1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "clang/Lex/HeaderSearchOptions.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/ADT/StringSwitch.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/IRPrintingPasses.h" 31 #include "llvm/IR/LegacyPassManager.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSummaryIndex.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/LTO/LTOBackend.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/SubtargetFeature.h" 38 #include "llvm/Passes/PassBuilder.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/MemoryBuffer.h" 41 #include "llvm/Support/PrettyStackTrace.h" 42 #include "llvm/Support/TargetRegistry.h" 43 #include "llvm/Support/Timer.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Target/TargetMachine.h" 46 #include "llvm/Target/TargetOptions.h" 47 #include "llvm/Target/TargetSubtargetInfo.h" 48 #include "llvm/Transforms/Coroutines.h" 49 #include "llvm/Transforms/IPO.h" 50 #include "llvm/Transforms/IPO/AlwaysInliner.h" 51 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 52 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 53 #include "llvm/Transforms/Instrumentation.h" 54 #include "llvm/Transforms/ObjCARC.h" 55 #include "llvm/Transforms/Scalar.h" 56 #include "llvm/Transforms/Scalar/GVN.h" 57 #include "llvm/Transforms/Utils/SymbolRewriter.h" 58 #include <memory> 59 using namespace clang; 60 using namespace llvm; 61 62 namespace { 63 64 // Default filename used for profile generation. 65 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 66 67 class EmitAssemblyHelper { 68 DiagnosticsEngine &Diags; 69 const HeaderSearchOptions &HSOpts; 70 const CodeGenOptions &CodeGenOpts; 71 const clang::TargetOptions &TargetOpts; 72 const LangOptions &LangOpts; 73 Module *TheModule; 74 75 Timer CodeGenerationTime; 76 77 std::unique_ptr<raw_pwrite_stream> OS; 78 79 TargetIRAnalysis getTargetIRAnalysis() const { 80 if (TM) 81 return TM->getTargetIRAnalysis(); 82 83 return TargetIRAnalysis(); 84 } 85 86 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 87 88 /// Generates the TargetMachine. 89 /// Leaves TM unchanged if it is unable to create the target machine. 90 /// Some of our clang tests specify triples which are not built 91 /// into clang. This is okay because these tests check the generated 92 /// IR, and they require DataLayout which depends on the triple. 93 /// In this case, we allow this method to fail and not report an error. 94 /// When MustCreateTM is used, we print an error if we are unable to load 95 /// the requested target. 96 void CreateTargetMachine(bool MustCreateTM); 97 98 /// Add passes necessary to emit assembly or LLVM IR. 99 /// 100 /// \return True on success. 101 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 102 raw_pwrite_stream &OS); 103 104 public: 105 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 106 const HeaderSearchOptions &HeaderSearchOpts, 107 const CodeGenOptions &CGOpts, 108 const clang::TargetOptions &TOpts, 109 const LangOptions &LOpts, Module *M) 110 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 111 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 112 CodeGenerationTime("codegen", "Code Generation Time") {} 113 114 ~EmitAssemblyHelper() { 115 if (CodeGenOpts.DisableFree) 116 BuryPointer(std::move(TM)); 117 } 118 119 std::unique_ptr<TargetMachine> TM; 120 121 void EmitAssembly(BackendAction Action, 122 std::unique_ptr<raw_pwrite_stream> OS); 123 124 void EmitAssemblyWithNewPassManager(BackendAction Action, 125 std::unique_ptr<raw_pwrite_stream> OS); 126 }; 127 128 // We need this wrapper to access LangOpts and CGOpts from extension functions 129 // that we add to the PassManagerBuilder. 130 class PassManagerBuilderWrapper : public PassManagerBuilder { 131 public: 132 PassManagerBuilderWrapper(const Triple &TargetTriple, 133 const CodeGenOptions &CGOpts, 134 const LangOptions &LangOpts) 135 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 136 LangOpts(LangOpts) {} 137 const Triple &getTargetTriple() const { return TargetTriple; } 138 const CodeGenOptions &getCGOpts() const { return CGOpts; } 139 const LangOptions &getLangOpts() const { return LangOpts; } 140 141 private: 142 const Triple &TargetTriple; 143 const CodeGenOptions &CGOpts; 144 const LangOptions &LangOpts; 145 }; 146 } 147 148 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 149 if (Builder.OptLevel > 0) 150 PM.add(createObjCARCAPElimPass()); 151 } 152 153 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 154 if (Builder.OptLevel > 0) 155 PM.add(createObjCARCExpandPass()); 156 } 157 158 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 159 if (Builder.OptLevel > 0) 160 PM.add(createObjCARCOptPass()); 161 } 162 163 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 164 legacy::PassManagerBase &PM) { 165 PM.add(createAddDiscriminatorsPass()); 166 } 167 168 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 169 legacy::PassManagerBase &PM) { 170 PM.add(createBoundsCheckingPass()); 171 } 172 173 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 174 legacy::PassManagerBase &PM) { 175 const PassManagerBuilderWrapper &BuilderWrapper = 176 static_cast<const PassManagerBuilderWrapper&>(Builder); 177 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 178 SanitizerCoverageOptions Opts; 179 Opts.CoverageType = 180 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 181 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 182 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 183 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 184 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 185 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 186 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 187 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 188 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 189 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 190 PM.add(createSanitizerCoverageModulePass(Opts)); 191 } 192 193 // Check if ASan should use GC-friendly instrumentation for globals. 