1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "clang/Lex/HeaderSearchOptions.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/ADT/StringSwitch.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/IRPrintingPasses.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/ModuleSummaryIndex.h" 35 #include "llvm/IR/Verifier.h" 36 #include "llvm/LTO/LTOBackend.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/SubtargetFeature.h" 39 #include "llvm/Passes/PassBuilder.h" 40 #include "llvm/Support/BuryPointer.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/MemoryBuffer.h" 43 #include "llvm/Support/PrettyStackTrace.h" 44 #include "llvm/Support/TargetRegistry.h" 45 #include "llvm/Support/Timer.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include "llvm/Transforms/Coroutines.h" 50 #include "llvm/Transforms/IPO.h" 51 #include "llvm/Transforms/IPO/AlwaysInliner.h" 52 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 53 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 54 #include "llvm/Transforms/InstCombine/InstCombine.h" 55 #include "llvm/Transforms/Instrumentation.h" 56 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 57 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 58 #include "llvm/Transforms/ObjCARC.h" 59 #include "llvm/Transforms/Scalar.h" 60 #include "llvm/Transforms/Scalar/GVN.h" 61 #include "llvm/Transforms/Utils.h" 62 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 63 #include "llvm/Transforms/Utils/SymbolRewriter.h" 64 #include <memory> 65 using namespace clang; 66 using namespace llvm; 67 68 namespace { 69 70 // Default filename used for profile generation. 71 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 72 73 class EmitAssemblyHelper { 74 DiagnosticsEngine &Diags; 75 const HeaderSearchOptions &HSOpts; 76 const CodeGenOptions &CodeGenOpts; 77 const clang::TargetOptions &TargetOpts; 78 const LangOptions &LangOpts; 79 Module *TheModule; 80 81 Timer CodeGenerationTime; 82 83 std::unique_ptr<raw_pwrite_stream> OS; 84 85 TargetIRAnalysis getTargetIRAnalysis() const { 86 if (TM) 87 return TM->getTargetIRAnalysis(); 88 89 return TargetIRAnalysis(); 90 } 91 92 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 93 94 /// Generates the TargetMachine. 95 /// Leaves TM unchanged if it is unable to create the target machine. 96 /// Some of our clang tests specify triples which are not built 97 /// into clang. This is okay because these tests check the generated 98 /// IR, and they require DataLayout which depends on the triple. 99 /// In this case, we allow this method to fail and not report an error. 100 /// When MustCreateTM is used, we print an error if we are unable to load 101 /// the requested target. 102 void CreateTargetMachine(bool MustCreateTM); 103 104 /// Add passes necessary to emit assembly or LLVM IR. 105 /// 106 /// \return True on success. 107 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 108 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 109 110 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 111 std::error_code EC; 112 auto F = llvm::make_unique<llvm::ToolOutputFile>(Path, EC, 113 llvm::sys::fs::F_None); 114 if (EC) { 115 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 116 F.reset(); 117 } 118 return F; 119 } 120 121 public: 122 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 123 const HeaderSearchOptions &HeaderSearchOpts, 124 const CodeGenOptions &CGOpts, 125 const clang::TargetOptions &TOpts, 126 const LangOptions &LOpts, Module *M) 127 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 128 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 129 CodeGenerationTime("codegen", "Code Generation Time") {} 130 131 ~EmitAssemblyHelper() { 132 if (CodeGenOpts.DisableFree) 133 BuryPointer(std::move(TM)); 134 } 135 136 std::unique_ptr<TargetMachine> TM; 137 138 void EmitAssembly(BackendAction Action, 139 std::unique_ptr<raw_pwrite_stream> OS); 140 141 void EmitAssemblyWithNewPassManager(BackendAction Action, 142 std::unique_ptr<raw_pwrite_stream> OS); 143 }; 144 145 // We need this wrapper to access LangOpts and CGOpts from extension functions 146 // that we add to the PassManagerBuilder. 147 class PassManagerBuilderWrapper : public PassManagerBuilder { 148 public: 149 PassManagerBuilderWrapper(const Triple &TargetTriple, 150 const CodeGenOptions &CGOpts, 151 const LangOptions &LangOpts) 152 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 153 LangOpts(LangOpts) {} 154 const Triple &getTargetTriple() const { return TargetTriple; } 155 const CodeGenOptions &getCGOpts() const { return CGOpts; } 156 const LangOptions &getLangOpts() const { return LangOpts; } 157 158 private: 159 const Triple &TargetTriple; 160 const CodeGenOptions &CGOpts; 161 const LangOptions &LangOpts; 162 }; 163 } 164 165 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 166 if (Builder.OptLevel > 0) 167 PM.add(createObjCARCAPElimPass()); 168 } 169 170 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 171 if (Builder.OptLevel > 0) 172 PM.add(createObjCARCExpandPass()); 173 } 174 175 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 176 if (Builder.OptLevel > 0) 177 PM.add(createObjCARCOptPass()); 178 } 179 180 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 181 legacy::PassManagerBase &PM) { 182 PM.add(createAddDiscriminatorsPass()); 183 } 184 185 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 186 legacy::PassManagerBase &PM) { 187 PM.add(createBoundsCheckingLegacyPass()); 188 } 189 190 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 191 legacy::PassManagerBase &PM) { 192 const PassManagerBuilderWrapper &BuilderWrapper = 193 static_cast<const PassManagerBuilderWrapper&>(Builder); 194 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 195 SanitizerCoverageOptions Opts; 196 Opts.CoverageType = 197 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 198 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 199 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 200 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 201 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 202 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 203 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 204 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 205 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 206 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 207 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 208 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 209 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 210 PM.add(createSanitizerCoverageModulePass(Opts)); 211 } 212 213 // Check if ASan should use GC-friendly instrumentation for globals. 