1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Bitcode/BitcodeReader.h" 24 #include "llvm/Bitcode/BitcodeWriter.h" 25 #include "llvm/Bitcode/BitcodeWriterPass.h" 26 #include "llvm/CodeGen/RegAllocRegistry.h" 27 #include "llvm/CodeGen/SchedulerRegistry.h" 28 #include "llvm/CodeGen/TargetSubtargetInfo.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/IRPrintingPasses.h" 31 #include "llvm/IR/LegacyPassManager.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSummaryIndex.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/LTO/LTOBackend.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/SubtargetFeature.h" 38 #include "llvm/Passes/PassBuilder.h" 39 #include "llvm/Support/BuryPointer.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/MemoryBuffer.h" 42 #include "llvm/Support/PrettyStackTrace.h" 43 #include "llvm/Support/TargetRegistry.h" 44 #include "llvm/Support/Timer.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include "llvm/Transforms/Coroutines.h" 49 #include "llvm/Transforms/IPO.h" 50 #include "llvm/Transforms/IPO/AlwaysInliner.h" 51 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 52 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 53 #include "llvm/Transforms/InstCombine/InstCombine.h" 54 #include "llvm/Transforms/Instrumentation.h" 55 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 56 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 57 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 58 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 59 #include "llvm/Transforms/ObjCARC.h" 60 #include "llvm/Transforms/Scalar.h" 61 #include "llvm/Transforms/Scalar/GVN.h" 62 #include "llvm/Transforms/Utils.h" 63 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 64 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 65 #include "llvm/Transforms/Utils/SymbolRewriter.h" 66 #include <memory> 67 using namespace clang; 68 using namespace llvm; 69 70 namespace { 71 72 // Default filename used for profile generation. 73 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 74 75 class EmitAssemblyHelper { 76 DiagnosticsEngine &Diags; 77 const HeaderSearchOptions &HSOpts; 78 const CodeGenOptions &CodeGenOpts; 79 const clang::TargetOptions &TargetOpts; 80 const LangOptions &LangOpts; 81 Module *TheModule; 82 83 Timer CodeGenerationTime; 84 85 std::unique_ptr<raw_pwrite_stream> OS; 86 87 TargetIRAnalysis getTargetIRAnalysis() const { 88 if (TM) 89 return TM->getTargetIRAnalysis(); 90 91 return TargetIRAnalysis(); 92 } 93 94 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 95 96 /// Generates the TargetMachine. 97 /// Leaves TM unchanged if it is unable to create the target machine. 98 /// Some of our clang tests specify triples which are not built 99 /// into clang. This is okay because these tests check the generated 100 /// IR, and they require DataLayout which depends on the triple. 101 /// In this case, we allow this method to fail and not report an error. 102 /// When MustCreateTM is used, we print an error if we are unable to load 103 /// the requested target. 104 void CreateTargetMachine(bool MustCreateTM); 105 106 /// Add passes necessary to emit assembly or LLVM IR. 107 /// 108 /// \return True on success. 109 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 110 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 111 112 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 113 std::error_code EC; 114 auto F = llvm::make_unique<llvm::ToolOutputFile>(Path, EC, 115 llvm::sys::fs::F_None); 116 if (EC) { 117 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 118 F.reset(); 119 } 120 return F; 121 } 122 123 public: 124 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 125 const HeaderSearchOptions &HeaderSearchOpts, 126 const CodeGenOptions &CGOpts, 127 const clang::TargetOptions &TOpts, 128 const LangOptions &LOpts, Module *M) 129 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 130 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 131 CodeGenerationTime("codegen", "Code Generation Time") {} 132 133 ~EmitAssemblyHelper() { 134 if (CodeGenOpts.DisableFree) 135 BuryPointer(std::move(TM)); 136 } 137 138 std::unique_ptr<TargetMachine> TM; 139 140 void EmitAssembly(BackendAction Action, 141 std::unique_ptr<raw_pwrite_stream> OS); 142 143 void EmitAssemblyWithNewPassManager(BackendAction Action, 144 std::unique_ptr<raw_pwrite_stream> OS); 145 }; 146 147 // We need this wrapper to access LangOpts and CGOpts from extension functions 148 // that we add to the PassManagerBuilder. 149 class PassManagerBuilderWrapper : public PassManagerBuilder { 150 public: 151 PassManagerBuilderWrapper(const Triple &TargetTriple, 152 const CodeGenOptions &CGOpts, 153 const LangOptions &LangOpts) 154 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 155 LangOpts(LangOpts) {} 156 const Triple &getTargetTriple() const { return TargetTriple; } 157 const CodeGenOptions &getCGOpts() const { return CGOpts; } 158 const LangOptions &getLangOpts() const { return LangOpts; } 159 160 private: 161 const Triple &TargetTriple; 162 const CodeGenOptions &CGOpts; 163 const LangOptions &LangOpts; 164 }; 165 } 166 167 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 168 if (Builder.OptLevel > 0) 169 PM.add(createObjCARCAPElimPass()); 170 } 171 172 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 173 if (Builder.OptLevel > 0) 174 PM.add(createObjCARCExpandPass()); 175 } 176 177 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 178 if (Builder.OptLevel > 0) 179 PM.add(createObjCARCOptPass()); 180 } 181 182 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 183 legacy::PassManagerBase &PM) { 184 PM.add(createAddDiscriminatorsPass()); 185 } 186 187 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 188 legacy::PassManagerBase &PM) { 189 PM.add(createBoundsCheckingLegacyPass()); 190 } 191 192 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 193 legacy::PassManagerBase &PM) { 194 const PassManagerBuilderWrapper &BuilderWrapper = 195 static_cast<const PassManagerBuilderWrapper&>(Builder); 196 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 197 SanitizerCoverageOptions Opts; 198 Opts.CoverageType = 199 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 200 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 201 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 202 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 203 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 204 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 205 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 206 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 207 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 208 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 209 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 210 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 211 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 212 PM.add(createSanitizerCoverageModulePass(Opts)); 213 } 214 215 // Check if ASan should use GC-friendly instrumentation for globals. 