0; 1131 1132 case 1: 1133 return OptimizationLevel::O1; 1134 1135 case 2: 1136 switch (Opts.OptimizeSize) { 1137 default: 1138 llvm_unreachable("Invalid optimization level for size!"); 1139 1140 case 0: 1141 return OptimizationLevel::O2; 1142 1143 case 1: 1144 return OptimizationLevel::Os; 1145 1146 case 2: 1147 return OptimizationLevel::Oz; 1148 } 1149 1150 case 3: 1151 return OptimizationLevel::O3; 1152 } 1153 } 1154 1155 static void addSanitizers(const Triple &TargetTriple, 1156 const CodeGenOptions &CodeGenOpts, 1157 const LangOptions &LangOpts, PassBuilder &PB) { 1158 PB.registerOptimizerLastEPCallback([&](ModulePassManager &MPM, 1159 OptimizationLevel Level) { 1160 if (CodeGenOpts.hasSanitizeCoverage()) { 1161 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1162 MPM.addPass(ModuleSanitizerCoveragePass( 1163 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1164 CodeGenOpts.SanitizeCoverageIgnorelistFiles)); 1165 } 1166 1167 auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1168 if (LangOpts.Sanitize.has(Mask)) { 1169 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1170 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1171 1172 MemorySanitizerOptions options(TrackOrigins, Recover, CompileKernel, 1173 CodeGenOpts.SanitizeMemoryParamRetval); 1174 MPM.addPass(ModuleMemorySanitizerPass(options)); 1175 FunctionPassManager FPM; 1176 FPM.addPass(MemorySanitizerPass(options)); 1177 if (Level != OptimizationLevel::O0) { 1178 // MemorySanitizer inserts complex instrumentation that mostly 1179 // follows the logic of the original code, but operates on 1180 // "shadow" values. It can benefit from re-running some 1181 // general purpose optimization passes. 1182 FPM.addPass(EarlyCSEPass()); 1183 // TODO: Consider add more passes like in 1184 // addGeneralOptsForMemorySanitizer. EarlyCSEPass makes visible 1185 // difference on size. It's not clear if the rest is still 1186 // usefull. InstCombinePass breakes 1187 // compiler-rt/test/msan/select_origin.cpp. 1188 } 1189 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 1190 } 1191 }; 1192 MSanPass(SanitizerKind::Memory, false); 1193 MSanPass(SanitizerKind::KernelMemory, true); 1194 1195 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1196 MPM.addPass(ModuleThreadSanitizerPass()); 1197 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1198 } 1199 1200 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1201 if (LangOpts.Sanitize.has(Mask)) { 1202 bool UseGlobalGC = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1203 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1204 llvm::AsanDtorKind DestructorKind = 1205 CodeGenOpts.getSanitizeAddressDtor(); 1206 AddressSanitizerOptions Opts; 1207 Opts.CompileKernel = CompileKernel; 1208 Opts.Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1209 Opts.UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1210 Opts.UseAfterReturn = CodeGenOpts.getSanitizeAddressUseAfterReturn(); 1211 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1212 MPM.addPass(ModuleAddressSanitizerPass( 1213 Opts, UseGlobalGC, UseOdrIndicator, DestructorKind)); 1214 } 1215 }; 1216 ASanPass(SanitizerKind::Address, false); 1217 ASanPass(SanitizerKind::KernelAddress, true); 1218 1219 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1220 if (LangOpts.Sanitize.has(Mask)) { 1221 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1222 MPM.addPass(HWAddressSanitizerPass( 1223 {CompileKernel, Recover, 1224 /*DisableOptimization=*/CodeGenOpts.OptimizationLevel == 0})); 1225 } 1226 }; 1227 HWASanPass(SanitizerKind::HWAddress, false); 1228 HWASanPass(SanitizerKind::KernelHWAddress, true); 1229 1230 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 1231 MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles)); 1232 } 1233 }); 1234 } 1235 1236 void EmitAssemblyHelper::RunOptimizationPipeline( 1237 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 1238 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS) { 1239 Optional<PGOOptions> PGOOpt; 1240 1241 if (CodeGenOpts.hasProfileIRInstr()) 1242 // -fprofile-generate. 