194 // First of all, there is no point if -fdata-sections is off (expect for MachO, 195 // where this is not a factor). Also, on ELF this feature requires an assembler 196 // extension that only works with -integrated-as at the moment. 197 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 198 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 199 return false; 200 switch (T.getObjectFormat()) { 201 case Triple::MachO: 202 case Triple::COFF: 203 return true; 204 case Triple::ELF: 205 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 206 default: 207 return false; 208 } 209 } 210 211 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 212 legacy::PassManagerBase &PM) { 213 const PassManagerBuilderWrapper &BuilderWrapper = 214 static_cast<const PassManagerBuilderWrapper&>(Builder); 215 const Triple &T = BuilderWrapper.getTargetTriple(); 216 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 217 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 218 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 219 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 220 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 221 UseAfterScope)); 222 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/ false, Recover, 223 UseGlobalsGC)); 224 } 225 226 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 227 legacy::PassManagerBase &PM) { 228 PM.add(createAddressSanitizerFunctionPass( 229 /*CompileKernel*/ true, 230 /*Recover*/ true, /*UseAfterScope*/ false)); 231 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/true, 232 /*Recover*/true)); 233 } 234 235 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 236 legacy::PassManagerBase &PM) { 237 const PassManagerBuilderWrapper &BuilderWrapper = 238 static_cast<const PassManagerBuilderWrapper&>(Builder); 239 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 240 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 241 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 242 PM.add(createMemorySanitizerPass(TrackOrigins, Recover)); 243 244 // MemorySanitizer inserts complex instrumentation that mostly follows 245 // the logic of the original code, but operates on "shadow" values. 246 // It can benefit from re-running some general purpose optimization passes. 247 if (Builder.OptLevel > 0) { 248 PM.add(createEarlyCSEPass()); 249 PM.add(createReassociatePass()); 250 PM.add(createLICMPass()); 251 PM.add(createGVNPass()); 252 PM.add(createInstructionCombiningPass()); 253 PM.add(createDeadStoreEliminationPass()); 254 } 255 } 256 257 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 258 legacy::PassManagerBase &PM) { 259 PM.add(createThreadSanitizerPass()); 260 } 261 262 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 263 legacy::PassManagerBase &PM) { 264 const PassManagerBuilderWrapper &BuilderWrapper = 265 static_cast<const PassManagerBuilderWrapper&>(Builder); 266 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 267 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 268 } 269 270 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 271 legacy::PassManagerBase &PM) { 272 const PassManagerBuilderWrapper &BuilderWrapper = 273 static_cast<const PassManagerBuilderWrapper&>(Builder); 274 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 275 EfficiencySanitizerOptions Opts; 276 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 277 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 278 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 279 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 280 PM.add(createEfficiencySanitizerPass(Opts)); 281 } 282 283 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 284 const CodeGenOptions &CodeGenOpts) { 285 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 286 if (!CodeGenOpts.SimplifyLibCalls) 287 TLII->disableAllFunctions(); 288 else { 289 // Disable individual libc/libm calls in TargetLibraryInfo. 290 LibFunc F; 291 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 292 if (TLII->getLibFunc(FuncName, F)) 293 TLII->setUnavailable(F); 294 } 295 296 switch (CodeGenOpts.getVecLib()) { 297 case CodeGenOptions::Accelerate: 298 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 299 break; 300 case CodeGenOptions::SVML: 301 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 302 break; 303 default: 304 break; 305 } 306 return TLII; 307 } 308 309 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 310 legacy::PassManager *MPM) { 311 llvm::SymbolRewriter::RewriteDescriptorList DL; 312 313 llvm::SymbolRewriter::RewriteMapParser MapParser; 314 for (const auto &MapFile : Opts.RewriteMapFiles) 315 MapParser.parse(MapFile, &DL); 316 317 MPM->add(createRewriteSymbolsPass(DL)); 318 } 319 320 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 321 switch (CodeGenOpts.OptimizationLevel) { 322 default: 323 llvm_unreachable("Invalid optimization level!"); 324 case 0: 325 return CodeGenOpt::None; 326 case 1: 327 return CodeGenOpt::Less; 328 case 2: 329 return CodeGenOpt::Default; // O2/Os/Oz 