216 // First of all, there is no point if -fdata-sections is off (expect for MachO, 217 // where this is not a factor). Also, on ELF this feature requires an assembler 218 // extension that only works with -integrated-as at the moment. 219 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 220 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 221 return false; 222 switch (T.getObjectFormat()) { 223 case Triple::MachO: 224 case Triple::COFF: 225 return true; 226 case Triple::ELF: 227 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 228 default: 229 return false; 230 } 231 } 232 233 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 234 legacy::PassManagerBase &PM) { 235 const PassManagerBuilderWrapper &BuilderWrapper = 236 static_cast<const PassManagerBuilderWrapper&>(Builder); 237 const Triple &T = BuilderWrapper.getTargetTriple(); 238 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 239 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 240 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 241 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 242 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 243 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 244 UseAfterScope)); 245 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/ false, Recover, 246 UseGlobalsGC, UseOdrIndicator)); 247 } 248 249 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 250 legacy::PassManagerBase &PM) { 251 PM.add(createAddressSanitizerFunctionPass( 252 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 253 PM.add(createAddressSanitizerModulePass( 254 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 255 /*UseOdrIndicator*/ false)); 256 } 257 258 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 259 legacy::PassManagerBase &PM) { 260 const PassManagerBuilderWrapper &BuilderWrapper = 261 static_cast<const PassManagerBuilderWrapper &>(Builder); 262 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 263 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 264 PM.add(createHWAddressSanitizerPass(/*CompileKernel*/ false, Recover)); 265 } 266 267 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 268 legacy::PassManagerBase &PM) { 269 PM.add(createHWAddressSanitizerPass( 270 /*CompileKernel*/ true, /*Recover*/ true)); 271 } 272 273 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 274 legacy::PassManagerBase &PM, 275 bool CompileKernel) { 276 const PassManagerBuilderWrapper &BuilderWrapper = 277 static_cast<const PassManagerBuilderWrapper&>(Builder); 278 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 279 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 280 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 281 PM.add(createMemorySanitizerLegacyPassPass(TrackOrigins, Recover, CompileKernel)); 282 283 // MemorySanitizer inserts complex instrumentation that mostly follows 284 // the logic of the original code, but operates on "shadow" values. 285 // It can benefit from re-running some general purpose optimization passes. 286 if (Builder.OptLevel > 0) { 287 PM.add(createEarlyCSEPass()); 288 PM.add(createReassociatePass()); 289 PM.add(createLICMPass()); 290 PM.add(createGVNPass()); 291 PM.add(createInstructionCombiningPass()); 292 PM.add(createDeadStoreEliminationPass()); 293 } 294 } 295 296 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 297 legacy::PassManagerBase &PM) { 298 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 299 } 300 301 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 302 legacy::PassManagerBase &PM) { 303 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 304 } 305 306 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 307 legacy::PassManagerBase &PM) { 308 PM.add(createThreadSanitizerLegacyPassPass()); 309 } 310 311 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 312 legacy::PassManagerBase &PM) { 313 const PassManagerBuilderWrapper &BuilderWrapper = 314 static_cast<const PassManagerBuilderWrapper&>(Builder); 315 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 316 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 317 } 318 319 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 320 legacy::PassManagerBase &PM) { 321 const PassManagerBuilderWrapper &BuilderWrapper = 322 static_cast<const PassManagerBuilderWrapper&>(Builder); 323 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 324 EfficiencySanitizerOptions Opts; 325 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 326 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 327 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 328 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 329 PM.add(createEfficiencySanitizerPass(Opts)); 330 } 331 332 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 333 const CodeGenOptions &CodeGenOpts) { 334 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 335 if (!CodeGenOpts.SimplifyLibCalls) 336 TLII->disableAllFunctions(); 337 else { 338 // Disable individual libc/libm calls in TargetLibraryInfo. 339 LibFunc F; 340 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 341 if (TLII->getLibFunc(FuncName, F)) 342 TLII->setUnavailable(F); 343 } 344 345 switch (CodeGenOpts.getVecLib()) { 346 case CodeGenOptions::Accelerate: 347 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 348 break; 349 case CodeGenOptions::SVML: 350 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 351 break; 352 default: 353 break; 354 } 355 return TLII; 356 } 357 358 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 359 legacy::PassManager *MPM) { 360 llvm::SymbolRewriter::RewriteDescriptorList DL; 361 362 llvm::SymbolRewriter::RewriteMapParser MapParser; 363 for (const auto &MapFile : Opts.RewriteMapFiles) 364 MapParser.parse(MapFile, &DL); 365 366 MPM->add(createRewriteSymbolsPass(DL)); 367 } 368 369 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 370 switch (CodeGenOpts.OptimizationLevel) { 371 default: 372 llvm_unreachable("Invalid optimization level!"); 373 case 0: 374 return CodeGenOpt::None; 375 case 1: 376 return CodeGenOpt::Less; 377 case 2: 378 return