214 // First of all, there is no point if -fdata-sections is off (expect for MachO, 215 // where this is not a factor). Also, on ELF this feature requires an assembler 216 // extension that only works with -integrated-as at the moment. 217 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 218 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 219 return false; 220 switch (T.getObjectFormat()) { 221 case Triple::MachO: 222 case Triple::COFF: 223 return true; 224 case Triple::ELF: 225 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 226 default: 227 return false; 228 } 229 } 230 231 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 232 legacy::PassManagerBase &PM) { 233 const PassManagerBuilderWrapper &BuilderWrapper = 234 static_cast<const PassManagerBuilderWrapper&>(Builder); 235 const Triple &T = BuilderWrapper.getTargetTriple(); 236 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 237 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 238 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 239 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 240 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 241 UseAfterScope)); 242 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/ false, Recover, 243 UseGlobalsGC)); 244 } 245 246 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 247 legacy::PassManagerBase &PM) { 248 PM.add(createAddressSanitizerFunctionPass( 249 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 250 PM.add(createAddressSanitizerModulePass( 251 /*CompileKernel*/ true, /*Recover*/ true)); 252 } 253 254 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 255 legacy::PassManagerBase &PM) { 256 const PassManagerBuilderWrapper &BuilderWrapper = 257 static_cast<const PassManagerBuilderWrapper &>(Builder); 258 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 259 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 260 PM.add(createHWAddressSanitizerPass(/*CompileKernel*/ false, Recover)); 261 } 262 263 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 264 legacy::PassManagerBase &PM) { 265 PM.add(createHWAddressSanitizerPass( 266 /*CompileKernel*/ true, /*Recover*/ true)); 267 } 268 269 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 270 legacy::PassManagerBase &PM, 271 bool CompileKernel) { 272 const PassManagerBuilderWrapper &BuilderWrapper = 273 static_cast<const PassManagerBuilderWrapper&>(Builder); 274 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 275 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 276 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 277 PM.add(createMemorySanitizerPass(TrackOrigins, Recover, CompileKernel)); 278 279 // MemorySanitizer inserts complex instrumentation that mostly follows 280 // the logic of the original code, but operates on "shadow" values. 281 // It can benefit from re-running some general purpose optimization passes. 282 if (Builder.OptLevel > 0) { 283 PM.add(createEarlyCSEPass()); 284 PM.add(createReassociatePass()); 285 PM.add(createLICMPass()); 286 PM.add(createGVNPass()); 287 PM.add(createInstructionCombiningPass()); 288 PM.add(createDeadStoreEliminationPass()); 289 } 290 } 291 292 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 293 legacy::PassManagerBase &PM) { 294 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 295 } 296 297 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 298 legacy::PassManagerBase &PM) { 299 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 300 } 301 302 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 303 legacy::PassManagerBase &PM) { 304 PM.add(createThreadSanitizerPass()); 305 } 306 307 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 308 legacy::PassManagerBase &PM) { 309 const PassManagerBuilderWrapper &BuilderWrapper = 310 static_cast<const PassManagerBuilderWrapper&>(Builder); 311 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 312 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 313 } 314 315 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 316 legacy::PassManagerBase &PM) { 317 const PassManagerBuilderWrapper &BuilderWrapper = 318 static_cast<const PassManagerBuilderWrapper&>(Builder); 319 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 320 EfficiencySanitizerOptions Opts; 321 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 322 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 323 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 324 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 325 PM.add(createEfficiencySanitizerPass(Opts)); 326 } 327 328 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 329 const CodeGenOptions &CodeGenOpts) { 330 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 331 if (!CodeGenOpts.SimplifyLibCalls) 332 TLII->disableAllFunctions(); 333 else { 334 // Disable individual libc/libm calls in TargetLibraryInfo. 