330 case 3: 331 return CodeGenOpt::Aggressive; 332 } 333 } 334 335 static llvm::CodeModel::Model getCodeModel(const CodeGenOptions &CodeGenOpts) { 336 unsigned CodeModel = 337 llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 338 .Case("small", llvm::CodeModel::Small) 339 .Case("kernel", llvm::CodeModel::Kernel) 340 .Case("medium", llvm::CodeModel::Medium) 341 .Case("large", llvm::CodeModel::Large) 342 .Case("default", llvm::CodeModel::Default) 343 .Default(~0u); 344 assert(CodeModel != ~0u && "invalid code model!"); 345 return static_cast<llvm::CodeModel::Model>(CodeModel); 346 } 347 348 static llvm::Reloc::Model getRelocModel(const CodeGenOptions &CodeGenOpts) { 349 // Keep this synced with the equivalent code in 350 // lib/Frontend/CompilerInvocation.cpp 351 llvm::Optional<llvm::Reloc::Model> RM; 352 RM = llvm::StringSwitch<llvm::Reloc::Model>(CodeGenOpts.RelocationModel) 353 .Case("static", llvm::Reloc::Static) 354 .Case("pic", llvm::Reloc::PIC_) 355 .Case("ropi", llvm::Reloc::ROPI) 356 .Case("rwpi", llvm::Reloc::RWPI) 357 .Case("ropi-rwpi", llvm::Reloc::ROPI_RWPI) 358 .Case("dynamic-no-pic", llvm::Reloc::DynamicNoPIC); 359 assert(RM.hasValue() && "invalid PIC model!"); 360 return *RM; 361 } 362 363 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 364 if (Action == Backend_EmitObj) 365 return TargetMachine::CGFT_ObjectFile; 366 else if (Action == Backend_EmitMCNull) 367 return TargetMachine::CGFT_Null; 368 else { 369 assert(Action == Backend_EmitAssembly && "Invalid action!"); 370 return TargetMachine::CGFT_AssemblyFile; 371 } 372 } 373 374 static void initTargetOptions(llvm::TargetOptions &Options, 375 const CodeGenOptions &CodeGenOpts, 376 const clang::TargetOptions &TargetOpts, 377 const LangOptions &LangOpts, 378 const HeaderSearchOptions &HSOpts) { 379 Options.ThreadModel = 380 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 381 .Case("posix", llvm::ThreadModel::POSIX) 382 .Case("single", llvm::ThreadModel::Single); 383 384 // Set float ABI type. 385 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 386 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 387 "Invalid Floating Point ABI!"); 388 Options.FloatABIType = 389 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 390 .Case("soft", llvm::FloatABI::Soft) 391 .Case("softfp", llvm::FloatABI::Soft) 392 .Case("hard", llvm::FloatABI::Hard) 393 .Default(llvm::FloatABI::Default); 394 395 // Set FP fusion mode. 396 switch (LangOpts.getDefaultFPContractMode()) { 397 case LangOptions::FPC_Off: 398 // Preserve any contraction performed by the front-end. (Strict performs 399 // splitting of the muladd instrinsic in the backend.) 400 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 401 break; 402 case LangOptions::FPC_On: 403 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 404 break; 405 case LangOptions::FPC_Fast: 406 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 407 break; 408 } 409 410 Options.UseInitArray = CodeGenOpts.UseInitArray; 411 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 412 Options.CompressDebugSections = CodeGenOpts.CompressDebugSections; 413 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 414 415 // Set EABI version. 416 Options.EABIVersion = llvm::StringSwitch<llvm::EABI>(TargetOpts.EABIVersion) 417 .Case("4", llvm::EABI::EABI4) 418 .Case("5", llvm::EABI::EABI5) 419 .Case("gnu", llvm::EABI::GNU) 420 .Default(llvm::EABI::Default); 421 422 if (LangOpts.SjLjExceptions) 423 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 424 425 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 426 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 427 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 428 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 429 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 430 Options.FunctionSections = CodeGenOpts.FunctionSections; 431 Options.DataSections = CodeGenOpts.DataSections; 432 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 433 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 434 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 435 436 if (CodeGenOpts.EnableSplitDwarf) 437 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 438 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 439 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 440 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 441 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 442 Options.MCOptions.MCIncrementalLinkerCompatible = 443 CodeGenOpts.IncrementalLinkerCompatible; 444 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 445 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 446 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 447 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 448 Options.MCOptions.ABIName = TargetOpts.ABI; 449 for (const auto &Entry : HSOpts.UserEntries) 450 if (!Entry.IsFramework && 451 (Entry.Group == frontend::IncludeDirGroup::Quoted || 452 Entry.Group == frontend::IncludeDirGroup::Angled || 453 Entry.Group == frontend::IncludeDirGroup::System)) 454 Options.MCOptions.IASSearchPaths.push_back( 455 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 456 } 457 458 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 459 legacy::FunctionPassManager &FPM) { 460 // Handle disabling of all LLVM passes, where we want to preserve the 461 // internal module before any optimization. 