CodeGenOpt::Default; // O2/Os/Oz 379 case 3: 380 return CodeGenOpt::Aggressive; 381 } 382 } 383 384 static Optional<llvm::CodeModel::Model> 385 getCodeModel(const CodeGenOptions &CodeGenOpts) { 386 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 387 .Case("tiny", llvm::CodeModel::Tiny) 388 .Case("small", llvm::CodeModel::Small) 389 .Case("kernel", llvm::CodeModel::Kernel) 390 .Case("medium", llvm::CodeModel::Medium) 391 .Case("large", llvm::CodeModel::Large) 392 .Case("default", ~1u) 393 .Default(~0u); 394 assert(CodeModel != ~0u && "invalid code model!"); 395 if (CodeModel == ~1u) 396 return None; 397 return static_cast<llvm::CodeModel::Model>(CodeModel); 398 } 399 400 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 401 if (Action == Backend_EmitObj) 402 return TargetMachine::CGFT_ObjectFile; 403 else if (Action == Backend_EmitMCNull) 404 return TargetMachine::CGFT_Null; 405 else { 406 assert(Action == Backend_EmitAssembly && "Invalid action!"); 407 return TargetMachine::CGFT_AssemblyFile; 408 } 409 } 410 411 static void initTargetOptions(llvm::TargetOptions &Options, 412 const CodeGenOptions &CodeGenOpts, 413 const clang::TargetOptions &TargetOpts, 414 const LangOptions &LangOpts, 415 const HeaderSearchOptions &HSOpts) { 416 Options.ThreadModel = 417 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 418 .Case("posix", llvm::ThreadModel::POSIX) 419 .Case("single", llvm::ThreadModel::Single); 420 421 // Set float ABI type. 422 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 423 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 424 "Invalid Floating Point ABI!"); 425 Options.FloatABIType = 426 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 427 .Case("soft", llvm::FloatABI::Soft) 428 .Case("softfp", llvm::FloatABI::Soft) 429 .Case("hard", llvm::FloatABI::Hard) 430 .Default(llvm::FloatABI::Default); 431 432 // Set FP fusion mode. 433 switch (LangOpts.getDefaultFPContractMode()) { 434 case LangOptions::FPC_Off: 435 // Preserve any contraction performed by the front-end. (Strict performs 436 // splitting of the muladd intrinsic in the backend.) 437 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 438 break; 439 case LangOptions::FPC_On: 440 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 441 break; 442 case LangOptions::FPC_Fast: 443 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 444 break; 445 } 446 447 Options.UseInitArray = CodeGenOpts.UseInitArray; 448 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 449 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 450 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 451 452 // Set EABI version. 453 Options.EABIVersion = TargetOpts.EABIVersion; 454 455 if (LangOpts.SjLjExceptions) 456 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 457 if (LangOpts.SEHExceptions) 458 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 459 if (LangOpts.DWARFExceptions) 460 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 461 462 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 463 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 464 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 465 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 466 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 467 Options.FunctionSections = CodeGenOpts.FunctionSections; 468 Options.DataSections = CodeGenOpts.DataSections; 469 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 470 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 471 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 472 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 473 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 474 Options.EmitAddrsig = CodeGenOpts.Addrsig; 475 476 if (CodeGenOpts.getSplitDwarfMode() != CodeGenOptions::NoFission) 477 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 478 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 479 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 480 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 481 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 482 Options.MCOptions.MCIncrementalLinkerCompatible = 483 CodeGenOpts.IncrementalLinkerCompatible; 484 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 485 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 486 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 487 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 488 Options.MCOptions.ABIName = TargetOpts.ABI; 489 for (const auto &Entry : HSOpts.UserEntries) 490 if (!Entry.IsFramework && 491 (Entry.Group == frontend::IncludeDirGroup::Quoted || 492 Entry.Group == frontend::IncludeDirGroup::Angled || 493 Entry.Group == frontend::IncludeDirGroup::System)) 494 Options.MCOptions.IASSearchPaths.push_back( 495 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 496 } 497 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 498 if (CodeGenOpts.DisableGCov) 499 return None; 500 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 501 return None; 502 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 503 // LLVM's -default-gcov-version flag is set to something invalid. 504 GCOVOptions Options; 505 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 506 Options.EmitData = CodeGenOpts.EmitGcovArcs; 507 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 508 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 509 Options.NoRedZone = CodeGenOpts.DisableRedZone; 510 Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData; 511 Options.Filter = CodeGenOpts.ProfileFilterFiles; 512 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 513 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 514 return Options; 515 } 516 517 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 518 legacy::FunctionPassManager &FPM) { 519 // Handle disabling of all LLVM passes, where we want to preserve the 520 // internal module before any optimization. 521 if (CodeGenOpts.DisableLLVMPasses) 522 return; 523 524 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 525 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 526 // are inserted before PMBuilder ones - they'd get the default-constructed 527 // TLI with an unknown target otherwise. 528 Triple TargetTriple(TheModule->getTargetTriple()); 529 std::unique_ptr<TargetLibraryInfoImpl> TLII( 530 createTLII(TargetTriple, CodeGenOpts)); 531 532 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 533 534 // At O0 and O1 we only run the always inliner which is more efficient. At 535 // higher optimization levels we run the normal inliner. 