1243 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1244 ? getDefaultProfileGenName() 1245 : CodeGenOpts.InstrProfileOutput, 1246 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1247 CodeGenOpts.DebugInfoForProfiling); 1248 else if (CodeGenOpts.hasProfileIRUse()) { 1249 // -fprofile-use. 1250 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1251 : PGOOptions::NoCSAction; 1252 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1253 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1254 CSAction, CodeGenOpts.DebugInfoForProfiling); 1255 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1256 // -fprofile-sample-use 1257 PGOOpt = PGOOptions( 1258 CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile, 1259 PGOOptions::SampleUse, PGOOptions::NoCSAction, 1260 CodeGenOpts.DebugInfoForProfiling, CodeGenOpts.PseudoProbeForProfiling); 1261 else if (CodeGenOpts.PseudoProbeForProfiling) 1262 // -fpseudo-probe-for-profiling 1263 PGOOpt = 1264 PGOOptions("", "", "", PGOOptions::NoAction, PGOOptions::NoCSAction, 1265 CodeGenOpts.DebugInfoForProfiling, true); 1266 else if (CodeGenOpts.DebugInfoForProfiling) 1267 // -fdebug-info-for-profiling 1268 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1269 PGOOptions::NoCSAction, true); 1270 1271 // Check to see if we want to generate a CS profile. 1272 if (CodeGenOpts.hasProfileCSIRInstr()) { 1273 assert(!CodeGenOpts.hasProfileCSIRUse() && 1274 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1275 "the same time"); 1276 if (PGOOpt.hasValue()) { 1277 assert(PGOOpt->Action != PGOOptions::IRInstr && 1278 PGOOpt->Action != PGOOptions::SampleUse && 1279 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1280 " pass"); 1281 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1282 ? getDefaultProfileGenName() 1283 : CodeGenOpts.InstrProfileOutput; 1284 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1285 } else 1286 PGOOpt = PGOOptions("", 1287 CodeGenOpts.InstrProfileOutput.empty() 1288 ? getDefaultProfileGenName() 1289 : CodeGenOpts.InstrProfileOutput, 1290 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1291 CodeGenOpts.DebugInfoForProfiling); 1292 } 1293 if (TM) 1294 TM->setPGOOption(PGOOpt); 1295 1296 PipelineTuningOptions PTO; 1297 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1298 // For historical reasons, loop interleaving is set to mirror setting for loop 1299 // unrolling. 1300 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1301 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1302 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1303 PTO.MergeFunctions = CodeGenOpts.MergeFunctions; 1304 // Only enable CGProfilePass when using integrated assembler, since 1305 // non-integrated assemblers don't recognize .cgprofile section. 1306 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 1307 1308 LoopAnalysisManager LAM; 1309 FunctionAnalysisManager FAM; 1310 CGSCCAnalysisManager CGAM; 1311 ModuleAnalysisManager MAM; 1312 1313 bool DebugPassStructure = CodeGenOpts.DebugPass == "Structure"; 1314 PassInstrumentationCallbacks PIC; 1315 PrintPassOptions PrintPassOpts; 1316 PrintPassOpts.Indent = DebugPassStructure; 1317 PrintPassOpts.SkipAnalyses = DebugPassStructure; 1318 StandardInstrumentations SI(CodeGenOpts.DebugPassManager || 1319 DebugPassStructure, 1320 /*VerifyEach*/ false, PrintPassOpts); 1321 SI.registerCallbacks(PIC, &FAM); 1322 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 1323 1324 // Attempt to load pass plugins and register their callbacks with PB. 1325 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1326 auto PassPlugin = PassPlugin::Load(PluginFN); 1327 if (PassPlugin) { 1328 PassPlugin->registerPassBuilderCallbacks(PB); 1329 } else { 1330 Diags.Report(diag::err_fe_unable_to_load_plugin) 1331 << PluginFN << toString(PassPlugin.takeError()); 1332 } 1333 } 1334 #define HANDLE_EXTENSION(Ext) \ 1335 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 1336 #include "llvm/Support/Extension.def" 1337 1338 // Register the target library analysis directly and give it a customized 1339 // preset TLI. 1340 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1341 createTLII(TargetTriple, CodeGenOpts)); 1342 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1343 1344 // Register all the basic analyses with the managers. 