462 if (CodeGenOpts.DisableLLVMPasses) 463 return; 464 465 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 466 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 467 // are inserted before PMBuilder ones - they'd get the default-constructed 468 // TLI with an unknown target otherwise. 469 Triple TargetTriple(TheModule->getTargetTriple()); 470 std::unique_ptr<TargetLibraryInfoImpl> TLII( 471 createTLII(TargetTriple, CodeGenOpts)); 472 473 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 474 475 // At O0 and O1 we only run the always inliner which is more efficient. At 476 // higher optimization levels we run the normal inliner. 477 if (CodeGenOpts.OptimizationLevel <= 1) { 478 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 479 !CodeGenOpts.DisableLifetimeMarkers); 480 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 481 } else { 482 // We do not want to inline hot callsites for SamplePGO module-summary build 483 // because profile annotation will happen again in ThinLTO backend, and we 484 // want the IR of the hot path to match the profile. 485 PMBuilder.Inliner = createFunctionInliningPass( 486 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 487 (!CodeGenOpts.SampleProfileFile.empty() && 488 CodeGenOpts.EmitSummaryIndex)); 489 } 490 491 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 492 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 493 PMBuilder.BBVectorize = CodeGenOpts.VectorizeBB; 494 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 495 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 496 497 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 498 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 499 PMBuilder.PrepareForThinLTO = CodeGenOpts.EmitSummaryIndex; 500 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 501 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 502 503 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 504 505 if (TM) 506 TM->adjustPassManager(PMBuilder); 507 508 if (CodeGenOpts.DebugInfoForProfiling || 509 !CodeGenOpts.SampleProfileFile.empty()) 510 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 511 addAddDiscriminatorsPass); 512 513 // In ObjC ARC mode, add the main ARC optimization passes. 514 if (LangOpts.ObjCAutoRefCount) { 515 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 516 addObjCARCExpandPass); 517 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 518 addObjCARCAPElimPass); 519 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 520 addObjCARCOptPass); 521 } 522 523 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 524 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 525 addBoundsCheckingPass); 526 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 527 addBoundsCheckingPass); 528 } 529 530 if (CodeGenOpts.SanitizeCoverageType || 531 CodeGenOpts.SanitizeCoverageIndirectCalls || 532 CodeGenOpts.SanitizeCoverageTraceCmp) { 533 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 534 addSanitizerCoveragePass); 535 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 536 addSanitizerCoveragePass); 537 } 538 539 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 540 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 541 addAddressSanitizerPasses); 542 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 543 addAddressSanitizerPasses); 544 } 545 546 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 547 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 548 addKernelAddressSanitizerPasses); 549 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 550 addKernelAddressSanitizerPasses); 551 } 552 553 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 554 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 555 addMemorySanitizerPass); 556 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 557 addMemorySanitizerPass); 558 } 559 560 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 561 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 562 addThreadSanitizerPass); 563 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 564 addThreadSanitizerPass); 565 } 566 567 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 568 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 569 addDataFlowSanitizerPass); 570 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 571 addDataFlowSanitizerPass); 572 } 573 574 if (LangOpts.CoroutinesTS) 575 addCoroutinePassesToExtensionPoints(PMBuilder); 576 577 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 578 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 579 addEfficiencySanitizerPass); 580 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 581 addEfficiencySanitizerPass); 582 } 583 584 // Set up the per-function pass manager. 585 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 586 if (CodeGenOpts.VerifyModule) 587 FPM.add(createVerifierPass()); 588 589 // Set up the per-module pass manager. 590 if (!CodeGenOpts.RewriteMapFiles.empty()) 591 addSymbolRewriterPass(CodeGenOpts, &MPM); 592 593 if (!CodeGenOpts.DisableGCov && 594 (CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)) { 595 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 596 // LLVM's -default-gcov-version flag is set to something invalid. 