536 if (CodeGenOpts.OptimizationLevel <= 1) { 537 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 538 !CodeGenOpts.DisableLifetimeMarkers); 539 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 540 } else { 541 // We do not want to inline hot callsites for SamplePGO module-summary build 542 // because profile annotation will happen again in ThinLTO backend, and we 543 // want the IR of the hot path to match the profile. 544 PMBuilder.Inliner = createFunctionInliningPass( 545 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 546 (!CodeGenOpts.SampleProfileFile.empty() && 547 CodeGenOpts.PrepareForThinLTO)); 548 } 549 550 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 551 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 552 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 553 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 554 555 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 556 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 557 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 558 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 559 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 560 561 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 562 563 if (TM) 564 TM->adjustPassManager(PMBuilder); 565 566 if (CodeGenOpts.DebugInfoForProfiling || 567 !CodeGenOpts.SampleProfileFile.empty()) 568 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 569 addAddDiscriminatorsPass); 570 571 // In ObjC ARC mode, add the main ARC optimization passes. 572 if (LangOpts.ObjCAutoRefCount) { 573 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 574 addObjCARCExpandPass); 575 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 576 addObjCARCAPElimPass); 577 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 578 addObjCARCOptPass); 579 } 580 581 if (LangOpts.CoroutinesTS) 582 addCoroutinePassesToExtensionPoints(PMBuilder); 583 584 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 585 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 586 addBoundsCheckingPass); 587 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 588 addBoundsCheckingPass); 589 } 590 591 if (CodeGenOpts.SanitizeCoverageType || 592 CodeGenOpts.SanitizeCoverageIndirectCalls || 593 CodeGenOpts.SanitizeCoverageTraceCmp) { 594 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 595 addSanitizerCoveragePass); 596 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 597 addSanitizerCoveragePass); 598 } 599 600 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 601 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 602 addAddressSanitizerPasses); 603 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 604 addAddressSanitizerPasses); 605 } 606 607 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 608 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 609 addKernelAddressSanitizerPasses); 610 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 611 addKernelAddressSanitizerPasses); 612 } 613 614 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 615 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 616 addHWAddressSanitizerPasses); 617 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 618 addHWAddressSanitizerPasses); 619 } 620 621 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 622 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 623 addKernelHWAddressSanitizerPasses); 624 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 625 addKernelHWAddressSanitizerPasses); 626 } 627 628 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 629 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 630 addMemorySanitizerPass); 631 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 632 addMemorySanitizerPass); 633 } 634 635 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 636 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 637 addKernelMemorySanitizerPass); 638 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 639 addKernelMemorySanitizerPass); 640 } 641 642 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 643 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 644 addThreadSanitizerPass); 645 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 646 addThreadSanitizerPass); 647 } 648 649 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 650 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 651 addDataFlowSanitizerPass); 652 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 653 addDataFlowSanitizerPass); 654 } 655 656 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 657 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 658 addEfficiencySanitizerPass); 659 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 660 addEfficiencySanitizerPass); 661 } 662 663 // Set up the per-function pass manager. 664 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 665 if (CodeGenOpts.VerifyModule) 666 FPM.add(createVerifierPass()); 667 668 // Set up the per-module pass manager. 669 if (!CodeGenOpts.RewriteMapFiles.empty()) 670 addSymbolRewriterPass(CodeGenOpts, &MPM); 671 672 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 673 MPM.add(createGCOVProfilerPass(*Options)); 674 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 675 MPM.add(createStripSymbolsPass(true)); 676 } 677 678 if (CodeGenOpts.hasProfileClangInstr()) { 679 InstrProfOptions Options; 680 Options.NoRedZone = CodeGenOpts.DisableRedZone; 681 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 682 683 // TODO: Surface the option to emit atomic profile counter increments at 684 // the driver level. 685 Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread); 686 687 MPM.add(createInstrProfilingLegacyPass(Options)); 688 } 689 if (CodeGenOpts.hasProfileIRInstr()) { 690 PMBuilder.EnablePGOInstrGen = true; 691 if (!CodeGenOpts.InstrProfileOutput.empty()) 692 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 693 else 694 PMBuilder.PGOInstrGen = DefaultProfileGenName; 695 } 696 if (CodeGenOpts.hasProfileIRUse()) 697 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 698 699 if (!CodeGenOpts.SampleProfileFile.empty()) 700 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 701 702 PMBuilder.populateFunctionPassManager(FPM); 703 PMBuilder.populateModulePassManager(MPM); 704 } 705 706 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 707 SmallVector<const char *, 16> BackendArgs; 708 BackendArgs.push_back("clang"); // Fake program name. 709 if (!CodeGenOpts.DebugPass.empty()) { 710 BackendArgs.push_back("-debug-pass"); 711 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 712 } 713 