335 LibFunc F; 336 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 337 if (TLII->getLibFunc(FuncName, F)) 338 TLII->setUnavailable(F); 339 } 340 341 switch (CodeGenOpts.getVecLib()) { 342 case CodeGenOptions::Accelerate: 343 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 344 break; 345 case CodeGenOptions::SVML: 346 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 347 break; 348 default: 349 break; 350 } 351 return TLII; 352 } 353 354 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 355 legacy::PassManager *MPM) { 356 llvm::SymbolRewriter::RewriteDescriptorList DL; 357 358 llvm::SymbolRewriter::RewriteMapParser MapParser; 359 for (const auto &MapFile : Opts.RewriteMapFiles) 360 MapParser.parse(MapFile, &DL); 361 362 MPM->add(createRewriteSymbolsPass(DL)); 363 } 364 365 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 366 switch (CodeGenOpts.OptimizationLevel) { 367 default: 368 llvm_unreachable("Invalid optimization level!"); 369 case 0: 370 return CodeGenOpt::None; 371 case 1: 372 return CodeGenOpt::Less; 373 case 2: 374 return CodeGenOpt::Default; // O2/Os/Oz 375 case 3: 376 return CodeGenOpt::Aggressive; 377 } 378 } 379 380 static Optional<llvm::CodeModel::Model> 381 getCodeModel(const CodeGenOptions &CodeGenOpts) { 382 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 383 .Case("tiny", llvm::CodeModel::Tiny) 384 .Case("small", llvm::CodeModel::Small) 385 .Case("kernel", llvm::CodeModel::Kernel) 386 .Case("medium", llvm::CodeModel::Medium) 387 .Case("large", llvm::CodeModel::Large) 388 .Case("default", ~1u) 389 .Default(~0u); 390 assert(CodeModel != ~0u && "invalid code model!"); 391 if (CodeModel == ~1u) 392 return None; 393 return static_cast<llvm::CodeModel::Model>(CodeModel); 394 } 395 396 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 397 if (Action == Backend_EmitObj) 398 return TargetMachine::CGFT_ObjectFile; 399 else if (Action == Backend_EmitMCNull) 400 return TargetMachine::CGFT_Null; 401 else { 402 assert(Action == Backend_EmitAssembly && "Invalid action!"); 403 return TargetMachine::CGFT_AssemblyFile; 404 } 405 } 406 407 static void initTargetOptions(llvm::TargetOptions &Options, 408 const CodeGenOptions &CodeGenOpts, 409 const clang::TargetOptions &TargetOpts, 410 const LangOptions &LangOpts, 411 const HeaderSearchOptions &HSOpts) { 412 Options.ThreadModel = 413 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 414 .Case("posix", llvm::ThreadModel::POSIX) 415 .Case("single", llvm::ThreadModel::Single); 416 417 // Set float ABI type. 418 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 419 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 420 "Invalid Floating Point ABI!"); 421 Options.FloatABIType = 422 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 423 .Case("soft", llvm::FloatABI::Soft) 424 .Case("softfp", llvm::FloatABI::Soft) 425 .Case("hard", llvm::FloatABI::Hard) 426 .Default(llvm::FloatABI::Default); 427 428 // Set FP fusion mode. 429 switch (LangOpts.getDefaultFPContractMode()) { 430 case LangOptions::FPC_Off: 431 // Preserve any contraction performed by the front-end. (Strict performs 432 // splitting of the muladd instrinsic in the backend.) 433 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 434 break; 435 case LangOptions::FPC_On: 436 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 437 break; 438 case LangOptions::FPC_Fast: 439 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 440 break; 441 } 442 443 Options.UseInitArray = CodeGenOpts.UseInitArray; 444 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 445 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 446 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 447 448 // Set EABI version. 449 Options.EABIVersion = TargetOpts.EABIVersion; 450 451 if (LangOpts.SjLjExceptions) 452 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 453 if (LangOpts.SEHExceptions) 454 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 455 if (LangOpts.DWARFExceptions) 456 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 457 458 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 459 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 460 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 461 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 462 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 463 Options.FunctionSections = CodeGenOpts.FunctionSections; 464 Options.DataSections = CodeGenOpts.DataSections; 465 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 466 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 467 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 468 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 469 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 470 Options.EmitAddrsig = CodeGenOpts.Addrsig; 471 472 if (CodeGenOpts.getSplitDwarfMode() != CodeGenOptions::NoFission) 473 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 474 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 475 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 476 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 477 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 478 Options.MCOptions.MCIncrementalLinkerCompatible = 479 CodeGenOpts.IncrementalLinkerCompatible; 480 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 481 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 482 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 483 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 484 Options.MCOptions.ABIName = TargetOpts.ABI; 485 for (const auto &Entry : HSOpts.UserEntries) 486 if (!Entry.IsFramework && 487 (Entry.Group == frontend::IncludeDirGroup::Quoted || 488 Entry.Group == frontend::IncludeDirGroup::Angled || 489 Entry.Group == frontend::IncludeDirGroup::System)) 490 Options.MCOptions.IASSearchPaths.push_back( 491 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 492 } 493 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 494 if (CodeGenOpts.DisableGCov) 495 return None; 496 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 497 return None; 498 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 499 // LLVM's -default-gcov-version flag is set to something invalid. 