597 GCOVOptions Options; 598 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 599 Options.EmitData = CodeGenOpts.EmitGcovArcs; 600 memcpy(Options.Version, CodeGenOpts.CoverageVersion, 4); 601 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 602 Options.NoRedZone = CodeGenOpts.DisableRedZone; 603 Options.FunctionNamesInData = 604 !CodeGenOpts.CoverageNoFunctionNamesInData; 605 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 606 MPM.add(createGCOVProfilerPass(Options)); 607 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 608 MPM.add(createStripSymbolsPass(true)); 609 } 610 611 if (CodeGenOpts.hasProfileClangInstr()) { 612 InstrProfOptions Options; 613 Options.NoRedZone = CodeGenOpts.DisableRedZone; 614 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 615 MPM.add(createInstrProfilingLegacyPass(Options)); 616 } 617 if (CodeGenOpts.hasProfileIRInstr()) { 618 PMBuilder.EnablePGOInstrGen = true; 619 if (!CodeGenOpts.InstrProfileOutput.empty()) 620 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 621 else 622 PMBuilder.PGOInstrGen = DefaultProfileGenName; 623 } 624 if (CodeGenOpts.hasProfileIRUse()) 625 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 626 627 if (!CodeGenOpts.SampleProfileFile.empty()) 628 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 629 630 PMBuilder.populateFunctionPassManager(FPM); 631 PMBuilder.populateModulePassManager(MPM); 632 } 633 634 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 635 SmallVector<const char *, 16> BackendArgs; 636 BackendArgs.push_back("clang"); // Fake program name. 637 if (!CodeGenOpts.DebugPass.empty()) { 638 BackendArgs.push_back("-debug-pass"); 639 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 640 } 641 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 642 BackendArgs.push_back("-limit-float-precision"); 643 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 644 } 645 for (const std::string &BackendOption : CodeGenOpts.BackendOptions) 646 BackendArgs.push_back(BackendOption.c_str()); 647 BackendArgs.push_back(nullptr); 648 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 649 BackendArgs.data()); 650 } 651 652 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 653 // Create the TargetMachine for generating code. 654 std::string Error; 655 std::string Triple = TheModule->getTargetTriple(); 656 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 657 if (!TheTarget) { 658 if (MustCreateTM) 659 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 660 return; 661 } 662 663 llvm::CodeModel::Model CM = getCodeModel(CodeGenOpts); 664 std::string FeaturesStr = 665 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 666 llvm::Reloc::Model RM = getRelocModel(CodeGenOpts); 667 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 668 669 llvm::TargetOptions Options; 670 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 671 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 672 Options, RM, CM, OptLevel)); 673 } 674 675 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 676 BackendAction Action, 677 raw_pwrite_stream &OS) { 678 // Add LibraryInfo. 679 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 680 std::unique_ptr<TargetLibraryInfoImpl> TLII( 681 createTLII(TargetTriple, CodeGenOpts)); 682 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 683 684 // Normal mode, emit a .s or .o file by running the code generator. Note, 685 // this also adds codegenerator level optimization passes. 686 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 687 688 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 689 // "codegen" passes so that it isn't run multiple times when there is 690 // inlining happening. 691 if (CodeGenOpts.OptimizationLevel > 0) 692 CodeGenPasses.add(createObjCARCContractPass()); 693 694 if (TM->addPassesToEmitFile(CodeGenPasses, OS, CGFT, 695 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 696 Diags.Report(diag::err_fe_unable_to_interface_with_target); 697 return false; 698 } 699 700 return true; 701 } 702 703 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 704 std::unique_ptr<raw_pwrite_stream> OS) { 705 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 706 707 setCommandLineOpts(CodeGenOpts); 708 709 bool UsesCodeGen = (Action != Backend_EmitNothing && 710 Action != Backend_EmitBC && 711 Action != Backend_EmitLL); 712 CreateTargetMachine(UsesCodeGen); 713 714 if (UsesCodeGen && !TM) 715 return; 716 if (TM) 717 TheModule->setDataLayout(TM->createDataLayout()); 718 719 legacy::PassManager PerModulePasses; 720 PerModulePasses.add( 721 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 722 723 legacy::FunctionPassManager PerFunctionPasses(TheModule); 724 PerFunctionPasses.add( 725 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 726 727 CreatePasses(PerModulePasses, PerFunctionPasses); 728 729 legacy::PassManager CodeGenPasses; 730 CodeGenPasses.add( 731 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 732 733 std::unique_ptr<raw_fd_ostream> ThinLinkOS; 734 735 switch (Action) { 736 case Backend_EmitNothing: 737 break; 738 739 case Backend_EmitBC: 740 if (CodeGenOpts.EmitSummaryIndex) { 741 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 742 std::error_code EC; 743 ThinLinkOS.reset(new llvm::raw_fd_ostream( 744 CodeGenOpts.ThinLinkBitcodeFile, EC, 745 llvm::sys::fs::F_None)); 746 if (EC) { 747 Diags.Report(diag::err_fe_unable_to_open_output) << CodeGenOpts.ThinLinkBitcodeFile 748 << EC.message(); 749 return; 750 } 751 } 752 PerModulePasses.add( 753 createWriteThinLTOBitcodePass(*OS, ThinLinkOS.get())); 754 } 755 else 756 PerModulePasses.add( 757 createBitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists)); 758 break; 759 760 case Backend_EmitLL: 761 PerModulePasses.add( 762 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 763 break; 764 765 default: 766 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 767 return; 768 } 769 770 // Before executing passes, print the final values of the LLVM options. 