1345 PB.registerModuleAnalyses(MAM); 1346 PB.registerCGSCCAnalyses(CGAM); 1347 PB.registerFunctionAnalyses(FAM); 1348 PB.registerLoopAnalyses(LAM); 1349 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1350 1351 ModulePassManager MPM; 1352 1353 if (!CodeGenOpts.DisableLLVMPasses) { 1354 // Map our optimization levels into one of the distinct levels used to 1355 // configure the pipeline. 1356 OptimizationLevel Level = mapToLevel(CodeGenOpts); 1357 1358 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1359 bool IsLTO = CodeGenOpts.PrepareForLTO; 1360 1361 if (LangOpts.ObjCAutoRefCount) { 1362 PB.registerPipelineStartEPCallback( 1363 [](ModulePassManager &MPM, OptimizationLevel Level) { 1364 if (Level != OptimizationLevel::O0) 1365 MPM.addPass( 1366 createModuleToFunctionPassAdaptor(ObjCARCExpandPass())); 1367 }); 1368 PB.registerPipelineEarlySimplificationEPCallback( 1369 [](ModulePassManager &MPM, OptimizationLevel Level) { 1370 if (Level != OptimizationLevel::O0) 1371 MPM.addPass(ObjCARCAPElimPass()); 1372 }); 1373 PB.registerScalarOptimizerLateEPCallback( 1374 [](FunctionPassManager &FPM, OptimizationLevel Level) { 1375 if (Level != OptimizationLevel::O0) 1376 FPM.addPass(ObjCARCOptPass()); 1377 }); 1378 } 1379 1380 // If we reached here with a non-empty index file name, then the index 1381 // file was empty and we are not performing ThinLTO backend compilation 1382 // (used in testing in a distributed build environment). 1383 bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty(); 1384 // If so drop any the type test assume sequences inserted for whole program 1385 // vtables so that codegen doesn't complain. 1386 if (IsThinLTOPostLink) 1387 PB.registerPipelineStartEPCallback( 1388 [](ModulePassManager &MPM, OptimizationLevel Level) { 1389 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1390 /*ImportSummary=*/nullptr, 1391 /*DropTypeTests=*/true)); 1392 }); 1393 1394 if (CodeGenOpts.InstrumentFunctions || 1395 CodeGenOpts.InstrumentFunctionEntryBare || 1396 CodeGenOpts.InstrumentFunctionsAfterInlining || 1397 CodeGenOpts.InstrumentForProfiling) { 1398 PB.registerPipelineStartEPCallback( 1399 [](ModulePassManager &MPM, OptimizationLevel Level) { 1400 MPM.addPass(createModuleToFunctionPassAdaptor( 1401 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1402 }); 1403 PB.registerOptimizerLastEPCallback( 1404 [](ModulePassManager &MPM, OptimizationLevel Level) { 1405 MPM.addPass(createModuleToFunctionPassAdaptor( 1406 EntryExitInstrumenterPass(/*PostInlining=*/true))); 1407 }); 1408 } 1409 1410 // Register callbacks to schedule sanitizer passes at the appropriate part 1411 // of the pipeline. 1412 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1413 PB.registerScalarOptimizerLateEPCallback( 1414 [](FunctionPassManager &FPM, OptimizationLevel Level) { 1415 FPM.addPass(BoundsCheckingPass()); 1416 }); 1417 1418 // Don't add sanitizers if we are here from ThinLTO PostLink. That already 1419 // done on PreLink stage. 1420 if (!IsThinLTOPostLink) 1421 addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB); 1422 1423 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) 1424 PB.registerPipelineStartEPCallback( 1425 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 1426 MPM.addPass(GCOVProfilerPass(*Options)); 1427 }); 1428 if (Optional<InstrProfOptions> Options = 1429 getInstrProfOptions(CodeGenOpts, LangOpts)) 1430 PB.registerPipelineStartEPCallback( 1431 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 1432 MPM.addPass(InstrProfiling(*Options, false)); 1433 }); 1434 1435 if (CodeGenOpts.OptimizationLevel == 0) { 1436 MPM = PB.buildO0DefaultPipeline(Level, IsLTO || IsThinLTO); 1437 } else if (IsThinLTO) { 1438 MPM = PB.buildThinLTOPreLinkDefaultPipeline(Level); 1439 } else if (IsLTO) { 1440 MPM = PB.buildLTOPreLinkDefaultPipeline(Level); 1441 } else { 1442 MPM = PB.buildPerModuleDefaultPipeline(Level); 1443 } 1444 1445 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1446 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass())); 1447 MPM.addPass(ModuleMemProfilerPass()); 1448 } 1449 } 1450 1451 // Add a verifier pass if requested. We don't have to do this if the action 1452 // requires code generation because there will already be a verifier pass in 1453 // the code-generation pipeline. 