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 714 BackendArgs.push_back("-limit-float-precision"); 715 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 716 } 717 BackendArgs.push_back(nullptr); 718 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 719 BackendArgs.data()); 720 } 721 722 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 723 // Create the TargetMachine for generating code. 724 std::string Error; 725 std::string Triple = TheModule->getTargetTriple(); 726 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 727 if (!TheTarget) { 728 if (MustCreateTM) 729 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 730 return; 731 } 732 733 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 734 std::string FeaturesStr = 735 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 736 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 737 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 738 739 llvm::TargetOptions Options; 740 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 741 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 742 Options, RM, CM, OptLevel)); 743 } 744 745 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 746 BackendAction Action, 747 raw_pwrite_stream &OS, 748 raw_pwrite_stream *DwoOS) { 749 // Add LibraryInfo. 750 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 751 std::unique_ptr<TargetLibraryInfoImpl> TLII( 752 createTLII(TargetTriple, CodeGenOpts)); 753 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 754 755 // Normal mode, emit a .s or .o file by running the code generator. Note, 756 // this also adds codegenerator level optimization passes. 757 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 758 759 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 760 // "codegen" passes so that it isn't run multiple times when there is 761 // inlining happening. 762 if (CodeGenOpts.OptimizationLevel > 0) 763 CodeGenPasses.add(createObjCARCContractPass()); 764 765 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 766 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 767 Diags.Report(diag::err_fe_unable_to_interface_with_target); 768 return false; 769 } 770 771 return true; 772 } 773 774 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 775 std::unique_ptr<raw_pwrite_stream> OS) { 776 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 777 778 setCommandLineOpts(CodeGenOpts); 779 780 bool UsesCodeGen = (Action != Backend_EmitNothing && 781 Action != Backend_EmitBC && 782 Action != Backend_EmitLL); 783 CreateTargetMachine(UsesCodeGen); 784 785 if (UsesCodeGen && !TM) 786 return; 787 if (TM) 788 TheModule->setDataLayout(TM->createDataLayout()); 789 790 legacy::PassManager PerModulePasses; 791 PerModulePasses.add( 792 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 793 794 legacy::FunctionPassManager PerFunctionPasses(TheModule); 795 PerFunctionPasses.add( 796 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 797 798 CreatePasses(PerModulePasses, PerFunctionPasses); 799 800 legacy::PassManager CodeGenPasses; 801 CodeGenPasses.add( 802 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 803 804 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 805 806 switch (Action) { 807 case Backend_EmitNothing: 808 break; 809 810 case Backend_EmitBC: 811 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 812 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 813 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 814 if (!ThinLinkOS) 815 return; 816 } 817 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 818 CodeGenOpts.EnableSplitLTOUnit); 819 PerModulePasses.add(createWriteThinLTOBitcodePass( 820 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 821 } else { 822 // Emit a module summary by default for Regular LTO except for ld64 823 // targets 824 bool EmitLTOSummary = 825 (CodeGenOpts.PrepareForLTO && 826 !CodeGenOpts.DisableLLVMPasses && 827 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 828 llvm::Triple::Apple); 829 if (EmitLTOSummary) { 830 if (!TheModule->getModuleFlag("ThinLTO")) 831 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 832 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 833 CodeGenOpts.EnableSplitLTOUnit); 834 } 835 836 PerModulePasses.add(createBitcodeWriterPass( 837 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 838 } 839 break; 840 841 case Backend_EmitLL: 842 PerModulePasses.add( 843 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 844 break; 845 846 default: 847 if (!CodeGenOpts.SplitDwarfFile.empty() && 848 (CodeGenOpts.getSplitDwarfMode() == CodeGenOptions::SplitFileFission)) { 849 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfFile); 850 if (!DwoOS) 851 return; 852 } 853 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 854 DwoOS ? &DwoOS->os() : nullptr)) 855 return; 856 } 857 858 // Before executing passes, print the final values of the LLVM options. 859 cl::PrintOptionValues(); 860 861 // Run passes. For now we do all passes at once, but eventually we 862 // would like to have the option of streaming code generation. 863 864 { 865 PrettyStackTraceString CrashInfo("Per-function optimization"); 866 867 PerFunctionPasses.doInitialization(); 868 for (Function &F : *TheModule) 869 if (!F.isDeclaration()) 870 PerFunctionPasses.run(F); 871 PerFunctionPasses.doFinalization(); 872 } 873 874 { 875 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 876 PerModulePasses.run(*TheModule); 877 } 878 879 { 880 PrettyStackTraceString CrashInfo("Code generation"); 881 CodeGenPasses.run(*TheModule); 882 } 883 884 if (ThinLinkOS) 885 ThinLinkOS->keep(); 886 if (DwoOS) 887 DwoOS->keep(); 888 } 889 890 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 891 switch (Opts.OptimizationLevel) { 892 default: 893 llvm_unreachable("Invalid optimization level!"); 894 895 case 1: 896 return PassBuilder::O1; 897 898 case 2: 899 switch (Opts.OptimizeSize) { 900 default: 901 llvm_unreachable("Invalid optimization level for size!"); 902 903 case 0: 904 return PassBuilder::O2; 905 906 case 1: 907 return PassBuilder::Os; 908 909 case 2: 910 return PassBuilder::Oz; 911 } 912 913 case 3: 914 return PassBuilder::O3; 915 } 916 } 917 918 /// A clean version of `EmitAssembly` that uses the new pass manager. 919 /// 920 /// Not all features are currently supported in this system, but where 921 /// necessary it falls back to the legacy pass manager to at least provide 922 /// basic functionality. 923 /// 924 /// This API is planned to have its functionality finished and then to replace 925 /// `EmitAssembly` at some point in the future when the default switches. 