500 GCOVOptions Options; 501 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 502 Options.EmitData = CodeGenOpts.EmitGcovArcs; 503 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 504 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 505 Options.NoRedZone = CodeGenOpts.DisableRedZone; 506 Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData; 507 Options.Filter = CodeGenOpts.ProfileFilterFiles; 508 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 509 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 510 return Options; 511 } 512 513 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 514 legacy::FunctionPassManager &FPM) { 515 // Handle disabling of all LLVM passes, where we want to preserve the 516 // internal module before any optimization. 517 if (CodeGenOpts.DisableLLVMPasses) 518 return; 519 520 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 521 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 522 // are inserted before PMBuilder ones - they'd get the default-constructed 523 // TLI with an unknown target otherwise. 524 Triple TargetTriple(TheModule->getTargetTriple()); 525 std::unique_ptr<TargetLibraryInfoImpl> TLII( 526 createTLII(TargetTriple, CodeGenOpts)); 527 528 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 529 530 // At O0 and O1 we only run the always inliner which is more efficient. At 531 // higher optimization levels we run the normal inliner. 532 if (CodeGenOpts.OptimizationLevel <= 1) { 533 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 534 !CodeGenOpts.DisableLifetimeMarkers); 535 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 536 } else { 537 // We do not want to inline hot callsites for SamplePGO module-summary build 538 // because profile annotation will happen again in ThinLTO backend, and we 539 // want the IR of the hot path to match the profile. 540 PMBuilder.Inliner = createFunctionInliningPass( 541 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 542 (!CodeGenOpts.SampleProfileFile.empty() && 543 CodeGenOpts.PrepareForThinLTO)); 544 } 545 546 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 547 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 548 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 549 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 550 551 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 552 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 553 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 554 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 555 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 556 557 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 558 559 if (TM) 560 TM->adjustPassManager(PMBuilder); 561 562 if (CodeGenOpts.DebugInfoForProfiling || 563 !CodeGenOpts.SampleProfileFile.empty()) 564 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 565 addAddDiscriminatorsPass); 566 567 // In ObjC ARC mode, add the main ARC optimization passes. 568 if (LangOpts.ObjCAutoRefCount) { 569 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 570 addObjCARCExpandPass); 571 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 572 addObjCARCAPElimPass); 573 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 574 addObjCARCOptPass); 575 } 576 577 if (LangOpts.CoroutinesTS) 578 addCoroutinePassesToExtensionPoints(PMBuilder); 579 580 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 581 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 582 addBoundsCheckingPass); 583 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 584 addBoundsCheckingPass); 585 } 586 587 if (CodeGenOpts.SanitizeCoverageType || 588 CodeGenOpts.SanitizeCoverageIndirectCalls || 589 CodeGenOpts.SanitizeCoverageTraceCmp) { 590 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 591 addSanitizerCoveragePass); 592 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 593 addSanitizerCoveragePass); 594 } 595 596 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 597 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 598 addAddressSanitizerPasses); 599 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 600 addAddressSanitizerPasses); 601 } 602 603 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 604 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 605 addKernelAddressSanitizerPasses); 606 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 607 addKernelAddressSanitizerPasses); 608 } 609 610 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 611 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 612 addHWAddressSanitizerPasses); 613 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 614 addHWAddressSanitizerPasses); 615 } 616 617 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 618 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 619 addKernelHWAddressSanitizerPasses); 620 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 621 addKernelHWAddressSanitizerPasses); 622 } 623 624 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 625 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 626 addMemorySanitizerPass); 627 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 628 addMemorySanitizerPass); 629 } 630 631 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 632 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 633 addKernelMemorySanitizerPass); 634 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 635 addKernelMemorySanitizerPass); 636 } 637 638 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 639 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 640 addThreadSanitizerPass); 641 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 642 addThreadSanitizerPass); 643 } 644 645 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 646 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 647 addDataFlowSanitizerPass); 648 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 649 addDataFlowSanitizerPass); 650 } 651 652 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 653 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 654 addEfficiencySanitizerPass); 655 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 656 addEfficiencySanitizerPass); 657 } 658 659 // Set up the per-function pass manager. 