1454 if (!actionRequiresCodeGen(Action) && CodeGenOpts.VerifyModule) 1455 MPM.addPass(VerifierPass()); 1456 1457 switch (Action) { 1458 case Backend_EmitBC: 1459 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1460 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1461 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1462 if (!ThinLinkOS) 1463 return; 1464 } 1465 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1466 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1467 CodeGenOpts.EnableSplitLTOUnit); 1468 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1469 : nullptr)); 1470 } else { 1471 // Emit a module summary by default for Regular LTO except for ld64 1472 // targets 1473 bool EmitLTOSummary = 1474 (CodeGenOpts.PrepareForLTO && !CodeGenOpts.DisableLLVMPasses && 1475 TargetTriple.getVendor() != llvm::Triple::Apple); 1476 if (EmitLTOSummary) { 1477 if (!TheModule->getModuleFlag("ThinLTO")) 1478 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1479 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1480 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1481 uint32_t(1)); 1482 } 1483 MPM.addPass( 1484 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1485 } 1486 break; 1487 1488 case Backend_EmitLL: 1489 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1490 break; 1491 1492 default: 1493 break; 1494 } 1495 1496 // Now that we have all of the passes ready, run them. 1497 { 1498 PrettyStackTraceString CrashInfo("Optimizer"); 1499 llvm::TimeTraceScope TimeScope("Optimizer"); 1500 MPM.run(*TheModule, MAM); 1501 } 1502 } 1503 1504 void EmitAssemblyHelper::RunCodegenPipeline( 1505 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 1506 std::unique_ptr<llvm::ToolOutputFile> &DwoOS) { 1507 // We still use the legacy PM to run the codegen pipeline since the new PM 1508 // does not work with the codegen pipeline. 1509 // FIXME: make the new PM work with the codegen pipeline. 1510 legacy::PassManager CodeGenPasses; 1511 1512 // Append any output we need to the pass manager. 1513 switch (Action) { 1514 case Backend_EmitAssembly: 1515 case Backend_EmitMCNull: 1516 case Backend_EmitObj: 1517 CodeGenPasses.add( 1518 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1519 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1520 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1521 if (!DwoOS) 1522 return; 1523 } 1524 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1525 DwoOS ? &DwoOS->os() : nullptr)) 1526 // FIXME: Should we handle this error differently? 1527 return; 1528 break; 1529 default: 1530 return; 1531 } 1532 1533 { 1534 PrettyStackTraceString CrashInfo("Code generation"); 1535 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1536 CodeGenPasses.run(*TheModule); 1537 } 1538 } 1539 1540 /// A clean version of `EmitAssembly` that uses the new pass manager. 1541 /// 1542 /// Not all features are currently supported in this system, but where 1543 /// necessary it falls back to the legacy pass manager to at least provide 1544 /// basic functionality. 1545 /// 1546 /// This API is planned to have its functionality finished and then to replace 1547 /// `EmitAssembly` at some point in the future when the default switches. 1548 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 1549 std::unique_ptr<raw_pwrite_stream> OS) { 1550 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 1551 setCommandLineOpts(CodeGenOpts); 1552 1553 bool RequiresCodeGen = actionRequiresCodeGen(Action); 1554 CreateTargetMachine(RequiresCodeGen); 1555 1556 if (RequiresCodeGen && !TM) 1557 return; 1558 if (TM) 1559 TheModule->setDataLayout(TM->createDataLayout()); 1560 1561 // Before executing passes, print the final values of the LLVM options. 