926 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 927 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 928 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 929 setCommandLineOpts(CodeGenOpts); 930 931 // The new pass manager always makes a target machine available to passes 932 // during construction. 933 CreateTargetMachine(/*MustCreateTM*/ true); 934 if (!TM) 935 // This will already be diagnosed, just bail. 936 return; 937 TheModule->setDataLayout(TM->createDataLayout()); 938 939 Optional<PGOOptions> PGOOpt; 940 941 if (CodeGenOpts.hasProfileIRInstr()) 942 // -fprofile-generate. 943 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 944 ? DefaultProfileGenName 945 : CodeGenOpts.InstrProfileOutput, 946 "", "", "", true, 947 CodeGenOpts.DebugInfoForProfiling); 948 else if (CodeGenOpts.hasProfileIRUse()) 949 // -fprofile-use. 950 PGOOpt = PGOOptions("", CodeGenOpts.ProfileInstrumentUsePath, "", 951 CodeGenOpts.ProfileRemappingFile, false, 952 CodeGenOpts.DebugInfoForProfiling); 953 else if (!CodeGenOpts.SampleProfileFile.empty()) 954 // -fprofile-sample-use 955 PGOOpt = PGOOptions("", "", CodeGenOpts.SampleProfileFile, 956 CodeGenOpts.ProfileRemappingFile, false, 957 CodeGenOpts.DebugInfoForProfiling); 958 else if (CodeGenOpts.DebugInfoForProfiling) 959 // -fdebug-info-for-profiling 960 PGOOpt = PGOOptions("", "", "", "", false, true); 961 962 PassBuilder PB(TM.get(), PGOOpt); 963 964 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 965 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 966 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 967 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 968 969 // Register the AA manager first so that our version is the one used. 970 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 971 972 // Register the target library analysis directly and give it a customized 973 // preset TLI. 974 Triple TargetTriple(TheModule->getTargetTriple()); 975 std::unique_ptr<TargetLibraryInfoImpl> TLII( 976 createTLII(TargetTriple, CodeGenOpts)); 977 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 978 MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 979 980 // Register all the basic analyses with the managers. 981 PB.registerModuleAnalyses(MAM); 982 PB.registerCGSCCAnalyses(CGAM); 983 PB.registerFunctionAnalyses(FAM); 984 PB.registerLoopAnalyses(LAM); 985 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 986 987 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 988 989 if (!CodeGenOpts.DisableLLVMPasses) { 990 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 991 bool IsLTO = CodeGenOpts.PrepareForLTO; 992 993 if (CodeGenOpts.OptimizationLevel == 0) { 994 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 995 MPM.addPass(GCOVProfilerPass(*Options)); 996 997 // Build a minimal pipeline based on the semantics required by Clang, 998 // which is just that always inlining occurs. 999 MPM.addPass(AlwaysInlinerPass()); 1000 1001 // At -O0 we directly run necessary sanitizer passes. 1002 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1003 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 1004 1005 // Lastly, add semantically necessary passes for LTO. 1006 if (IsLTO || IsThinLTO) { 1007 MPM.addPass(CanonicalizeAliasesPass()); 1008 MPM.addPass(NameAnonGlobalPass()); 1009 } 1010 } else { 1011 // Map our optimization levels into one of the distinct levels used to 1012 // configure the pipeline. 1013 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1014 1015 // Register callbacks to schedule sanitizer passes at the appropriate part of 1016 // the pipeline. 1017 // FIXME: either handle asan/the remaining sanitizers or error out 1018 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1019 PB.registerScalarOptimizerLateEPCallback( 1020 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1021 FPM.addPass(BoundsCheckingPass()); 1022 }); 1023 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 1024 PB.registerOptimizerLastEPCallback( 1025 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1026 FPM.addPass(MemorySanitizerPass()); 1027 }); 1028 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) 1029 PB.registerOptimizerLastEPCallback( 1030 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1031 FPM.addPass(ThreadSanitizerPass()); 1032 }); 1033 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1034 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1035 MPM.addPass(GCOVProfilerPass(*Options)); 1036 }); 1037 1038 if (IsThinLTO) { 1039 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 1040 Level, CodeGenOpts.DebugPassManager); 1041 MPM.addPass(CanonicalizeAliasesPass()); 1042 MPM.addPass(NameAnonGlobalPass()); 1043 } else if (IsLTO) { 1044 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 1045 CodeGenOpts.DebugPassManager); 1046 MPM.addPass(CanonicalizeAliasesPass()); 1047 MPM.addPass(NameAnonGlobalPass()); 1048 } else { 1049 MPM = PB.buildPerModuleDefaultPipeline(Level, 1050 CodeGenOpts.DebugPassManager); 1051 } 1052 } 1053 } 1054 1055 // FIXME: We still use the legacy pass manager to do code generation. We 1056 // create that pass manager here and use it as needed below. 1057 legacy::PassManager CodeGenPasses; 1058 bool NeedCodeGen = false; 1059 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1060 1061 // Append any output we need to the pass manager. 1062 switch (Action) { 1063 case Backend_EmitNothing: 1064 break; 1065 1066 case Backend_EmitBC: 1067 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1068 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1069 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1070 if (!ThinLinkOS) 1071 return; 1072 } 1073 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1074 CodeGenOpts.EnableSplitLTOUnit); 1075 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1076 : nullptr)); 1077 } else { 1078 // Emit a module summary by default for Regular LTO except for ld64 1079 // targets 1080 bool EmitLTOSummary = 1081 (CodeGenOpts.PrepareForLTO && 1082 !CodeGenOpts.DisableLLVMPasses && 1083 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1084 llvm::Triple::Apple); 1085 if (EmitLTOSummary) { 1086 if (!TheModule->getModuleFlag("ThinLTO")) 1087 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1088 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1089 CodeGenOpts.EnableSplitLTOUnit); 1090 } 1091 MPM.addPass( 1092 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1093 } 1094 break; 1095 1096 case Backend_EmitLL: 1097 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1098 break; 1099 1100 case Backend_EmitAssembly: 1101 case Backend_EmitMCNull: 1102 case Backend_EmitObj: 1103 NeedCodeGen = true; 1104 CodeGenPasses.add( 1105 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1106 if (!CodeGenOpts.SplitDwarfFile.empty()) { 1107 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfFile); 1108 if (!DwoOS) 1109 return; 1110 } 1111 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1112 DwoOS ? &DwoOS->os() : nullptr)) 1113 // FIXME: Should we handle this error differently? 