660 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 661 if (CodeGenOpts.VerifyModule) 662 FPM.add(createVerifierPass()); 663 664 // Set up the per-module pass manager. 665 if (!CodeGenOpts.RewriteMapFiles.empty()) 666 addSymbolRewriterPass(CodeGenOpts, &MPM); 667 668 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 669 MPM.add(createGCOVProfilerPass(*Options)); 670 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 671 MPM.add(createStripSymbolsPass(true)); 672 } 673 674 if (CodeGenOpts.hasProfileClangInstr()) { 675 InstrProfOptions Options; 676 Options.NoRedZone = CodeGenOpts.DisableRedZone; 677 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 678 679 // TODO: Surface the option to emit atomic profile counter increments at 680 // the driver level. 681 Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread); 682 683 MPM.add(createInstrProfilingLegacyPass(Options)); 684 } 685 if (CodeGenOpts.hasProfileIRInstr()) { 686 PMBuilder.EnablePGOInstrGen = true; 687 if (!CodeGenOpts.InstrProfileOutput.empty()) 688 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 689 else 690 PMBuilder.PGOInstrGen = DefaultProfileGenName; 691 } 692 if (CodeGenOpts.hasProfileIRUse()) 693 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 694 695 if (!CodeGenOpts.SampleProfileFile.empty()) 696 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 697 698 PMBuilder.populateFunctionPassManager(FPM); 699 PMBuilder.populateModulePassManager(MPM); 700 } 701 702 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 703 SmallVector<const char *, 16> BackendArgs; 704 BackendArgs.push_back("clang"); // Fake program name. 705 if (!CodeGenOpts.DebugPass.empty()) { 706 BackendArgs.push_back("-debug-pass"); 707 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 708 } 709 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 710 BackendArgs.push_back("-limit-float-precision"); 711 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 712 } 713 BackendArgs.push_back(nullptr); 714 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 715 BackendArgs.data()); 716 } 717 718 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 719 // Create the TargetMachine for generating code. 720 std::string Error; 721 std::string Triple = TheModule->getTargetTriple(); 722 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 723 if (!TheTarget) { 724 if (MustCreateTM) 725 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 726 return; 727 } 728 729 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 730 std::string FeaturesStr = 731 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 732 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 733 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 734 735 llvm::TargetOptions Options; 736 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 737 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 738 Options, RM, CM, OptLevel)); 739 } 740 741 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 742 BackendAction Action, 743 raw_pwrite_stream &OS, 744 raw_pwrite_stream *DwoOS) { 745 // Add LibraryInfo. 746 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 747 std::unique_ptr<TargetLibraryInfoImpl> TLII( 748 createTLII(TargetTriple, CodeGenOpts)); 749 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 750 751 // Normal mode, emit a .s or .o file by running the code generator. Note, 752 // this also adds codegenerator level optimization passes. 753 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 754 755 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 756 // "codegen" passes so that it isn't run multiple times when there is 757 // inlining happening. 758 if (CodeGenOpts.OptimizationLevel > 0) 759 CodeGenPasses.add(createObjCARCContractPass()); 760 761 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 762 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 763 Diags.Report(diag::err_fe_unable_to_interface_with_target); 764 return false; 765 } 766 767 return true; 768 } 769 770 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 771 std::unique_ptr<raw_pwrite_stream> OS) { 772 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 773 774 setCommandLineOpts(CodeGenOpts); 775 776 bool UsesCodeGen = (Action != Backend_EmitNothing && 777 Action != Backend_EmitBC && 778 Action != Backend_EmitLL); 779 CreateTargetMachine(UsesCodeGen); 780 781 if (UsesCodeGen && !TM) 782 return; 783 if (TM) 784 TheModule->setDataLayout(TM->createDataLayout()); 785 786 legacy::PassManager PerModulePasses; 787 PerModulePasses.add( 788 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 789 790 legacy::FunctionPassManager PerFunctionPasses(TheModule); 791 PerFunctionPasses.add( 792 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 793 794 CreatePasses(PerModulePasses, PerFunctionPasses); 795 796 legacy::PassManager CodeGenPasses; 797 CodeGenPasses.add( 798 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 799 800 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 801 802 switch (Action) { 803 case Backend_EmitNothing: 804 break; 805 806 case Backend_EmitBC: 807 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 808 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 809 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 810 if (!ThinLinkOS) 