1562 cl::PrintOptionValues(); 1563 1564 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1565 RunOptimizationPipeline(Action, OS, ThinLinkOS); 1566 RunCodegenPipeline(Action, OS, DwoOS); 1567 1568 if (ThinLinkOS) 1569 ThinLinkOS->keep(); 1570 if (DwoOS) 1571 DwoOS->keep(); 1572 } 1573 1574 static void runThinLTOBackend( 1575 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M, 1576 const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, 1577 const clang::TargetOptions &TOpts, const LangOptions &LOpts, 1578 std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile, 1579 std::string ProfileRemapping, BackendAction Action) { 1580 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1581 ModuleToDefinedGVSummaries; 1582 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1583 1584 setCommandLineOpts(CGOpts); 1585 1586 // We can simply import the values mentioned in the combined index, since 1587 // we should only invoke this using the individual indexes written out 1588 // via a WriteIndexesThinBackend. 1589 FunctionImporter::ImportMapTy ImportList; 1590 if (!lto::initImportList(*M, *CombinedIndex, ImportList)) 1591 return; 1592 1593 auto AddStream = [&](size_t Task) { 1594 return std::make_unique<CachedFileStream>(std::move(OS), 1595 CGOpts.ObjectFilenameForDebug); 1596 }; 1597 lto::Config Conf; 1598 if (CGOpts.SaveTempsFilePrefix != "") { 1599 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1600 /* UseInputModulePath */ false)) { 1601 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1602 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1603 << '\n'; 1604 }); 1605 } 1606 } 1607 Conf.CPU = TOpts.CPU; 1608 Conf.CodeModel = getCodeModel(CGOpts); 1609 Conf.MAttrs = TOpts.Features; 1610 Conf.RelocModel = CGOpts.RelocationModel; 1611 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1612 Conf.OptLevel = CGOpts.OptimizationLevel; 1613 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1614 Conf.SampleProfile = std::move(SampleProfile); 1615 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1616 // For historical reasons, loop interleaving is set to mirror setting for loop 1617 // unrolling. 1618 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1619 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1620 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1621 // Only enable CGProfilePass when using integrated assembler, since 1622 // non-integrated assemblers don't recognize .cgprofile section. 1623 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1624 1625 // Context sensitive profile. 1626 if (CGOpts.hasProfileCSIRInstr()) { 1627 Conf.RunCSIRInstr = true; 1628 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1629 } else if (CGOpts.hasProfileCSIRUse()) { 1630 Conf.RunCSIRInstr = false; 1631 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1632 } 1633 1634 Conf.ProfileRemapping = std::move(ProfileRemapping); 1635 Conf.UseNewPM = !CGOpts.LegacyPassManager; 1636 Conf.DebugPassManager = CGOpts.DebugPassManager; 1637 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1638 Conf.RemarksFilename = CGOpts.OptRecordFile; 1639 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1640 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1641 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1642 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1643 switch (Action) { 1644 case Backend_EmitNothing: 1645 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1646 return false; 1647 }; 1648 break; 1649 case Backend_EmitLL: 1650 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1651 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1652 return false; 1653 }; 1654 break; 1655 case Backend_EmitBC: 1656 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1657 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1658 return false; 1659 }; 1660 break; 1661 default: 1662 Conf.CGFileType = getCodeGenFileType(Action); 1663 break; 1664 } 1665 if (Error E = 1666 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1667 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], 1668 /* ModuleMap */ nullptr, CGOpts.CmdArgs)) { 1669 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1670 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1671 }); 1672 } 1673 } 