1114 return; 1115 break; 1116 } 1117 1118 // Before executing passes, print the final values of the LLVM options. 1119 cl::PrintOptionValues(); 1120 1121 // Now that we have all of the passes ready, run them. 1122 { 1123 PrettyStackTraceString CrashInfo("Optimizer"); 1124 MPM.run(*TheModule, MAM); 1125 } 1126 1127 // Now if needed, run the legacy PM for codegen. 1128 if (NeedCodeGen) { 1129 PrettyStackTraceString CrashInfo("Code generation"); 1130 CodeGenPasses.run(*TheModule); 1131 } 1132 1133 if (ThinLinkOS) 1134 ThinLinkOS->keep(); 1135 if (DwoOS) 1136 DwoOS->keep(); 1137 } 1138 1139 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1140 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1141 if (!BMsOrErr) 1142 return BMsOrErr.takeError(); 1143 1144 // The bitcode file may contain multiple modules, we want the one that is 1145 // marked as being the ThinLTO module. 1146 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1147 return *Bm; 1148 1149 return make_error<StringError>("Could not find module summary", 1150 inconvertibleErrorCode()); 1151 } 1152 1153 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1154 for (BitcodeModule &BM : BMs) { 1155 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1156 if (LTOInfo && LTOInfo->IsThinLTO) 1157 return &BM; 1158 } 1159 return nullptr; 1160 } 1161 1162 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1163 const HeaderSearchOptions &HeaderOpts, 1164 const CodeGenOptions &CGOpts, 1165 const clang::TargetOptions &TOpts, 1166 const LangOptions &LOpts, 1167 std::unique_ptr<raw_pwrite_stream> OS, 1168 std::string SampleProfile, 1169 std::string ProfileRemapping, 1170 BackendAction Action) { 1171 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1172 ModuleToDefinedGVSummaries; 1173 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1174 1175 setCommandLineOpts(CGOpts); 1176 1177 // We can simply import the values mentioned in the combined index, since 1178 // we should only invoke this using the individual indexes written out 1179 // via a WriteIndexesThinBackend. 1180 FunctionImporter::ImportMapTy ImportList; 1181 for (auto &GlobalList : *CombinedIndex) { 1182 // Ignore entries for undefined references. 1183 if (GlobalList.second.SummaryList.empty()) 1184 continue; 1185 1186 auto GUID = GlobalList.first; 1187 for (auto &Summary : GlobalList.second.SummaryList) { 1188 // Skip the summaries for the importing module. These are included to 1189 // e.g. record required linkage changes. 1190 if (Summary->modulePath() == M->getModuleIdentifier()) 1191 continue; 1192 // Add an entry to provoke importing by thinBackend. 1193 ImportList[Summary->modulePath()].insert(GUID); 1194 } 1195 } 1196 1197 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1198 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1199 1200 for (auto &I : ImportList) { 1201 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1202 llvm::MemoryBuffer::getFile(I.first()); 1203 if (!MBOrErr) { 1204 errs() << "Error loading imported file '" << I.first() 1205 << "': " << MBOrErr.getError().message() << "\n"; 1206 return; 1207 } 1208 1209 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1210 if (!BMOrErr) { 1211 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1212 errs() << "Error loading imported file '" << I.first() 1213 << "': " << EIB.message() << '\n'; 1214 }); 1215 return; 1216 } 1217 ModuleMap.insert({I.first(), *BMOrErr}); 1218 1219 OwnedImports.push_back(std::move(*MBOrErr)); 1220 } 1221 auto AddStream = [&](size_t Task) { 1222 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 1223 }; 1224 lto::Config Conf; 1225 if (CGOpts.SaveTempsFilePrefix != "") { 1226 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1227 /* UseInputModulePath */ false)) { 1228 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1229 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1230 << '\n'; 1231 }); 1232 } 1233 } 1234 Conf.CPU = TOpts.CPU; 1235 Conf.CodeModel = getCodeModel(CGOpts); 1236 Conf.MAttrs = TOpts.Features; 1237 Conf.RelocModel = CGOpts.RelocationModel; 1238 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1239 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1240 Conf.SampleProfile = std::move(SampleProfile); 1241 Conf.ProfileRemapping = std::move(ProfileRemapping); 1242 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1243 Conf.DebugPassManager = CGOpts.DebugPassManager; 1244 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1245 Conf.RemarksFilename = CGOpts.OptRecordFile; 1246 Conf.DwoPath = CGOpts.SplitDwarfFile; 1247 switch (Action) { 1248 case Backend_EmitNothing: 1249 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1250 return false; 1251 }; 1252 break; 1253 case Backend_EmitLL: 1254 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1255 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1256 return false; 1257 }; 1258 break; 1259 case Backend_EmitBC: 1260 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1261 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1262 return false; 1263 }; 1264 break; 1265 default: 1266 Conf.CGFileType = getCodeGenFileType(Action); 1267 break; 1268 } 1269 if (Error E = thinBackend( 1270 Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1271 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1272 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1273 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1274 }); 1275 } 1276 } 1277 1278 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1279 const HeaderSearchOptions &HeaderOpts, 1280 const CodeGenOptions &CGOpts, 1281 const clang::TargetOptions &TOpts, 1282 const LangOptions &LOpts, 1283 const llvm::DataLayout &TDesc, Module *M, 1284 BackendAction Action, 1285 std::unique_ptr<raw_pwrite_stream> OS) { 1286 std::unique_ptr<llvm::Module> EmptyModule; 1287 if (!CGOpts.ThinLTOIndexFile.empty()) { 1288 // If we are performing a ThinLTO importing compile, load the function index 1289 // into memory and pass it into runThinLTOBackend, which will run the 1290 // function importer and invoke LTO passes. 