771 cl::PrintOptionValues(); 772 773 // Run passes. For now we do all passes at once, but eventually we 774 // would like to have the option of streaming code generation. 775 776 { 777 PrettyStackTraceString CrashInfo("Per-function optimization"); 778 779 PerFunctionPasses.doInitialization(); 780 for (Function &F : *TheModule) 781 if (!F.isDeclaration()) 782 PerFunctionPasses.run(F); 783 PerFunctionPasses.doFinalization(); 784 } 785 786 { 787 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 788 PerModulePasses.run(*TheModule); 789 } 790 791 { 792 PrettyStackTraceString CrashInfo("Code generation"); 793 CodeGenPasses.run(*TheModule); 794 } 795 } 796 797 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 798 switch (Opts.OptimizationLevel) { 799 default: 800 llvm_unreachable("Invalid optimization level!"); 801 802 case 1: 803 return PassBuilder::O1; 804 805 case 2: 806 switch (Opts.OptimizeSize) { 807 default: 808 llvm_unreachable("Invalide optimization level for size!"); 809 810 case 0: 811 return PassBuilder::O2; 812 813 case 1: 814 return PassBuilder::Os; 815 816 case 2: 817 return PassBuilder::Oz; 818 } 819 820 case 3: 821 return PassBuilder::O3; 822 } 823 } 824 825 /// A clean version of `EmitAssembly` that uses the new pass manager. 826 /// 827 /// Not all features are currently supported in this system, but where 828 /// necessary it falls back to the legacy pass manager to at least provide 829 /// basic functionality. 830 /// 831 /// This API is planned to have its functionality finished and then to replace 832 /// `EmitAssembly` at some point in the future when the default switches. 833 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 834 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 835 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 836 setCommandLineOpts(CodeGenOpts); 837 838 // The new pass manager always makes a target machine available to passes 839 // during construction. 840 CreateTargetMachine(/*MustCreateTM*/ true); 841 if (!TM) 842 // This will already be diagnosed, just bail. 843 return; 844 TheModule->setDataLayout(TM->createDataLayout()); 845 846 PGOOptions PGOOpt; 847 848 // -fprofile-generate. 849 PGOOpt.RunProfileGen = CodeGenOpts.hasProfileIRInstr(); 850 if (PGOOpt.RunProfileGen) 851 PGOOpt.ProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() ? 852 DefaultProfileGenName : CodeGenOpts.InstrProfileOutput; 853 854 // -fprofile-use. 855 if (CodeGenOpts.hasProfileIRUse()) 856 PGOOpt.ProfileUseFile = CodeGenOpts.ProfileInstrumentUsePath; 857 858 // Only pass a PGO options struct if -fprofile-generate or 859 // -fprofile-use were passed on the cmdline. 860 PassBuilder PB(TM.get(), 861 (PGOOpt.RunProfileGen || 862 !PGOOpt.ProfileUseFile.empty()) ? 863 Optional<PGOOptions>(PGOOpt) : None); 864 865 LoopAnalysisManager LAM; 866 FunctionAnalysisManager FAM; 867 CGSCCAnalysisManager CGAM; 868 ModuleAnalysisManager MAM; 869 870 // Register the AA manager first so that our version is the one used. 871 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 872 873 // Register all the basic analyses with the managers. 874 PB.registerModuleAnalyses(MAM); 875 PB.registerCGSCCAnalyses(CGAM); 876 PB.registerFunctionAnalyses(FAM); 877 PB.registerLoopAnalyses(LAM); 878 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 879 880 ModulePassManager MPM; 881 882 if (!CodeGenOpts.DisableLLVMPasses) { 883 if (CodeGenOpts.OptimizationLevel == 0) { 884 // Build a minimal pipeline based on the semantics required by Clang, 885 // which is just that always inlining occurs. 886 MPM.addPass(AlwaysInlinerPass()); 887 } else { 888 // Otherwise, use the default pass pipeline. We also have to map our 889 // optimization levels into one of the distinct levels used to configure 890 // the pipeline. 891 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 892 893 MPM = PB.buildPerModuleDefaultPipeline(Level); 894 } 895 } 896 897 // FIXME: We still use the legacy pass manager to do code generation. We 898 // create that pass manager here and use it as needed below. 899 legacy::PassManager CodeGenPasses; 900 bool NeedCodeGen = false; 901 Optional<raw_fd_ostream> ThinLinkOS; 902 903 // Append any output we need to the pass manager. 904 switch (Action) { 905 case Backend_EmitNothing: 906 break; 907 908 case Backend_EmitBC: 909 if (CodeGenOpts.EmitSummaryIndex) { 910 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 911 std::error_code EC; 912 ThinLinkOS.emplace(CodeGenOpts.ThinLinkBitcodeFile, EC, 913 llvm::sys::fs::F_None); 914 if (EC) { 915 Diags.Report(diag::err_fe_unable_to_open_output) 916 << CodeGenOpts.ThinLinkBitcodeFile << EC.message(); 917 return; 918 } 919 } 920 MPM.addPass( 921 ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &*ThinLinkOS : nullptr)); 922 } else { 923 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 924 CodeGenOpts.EmitSummaryIndex, 925 CodeGenOpts.EmitSummaryIndex)); 926 } 927 break; 928 929 case Backend_EmitLL: 930 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 931 break; 932 933 case Backend_EmitAssembly: 934 case Backend_EmitMCNull: 935 case Backend_EmitObj: 936 NeedCodeGen = true; 937 CodeGenPasses.add( 938 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 939 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 940 // FIXME: Should we handle this error differently? 941 return; 942 break; 943 } 944 945 // Before executing passes, print the final values of the LLVM options. 