811 return; 812 } 813 PerModulePasses.add(createWriteThinLTOBitcodePass( 814 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 815 } else { 816 // Emit a module summary by default for Regular LTO except for ld64 817 // targets 818 bool EmitLTOSummary = 819 (CodeGenOpts.PrepareForLTO && 820 !CodeGenOpts.DisableLLVMPasses && 821 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 822 llvm::Triple::Apple); 823 if (EmitLTOSummary && !TheModule->getModuleFlag("ThinLTO")) 824 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 825 826 PerModulePasses.add( 827 createBitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 828 EmitLTOSummary)); 829 } 830 break; 831 832 case Backend_EmitLL: 833 PerModulePasses.add( 834 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 835 break; 836 837 default: 838 if (!CodeGenOpts.SplitDwarfFile.empty() && 839 (CodeGenOpts.getSplitDwarfMode() == CodeGenOptions::SplitFileFission)) { 840 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfFile); 841 if (!DwoOS) 842 return; 843 } 844 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 845 DwoOS ? &DwoOS->os() : nullptr)) 846 return; 847 } 848 849 // Before executing passes, print the final values of the LLVM options. 850 cl::PrintOptionValues(); 851 852 // Run passes. For now we do all passes at once, but eventually we 853 // would like to have the option of streaming code generation. 854 855 { 856 PrettyStackTraceString CrashInfo("Per-function optimization"); 857 858 PerFunctionPasses.doInitialization(); 859 for (Function &F : *TheModule) 860 if (!F.isDeclaration()) 861 PerFunctionPasses.run(F); 862 PerFunctionPasses.doFinalization(); 863 } 864 865 { 866 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 867 PerModulePasses.run(*TheModule); 868 } 869 870 { 871 PrettyStackTraceString CrashInfo("Code generation"); 872 CodeGenPasses.run(*TheModule); 873 } 874 875 if (ThinLinkOS) 876 ThinLinkOS->keep(); 877 if (DwoOS) 878 DwoOS->keep(); 879 } 880 881 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 882 switch (Opts.OptimizationLevel) { 883 default: 884 llvm_unreachable("Invalid optimization level!"); 885 886 case 1: 887 return PassBuilder::O1; 888 889 case 2: 890 switch (Opts.OptimizeSize) { 891 default: 892 llvm_unreachable("Invalid optimization level for size!"); 893 894 case 0: 895 return PassBuilder::O2; 896 897 case 1: 898 return PassBuilder::Os; 899 900 case 2: 901 return PassBuilder::Oz; 902 } 903 904 case 3: 905 return PassBuilder::O3; 906 } 907 } 908 909 /// A clean version of `EmitAssembly` that uses the new pass manager. 910 /// 911 /// Not all features are currently supported in this system, but where 912 /// necessary it falls back to the legacy pass manager to at least provide 913 /// basic functionality. 914 /// 915 /// This API is planned to have its functionality finished and then to replace 916 /// `EmitAssembly` at some point in the future when the default switches. 917 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 918 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 919 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 920 setCommandLineOpts(CodeGenOpts); 921 922 // The new pass manager always makes a target machine available to passes 923 // during construction. 924 CreateTargetMachine(/*MustCreateTM*/ true); 925 if (!TM) 926 // This will already be diagnosed, just bail. 927 return; 928 TheModule->setDataLayout(TM->createDataLayout()); 929 930 Optional<PGOOptions> PGOOpt; 931 932 if (CodeGenOpts.hasProfileIRInstr()) 933 // -fprofile-generate. 934 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 935 ? DefaultProfileGenName 936 : CodeGenOpts.InstrProfileOutput, 937 "", "", "", true, 938 CodeGenOpts.DebugInfoForProfiling); 939 else if (CodeGenOpts.hasProfileIRUse()) 940 // -fprofile-use. 941 PGOOpt = PGOOptions("", CodeGenOpts.ProfileInstrumentUsePath, "", 942 CodeGenOpts.ProfileRemappingFile, false, 943 CodeGenOpts.DebugInfoForProfiling); 944 else if (!CodeGenOpts.SampleProfileFile.empty()) 945 // -fprofile-sample-use 946 PGOOpt = PGOOptions("", "", CodeGenOpts.SampleProfileFile, 947 CodeGenOpts.ProfileRemappingFile, false, 948 CodeGenOpts.DebugInfoForProfiling); 949 else if (CodeGenOpts.DebugInfoForProfiling) 950 // -fdebug-info-for-profiling 951 PGOOpt = PGOOptions("", "", "", "", false, true); 952 953 PassBuilder PB(TM.get(), PGOOpt); 954 955 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 956 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 957 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 958 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 959 960 // Register the AA manager first so that our version is the one used. 961 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 962 963 // Register the target library analysis directly and give it a customized 964 // preset TLI. 965 Triple TargetTriple(TheModule->getTargetTriple()); 966 std::unique_ptr<TargetLibraryInfoImpl> TLII( 967 createTLII(TargetTriple, CodeGenOpts)); 968 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 969 MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 970 971 // Register all the basic analyses with the managers. 972 PB.registerModuleAnalyses(MAM); 973 PB.registerCGSCCAnalyses(CGAM); 974 PB.registerFunctionAnalyses(FAM); 975 PB.registerLoopAnalyses(LAM); 976 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 977 978 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 979 980 if (!CodeGenOpts.DisableLLVMPasses) { 981 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 982 bool IsLTO = CodeGenOpts.PrepareForLTO; 983 984 if (CodeGenOpts.OptimizationLevel == 0) { 985 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 986 MPM.addPass(GCOVProfilerPass(*Options)); 987 988 // Build a minimal pipeline based on the semantics required by Clang, 989 // which is just that always inlining occurs. 