1291 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1292 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1293 /*IgnoreEmptyThinLTOIndexFile*/true); 1294 if (!IndexOrErr) { 1295 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1296 "Error loading index file '" + 1297 CGOpts.ThinLTOIndexFile + "': "); 1298 return; 1299 } 1300 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1301 // A null CombinedIndex means we should skip ThinLTO compilation 1302 // (LLVM will optionally ignore empty index files, returning null instead 1303 // of an error). 1304 if (CombinedIndex) { 1305 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1306 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1307 LOpts, std::move(OS), CGOpts.SampleProfileFile, 1308 CGOpts.ProfileRemappingFile, Action); 1309 return; 1310 } 1311 // Distributed indexing detected that nothing from the module is needed 1312 // for the final linking. So we can skip the compilation. We sill need to 1313 // output an empty object file to make sure that a linker does not fail 1314 // trying to read it. Also for some features, like CFI, we must skip 1315 // the compilation as CombinedIndex does not contain all required 1316 // information. 1317 EmptyModule = llvm::make_unique<llvm::Module>("empty", M->getContext()); 1318 EmptyModule->setTargetTriple(M->getTargetTriple()); 1319 M = EmptyModule.get(); 1320 } 1321 } 1322 1323 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1324 1325 if (CGOpts.ExperimentalNewPassManager) 1326 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1327 else 1328 AsmHelper.EmitAssembly(Action, std::move(OS)); 1329 1330 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1331 // DataLayout. 1332 if (AsmHelper.TM) { 1333 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1334 if (DLDesc != TDesc.getStringRepresentation()) { 1335 unsigned DiagID = Diags.getCustomDiagID( 1336 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1337 "expected target description '%1'"); 1338 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1339 } 1340 } 1341 } 1342 1343 static const char* getSectionNameForBitcode(const Triple &T) { 1344 switch (T.getObjectFormat()) { 1345 case Triple::MachO: 1346 return "__LLVM,__bitcode"; 1347 case Triple::COFF: 1348 case Triple::ELF: 1349 case Triple::Wasm: 1350 case Triple::UnknownObjectFormat: 1351 return ".llvmbc"; 1352 } 1353 llvm_unreachable("Unimplemented ObjectFormatType"); 1354 } 1355 1356 static const char* getSectionNameForCommandline(const Triple &T) { 1357 switch (T.getObjectFormat()) { 1358 case Triple::MachO: 1359 return "__LLVM,__cmdline"; 1360 case Triple::COFF: 1361 case Triple::ELF: 1362 case Triple::Wasm: 1363 case Triple::UnknownObjectFormat: 1364 return ".llvmcmd"; 1365 } 1366 llvm_unreachable("Unimplemented ObjectFormatType"); 1367 } 1368 1369 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1370 // __LLVM,__bitcode section. 1371 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1372 llvm::MemoryBufferRef Buf) { 1373 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1374 return; 1375 1376 // Save llvm.compiler.used and remote it. 1377 SmallVector<Constant*, 2> UsedArray; 1378 SmallPtrSet<GlobalValue*, 4> UsedGlobals; 1379 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1380 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1381 for (auto *GV : UsedGlobals) { 1382 if (GV->getName() != "llvm.embedded.module" && 1383 GV->getName() != "llvm.cmdline") 1384 UsedArray.push_back( 1385 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1386 } 1387 if (Used) 1388 Used->eraseFromParent(); 1389 1390 // Embed the bitcode for the llvm module. 1391 std::string Data; 1392 ArrayRef<uint8_t> ModuleData; 1393 Triple T(M->getTargetTriple()); 1394 // Create a constant that contains the bitcode. 1395 // In case of embedding a marker, ignore the input Buf and use the empty 1396 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1397 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1398 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1399 (const unsigned char *)Buf.getBufferEnd())) { 1400 // If the input is LLVM Assembly, bitcode is produced by serializing 1401 // the module. Use-lists order need to be perserved in this case. 1402 llvm::raw_string_ostream OS(Data); 1403 llvm::WriteBitcodeToFile(*M, OS, /* ShouldPreserveUseListOrder */ true); 1404 ModuleData = 1405 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1406 } else 1407 // If the input is LLVM bitcode, write the input byte stream directly. 1408 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1409 Buf.getBufferSize()); 1410 } 1411 llvm::Constant *ModuleConstant = 1412 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1413 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1414 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1415 ModuleConstant); 1416 GV->setSection(getSectionNameForBitcode(T)); 1417 UsedArray.push_back( 1418 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1419 if (llvm::GlobalVariable *Old = 1420 M->getGlobalVariable("llvm.embedded.module", true)) { 1421 assert(Old->hasOneUse() && 1422 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1423 GV->takeName(Old); 1424 Old->eraseFromParent(); 1425 } else { 1426 GV->setName("llvm.embedded.module"); 1427 } 1428 1429 // Skip if only bitcode needs to be embedded. 1430 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1431 // Embed command-line options. 1432 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1433 CGOpts.CmdArgs.size()); 1434 llvm::Constant *CmdConstant = 1435 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1436 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1437 llvm::GlobalValue::PrivateLinkage, 1438 CmdConstant); 1439 GV->setSection(getSectionNameForCommandline(T)); 1440 UsedArray.push_back( 1441 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1442 if (llvm::GlobalVariable *Old = 1443 M->getGlobalVariable("llvm.cmdline", true)) { 1444 assert(Old->hasOneUse() && 1445 "llvm.cmdline can only be used once in llvm.compiler.used"); 1446 GV->takeName(Old); 1447 Old->eraseFromParent(); 1448 } else { 1449 GV->setName("llvm.cmdline"); 1450 } 1451 } 1452 1453 if (UsedArray.empty()) 1454 return; 1455 1456 // Recreate llvm.compiler.used. 1457 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1458 auto *NewUsed = new GlobalVariable( 1459 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1460 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1461 NewUsed->setSection("llvm.metadata"); 1462 } 1463