1674 1675 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1676 const HeaderSearchOptions &HeaderOpts, 1677 const CodeGenOptions &CGOpts, 1678 const clang::TargetOptions &TOpts, 1679 const LangOptions &LOpts, 1680 StringRef TDesc, Module *M, 1681 BackendAction Action, 1682 std::unique_ptr<raw_pwrite_stream> OS) { 1683 1684 llvm::TimeTraceScope TimeScope("Backend"); 1685 1686 std::unique_ptr<llvm::Module> EmptyModule; 1687 if (!CGOpts.ThinLTOIndexFile.empty()) { 1688 // If we are performing a ThinLTO importing compile, load the function index 1689 // into memory and pass it into runThinLTOBackend, which will run the 1690 // function importer and invoke LTO passes. 1691 std::unique_ptr<ModuleSummaryIndex> CombinedIndex; 1692 if (Error E = llvm::getModuleSummaryIndexForFile( 1693 CGOpts.ThinLTOIndexFile, 1694 /*IgnoreEmptyThinLTOIndexFile*/ true) 1695 .moveInto(CombinedIndex)) { 1696 logAllUnhandledErrors(std::move(E), errs(), 1697 "Error loading index file '" + 1698 CGOpts.ThinLTOIndexFile + "': "); 1699 return; 1700 } 1701 1702 // A null CombinedIndex means we should skip ThinLTO compilation 1703 // (LLVM will optionally ignore empty index files, returning null instead 1704 // of an error). 1705 if (CombinedIndex) { 1706 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1707 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, 1708 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, 1709 CGOpts.ProfileRemappingFile, Action); 1710 return; 1711 } 1712 // Distributed indexing detected that nothing from the module is needed 1713 // for the final linking. So we can skip the compilation. We sill need to 1714 // output an empty object file to make sure that a linker does not fail 1715 // trying to read it. Also for some features, like CFI, we must skip 1716 // the compilation as CombinedIndex does not contain all required 1717 // information. 1718 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1719 EmptyModule->setTargetTriple(M->getTargetTriple()); 1720 M = EmptyModule.get(); 1721 } 1722 } 1723 1724 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1725 1726 if (CGOpts.LegacyPassManager) 1727 AsmHelper.EmitAssemblyWithLegacyPassManager(Action, std::move(OS)); 1728 else 1729 AsmHelper.EmitAssembly(Action, std::move(OS)); 1730 1731 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1732 // DataLayout. 1733 if (AsmHelper.TM) { 1734 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1735 if (DLDesc != TDesc) { 1736 unsigned DiagID = Diags.getCustomDiagID( 1737 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1738 "expected target description '%1'"); 1739 Diags.Report(DiagID) << DLDesc << TDesc; 1740 } 1741 } 1742 } 1743 1744 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1745 // __LLVM,__bitcode section. 1746 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1747 llvm::MemoryBufferRef Buf) { 1748 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1749 return; 1750 llvm::embedBitcodeInModule( 1751 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1752 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1753 CGOpts.CmdArgs); 1754 } 1755 1756 void clang::EmbedObject(llvm::Module *M, const CodeGenOptions &CGOpts, 1757 DiagnosticsEngine &Diags) { 1758 if (CGOpts.OffloadObjects.empty()) 1759 return; 1760 1761 for (StringRef OffloadObject : CGOpts.OffloadObjects) { 1762 if (OffloadObject.count(',') != 1) 1763 Diags.Report(Diags.getCustomDiagID( 1764 DiagnosticsEngine::Error, "Invalid string pair for embedding '%0'")) 1765 << OffloadObject; 1766 auto FilenameAndSection = OffloadObject.split(','); 1767 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> ObjectOrErr = 1768 llvm::MemoryBuffer::getFileOrSTDIN(FilenameAndSection.first); 1769 if (std::error_code EC = ObjectOrErr.getError()) { 1770 auto DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 1771 "could not open '%0' for embedding"); 1772 Diags.Report(DiagID) << FilenameAndSection.first; 1773 return; 1774 } 1775 1776 SmallString<128> SectionName( 1777 {".llvm.offloading.", FilenameAndSection.second}); 1778 llvm::embedBufferInModule(*M, **ObjectOrErr, SectionName); 1779 } 1780 } 1781