946 cl::PrintOptionValues(); 947 948 // Now that we have all of the passes ready, run them. 949 { 950 PrettyStackTraceString CrashInfo("Optimizer"); 951 MPM.run(*TheModule, MAM); 952 } 953 954 // Now if needed, run the legacy PM for codegen. 955 if (NeedCodeGen) { 956 PrettyStackTraceString CrashInfo("Code generation"); 957 CodeGenPasses.run(*TheModule); 958 } 959 } 960 961 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 962 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 963 if (!BMsOrErr) 964 return BMsOrErr.takeError(); 965 966 // The bitcode file may contain multiple modules, we want the one with a 967 // summary. 968 for (BitcodeModule &BM : *BMsOrErr) { 969 Expected<bool> HasSummary = BM.hasSummary(); 970 if (HasSummary && *HasSummary) 971 return BM; 972 } 973 974 return make_error<StringError>("Could not find module summary", 975 inconvertibleErrorCode()); 976 } 977 978 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 979 const HeaderSearchOptions &HeaderOpts, 980 const CodeGenOptions &CGOpts, 981 const clang::TargetOptions &TOpts, 982 const LangOptions &LOpts, 983 std::unique_ptr<raw_pwrite_stream> OS, 984 std::string SampleProfile, 985 BackendAction Action) { 986 StringMap<std::map<GlobalValue::GUID, GlobalValueSummary *>> 987 ModuleToDefinedGVSummaries; 988 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 989 990 setCommandLineOpts(CGOpts); 991 992 // We can simply import the values mentioned in the combined index, since 993 // we should only invoke this using the individual indexes written out 994 // via a WriteIndexesThinBackend. 995 FunctionImporter::ImportMapTy ImportList; 996 for (auto &GlobalList : *CombinedIndex) { 997 // Ignore entries for undefined references. 998 if (GlobalList.second.SummaryList.empty()) 999 continue; 1000 1001 auto GUID = GlobalList.first; 1002 assert(GlobalList.second.SummaryList.size() == 1 && 1003 "Expected individual combined index to have one summary per GUID"); 1004 auto &Summary = GlobalList.second.SummaryList[0]; 1005 // Skip the summaries for the importing module. These are included to 1006 // e.g. record required linkage changes. 1007 if (Summary->modulePath() == M->getModuleIdentifier()) 1008 continue; 1009 // Doesn't matter what value we plug in to the map, just needs an entry 1010 // to provoke importing by thinBackend. 1011 ImportList[Summary->modulePath()][GUID] = 1; 1012 } 1013 1014 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1015 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1016 1017 for (auto &I : ImportList) { 1018 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1019 llvm::MemoryBuffer::getFile(I.first()); 1020 if (!MBOrErr) { 1021 errs() << "Error loading imported file '" << I.first() 1022 << "': " << MBOrErr.getError().message() << "\n"; 1023 return; 1024 } 1025 1026 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1027 if (!BMOrErr) { 1028 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1029 errs() << "Error loading imported file '" << I.first() 1030 << "': " << EIB.message() << '\n'; 1031 }); 1032 return; 1033 } 1034 ModuleMap.insert({I.first(), *BMOrErr}); 1035 1036 OwnedImports.push_back(std::move(*MBOrErr)); 1037 } 1038 auto AddStream = [&](size_t Task) { 1039 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 1040 }; 1041 lto::Config Conf; 1042 Conf.CPU = TOpts.CPU; 1043 Conf.CodeModel = getCodeModel(CGOpts); 1044 Conf.MAttrs = TOpts.Features; 1045 Conf.RelocModel = getRelocModel(CGOpts); 1046 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1047 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1048 Conf.SampleProfile = std::move(SampleProfile); 1049 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1050 switch (Action) { 1051 case Backend_EmitNothing: 1052 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1053 return false; 1054 }; 1055 break; 1056 case Backend_EmitLL: 1057 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1058 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1059 return false; 1060 }; 1061 break; 1062 case Backend_EmitBC: 1063 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1064 WriteBitcodeToFile(M, *OS, CGOpts.EmitLLVMUseLists); 1065 return false; 1066 }; 1067 break; 1068 default: 1069 Conf.CGFileType = getCodeGenFileType(Action); 1070 break; 1071 } 1072 if (Error E = thinBackend( 1073 Conf, 0, AddStream, *M, *CombinedIndex, ImportList, 1074 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1075 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1076 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1077 }); 1078 } 1079 } 1080 1081 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1082 const HeaderSearchOptions &HeaderOpts, 1083 const CodeGenOptions &CGOpts, 1084 const clang::TargetOptions &TOpts, 1085 const LangOptions &LOpts, 1086 const llvm::DataLayout &TDesc, Module *M, 1087 BackendAction Action, 1088 std::unique_ptr<raw_pwrite_stream> OS) { 1089 if (!CGOpts.ThinLTOIndexFile.empty()) { 1090 // If we are performing a ThinLTO importing compile, load the function index 1091 // into memory and pass it into runThinLTOBackend, which will run the 1092 // function importer and invoke LTO passes. 1093 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1094 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1095 /*IgnoreEmptyThinLTOIndexFile*/true); 1096 if (!IndexOrErr) { 1097 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1098 "Error loading index file '" + 1099 CGOpts.ThinLTOIndexFile + "': "); 1100 return; 1101 } 1102 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1103 // A null CombinedIndex means we should skip ThinLTO compilation 1104 // (LLVM will optionally ignore empty index files, returning null instead 1105 // of an error). 