990 MPM.addPass(AlwaysInlinerPass()); 991 992 // At -O0 we directly run necessary sanitizer passes. 993 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 994 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 995 996 // Lastly, add a semantically necessary pass for LTO. 997 if (IsLTO || IsThinLTO) 998 MPM.addPass(NameAnonGlobalPass()); 999 } else { 1000 // Map our optimization levels into one of the distinct levels used to 1001 // configure the pipeline. 1002 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1003 1004 // Register callbacks to schedule sanitizer passes at the appropriate part of 1005 // the pipeline. 1006 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1007 PB.registerScalarOptimizerLateEPCallback( 1008 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1009 FPM.addPass(BoundsCheckingPass()); 1010 }); 1011 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1012 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1013 MPM.addPass(GCOVProfilerPass(*Options)); 1014 }); 1015 1016 if (IsThinLTO) { 1017 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 1018 Level, CodeGenOpts.DebugPassManager); 1019 MPM.addPass(NameAnonGlobalPass()); 1020 } else if (IsLTO) { 1021 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 1022 CodeGenOpts.DebugPassManager); 1023 MPM.addPass(NameAnonGlobalPass()); 1024 } else { 1025 MPM = PB.buildPerModuleDefaultPipeline(Level, 1026 CodeGenOpts.DebugPassManager); 1027 } 1028 } 1029 } 1030 1031 // FIXME: We still use the legacy pass manager to do code generation. We 1032 // create that pass manager here and use it as needed below. 1033 legacy::PassManager CodeGenPasses; 1034 bool NeedCodeGen = false; 1035 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1036 1037 // Append any output we need to the pass manager. 1038 switch (Action) { 1039 case Backend_EmitNothing: 1040 break; 1041 1042 case Backend_EmitBC: 1043 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1044 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1045 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1046 if (!ThinLinkOS) 1047 return; 1048 } 1049 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1050 : nullptr)); 1051 } else { 1052 // Emit a module summary by default for Regular LTO except for ld64 1053 // targets 1054 bool EmitLTOSummary = 1055 (CodeGenOpts.PrepareForLTO && 1056 !CodeGenOpts.DisableLLVMPasses && 1057 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1058 llvm::Triple::Apple); 1059 if (EmitLTOSummary && !TheModule->getModuleFlag("ThinLTO")) 1060 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1061 1062 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 1063 EmitLTOSummary)); 1064 } 1065 break; 1066 1067 case Backend_EmitLL: 1068 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1069 break; 1070 1071 case Backend_EmitAssembly: 1072 case Backend_EmitMCNull: 1073 case Backend_EmitObj: 1074 NeedCodeGen = true; 1075 CodeGenPasses.add( 1076 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1077 if (!CodeGenOpts.SplitDwarfFile.empty()) { 1078 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfFile); 1079 if (!DwoOS) 1080 return; 1081 } 1082 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1083 DwoOS ? &DwoOS->os() : nullptr)) 1084 // FIXME: Should we handle this error differently? 1085 return; 1086 break; 1087 } 1088 1089 // Before executing passes, print the final values of the LLVM options. 1090 cl::PrintOptionValues(); 1091 1092 // Now that we have all of the passes ready, run them. 1093 { 1094 PrettyStackTraceString CrashInfo("Optimizer"); 1095 MPM.run(*TheModule, MAM); 1096 } 1097 1098 // Now if needed, run the legacy PM for codegen. 1099 if (NeedCodeGen) { 1100 PrettyStackTraceString CrashInfo("Code generation"); 1101 CodeGenPasses.run(*TheModule); 1102 } 1103 1104 if (ThinLinkOS) 1105 ThinLinkOS->keep(); 1106 if (DwoOS) 1107 DwoOS->keep(); 1108 } 1109 1110 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1111 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1112 if (!BMsOrErr) 1113 return BMsOrErr.takeError(); 1114 1115 // The bitcode file may contain multiple modules, we want the one that is 1116 // marked as being the ThinLTO module. 1117 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1118 return *Bm; 1119 1120 return make_error<StringError>("Could not find module summary", 1121 inconvertibleErrorCode()); 1122 } 1123 1124 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1125 for (BitcodeModule &BM : BMs) { 1126 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1127 if (LTOInfo && LTOInfo->IsThinLTO) 1128 return &BM; 1129 } 1130 return nullptr; 1131 } 1132 1133 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1134 const HeaderSearchOptions &HeaderOpts, 1135 const CodeGenOptions &CGOpts, 1136 const clang::TargetOptions &TOpts, 1137 const LangOptions &LOpts, 1138 std::unique_ptr<raw_pwrite_stream> OS, 1139 std::string SampleProfile, 1140 std::string ProfileRemapping, 1141 BackendAction Action) { 1142 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1143 ModuleToDefinedGVSummaries; 1144 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1145 1146 setCommandLineOpts(CGOpts); 1147 1148 // We can simply import the values mentioned in the combined index, since 1149 // we should only invoke this using the individual indexes written out 1150 // via a WriteIndexesThinBackend. 1151 FunctionImporter::ImportMapTy ImportList; 1152 for (auto &GlobalList : *CombinedIndex) { 1153 // Ignore entries for undefined references. 1154 if (GlobalList.second.SummaryList.empty()) 1155 continue; 1156 1157 auto GUID = GlobalList.first; 1158 assert(GlobalList.second.SummaryList.size() == 1 && 1159 "Expected individual combined index to have one summary per GUID"); 1160 auto &Summary = GlobalList.second.SummaryList[0]; 1161 // Skip the summaries for the importing module. These are included to 1162 // e.g. record required linkage changes. 