1106 bool DoThinLTOBackend = CombinedIndex != nullptr; 1107 if (DoThinLTOBackend) { 1108 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1109 LOpts, std::move(OS), CGOpts.SampleProfileFile, Action); 1110 return; 1111 } 1112 } 1113 1114 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1115 1116 if (CGOpts.ExperimentalNewPassManager) 1117 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1118 else 1119 AsmHelper.EmitAssembly(Action, std::move(OS)); 1120 1121 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1122 // DataLayout. 1123 if (AsmHelper.TM) { 1124 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1125 if (DLDesc != TDesc.getStringRepresentation()) { 1126 unsigned DiagID = Diags.getCustomDiagID( 1127 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1128 "expected target description '%1'"); 1129 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1130 } 1131 } 1132 } 1133 1134 static const char* getSectionNameForBitcode(const Triple &T) { 1135 switch (T.getObjectFormat()) { 1136 case Triple::MachO: 1137 return "__LLVM,__bitcode"; 1138 case Triple::COFF: 1139 case Triple::ELF: 1140 case Triple::Wasm: 1141 case Triple::UnknownObjectFormat: 1142 return ".llvmbc"; 1143 } 1144 llvm_unreachable("Unimplemented ObjectFormatType"); 1145 } 1146 1147 static const char* getSectionNameForCommandline(const Triple &T) { 1148 switch (T.getObjectFormat()) { 1149 case Triple::MachO: 1150 return "__LLVM,__cmdline"; 1151 case Triple::COFF: 1152 case Triple::ELF: 1153 case Triple::Wasm: 1154 case Triple::UnknownObjectFormat: 1155 return ".llvmcmd"; 1156 } 1157 llvm_unreachable("Unimplemented ObjectFormatType"); 1158 } 1159 1160 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1161 // __LLVM,__bitcode section. 1162 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1163 llvm::MemoryBufferRef Buf) { 1164 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1165 return; 1166 1167 // Save llvm.compiler.used and remote it. 1168 SmallVector<Constant*, 2> UsedArray; 1169 SmallSet<GlobalValue*, 4> UsedGlobals; 1170 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1171 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1172 for (auto *GV : UsedGlobals) { 1173 if (GV->getName() != "llvm.embedded.module" && 1174 GV->getName() != "llvm.cmdline") 1175 UsedArray.push_back( 1176 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1177 } 1178 if (Used) 1179 Used->eraseFromParent(); 1180 1181 // Embed the bitcode for the llvm module. 1182 std::string Data; 1183 ArrayRef<uint8_t> ModuleData; 1184 Triple T(M->getTargetTriple()); 1185 // Create a constant that contains the bitcode. 1186 // In case of embedding a marker, ignore the input Buf and use the empty 1187 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1188 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1189 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1190 (const unsigned char *)Buf.getBufferEnd())) { 1191 // If the input is LLVM Assembly, bitcode is produced by serializing 1192 // the module. Use-lists order need to be perserved in this case. 1193 llvm::raw_string_ostream OS(Data); 1194 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 1195 ModuleData = 1196 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1197 } else 1198 // If the input is LLVM bitcode, write the input byte stream directly. 1199 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1200 Buf.getBufferSize()); 1201 } 1202 llvm::Constant *ModuleConstant = 1203 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1204 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1205 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1206 ModuleConstant); 1207 GV->setSection(getSectionNameForBitcode(T)); 1208 UsedArray.push_back( 1209 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1210 if (llvm::GlobalVariable *Old = 1211 M->getGlobalVariable("llvm.embedded.module", true)) { 1212 assert(Old->hasOneUse() && 1213 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1214 GV->takeName(Old); 1215 Old->eraseFromParent(); 1216 } else { 1217 GV->setName("llvm.embedded.module"); 1218 } 1219 1220 // Skip if only bitcode needs to be embedded. 1221 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1222 // Embed command-line options. 1223 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1224 CGOpts.CmdArgs.size()); 1225 llvm::Constant *CmdConstant = 1226 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1227 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1228 llvm::GlobalValue::PrivateLinkage, 1229 CmdConstant); 1230 GV->setSection(getSectionNameForCommandline(T)); 1231 UsedArray.push_back( 1232 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1233 if (llvm::GlobalVariable *Old = 1234 M->getGlobalVariable("llvm.cmdline", true)) { 1235 assert(Old->hasOneUse() && 1236 "llvm.cmdline can only be used once in llvm.compiler.used"); 1237 GV->takeName(Old); 1238 Old->eraseFromParent(); 1239 } else { 1240 GV->setName("llvm.cmdline"); 1241 } 1242 } 1243 1244 if (UsedArray.empty()) 1245 return; 1246 1247 // Recreate llvm.compiler.used. 1248 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1249 auto *NewUsed = new GlobalVariable( 1250 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1251 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1252 NewUsed->setSection("llvm.metadata"); 1253 } 1254