1163 if (Summary->modulePath() == M->getModuleIdentifier()) 1164 continue; 1165 // Add an entry to provoke importing by thinBackend. 1166 ImportList[Summary->modulePath()].insert(GUID); 1167 } 1168 1169 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1170 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1171 1172 for (auto &I : ImportList) { 1173 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1174 llvm::MemoryBuffer::getFile(I.first()); 1175 if (!MBOrErr) { 1176 errs() << "Error loading imported file '" << I.first() 1177 << "': " << MBOrErr.getError().message() << "\n"; 1178 return; 1179 } 1180 1181 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1182 if (!BMOrErr) { 1183 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1184 errs() << "Error loading imported file '" << I.first() 1185 << "': " << EIB.message() << '\n'; 1186 }); 1187 return; 1188 } 1189 ModuleMap.insert({I.first(), *BMOrErr}); 1190 1191 OwnedImports.push_back(std::move(*MBOrErr)); 1192 } 1193 auto AddStream = [&](size_t Task) { 1194 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 1195 }; 1196 lto::Config Conf; 1197 if (CGOpts.SaveTempsFilePrefix != "") { 1198 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1199 /* UseInputModulePath */ false)) { 1200 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1201 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1202 << '\n'; 1203 }); 1204 } 1205 } 1206 Conf.CPU = TOpts.CPU; 1207 Conf.CodeModel = getCodeModel(CGOpts); 1208 Conf.MAttrs = TOpts.Features; 1209 Conf.RelocModel = CGOpts.RelocationModel; 1210 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1211 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1212 Conf.SampleProfile = std::move(SampleProfile); 1213 Conf.ProfileRemapping = std::move(ProfileRemapping); 1214 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1215 Conf.DebugPassManager = CGOpts.DebugPassManager; 1216 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1217 Conf.RemarksFilename = CGOpts.OptRecordFile; 1218 Conf.DwoPath = CGOpts.SplitDwarfFile; 1219 switch (Action) { 1220 case Backend_EmitNothing: 1221 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1222 return false; 1223 }; 1224 break; 1225 case Backend_EmitLL: 1226 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1227 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1228 return false; 1229 }; 1230 break; 1231 case Backend_EmitBC: 1232 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1233 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1234 return false; 1235 }; 1236 break; 1237 default: 1238 Conf.CGFileType = getCodeGenFileType(Action); 1239 break; 1240 } 1241 if (Error E = thinBackend( 1242 Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1243 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1244 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1245 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1246 }); 1247 } 1248 } 1249 1250 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1251 const HeaderSearchOptions &HeaderOpts, 1252 const CodeGenOptions &CGOpts, 1253 const clang::TargetOptions &TOpts, 1254 const LangOptions &LOpts, 1255 const llvm::DataLayout &TDesc, Module *M, 1256 BackendAction Action, 1257 std::unique_ptr<raw_pwrite_stream> OS) { 1258 std::unique_ptr<llvm::Module> EmptyModule; 1259 if (!CGOpts.ThinLTOIndexFile.empty()) { 1260 // If we are performing a ThinLTO importing compile, load the function index 1261 // into memory and pass it into runThinLTOBackend, which will run the 1262 // function importer and invoke LTO passes. 1263 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1264 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1265 /*IgnoreEmptyThinLTOIndexFile*/true); 1266 if (!IndexOrErr) { 1267 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1268 "Error loading index file '" + 1269 CGOpts.ThinLTOIndexFile + "': "); 1270 return; 1271 } 1272 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1273 // A null CombinedIndex means we should skip ThinLTO compilation 1274 // (LLVM will optionally ignore empty index files, returning null instead 1275 // of an error). 1276 if (CombinedIndex) { 1277 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1278 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1279 LOpts, std::move(OS), CGOpts.SampleProfileFile, 1280 CGOpts.ProfileRemappingFile, Action); 1281 return; 1282 } 1283 // Distributed indexing detected that nothing from the module is needed 1284 // for the final linking. So we can skip the compilation. We sill need to 1285 // output an empty object file to make sure that a linker does not fail 1286 // trying to read it. Also for some features, like CFI, we must skip 1287 // the compilation as CombinedIndex does not contain all required 1288 // information. 1289 EmptyModule = llvm::make_unique<llvm::Module>("empty", M->getContext()); 1290 EmptyModule->setTargetTriple(M->getTargetTriple()); 1291 M = EmptyModule.get(); 1292 } 1293 } 1294 1295 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1296 1297 if (CGOpts.ExperimentalNewPassManager) 1298 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1299 else 1300 AsmHelper.EmitAssembly(Action, std::move(OS)); 1301 1302 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1303 // DataLayout. 1304 if (AsmHelper.TM) { 1305 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1306 if (DLDesc != TDesc.getStringRepresentation()) { 1307 unsigned DiagID = Diags.getCustomDiagID( 1308 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1309 "expected target description '%1'"); 1310 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1311 } 1312 } 1313 } 1314 1315 static const char* getSectionNameForBitcode(const Triple &T) { 1316 switch (T.getObjectFormat()) { 1317 case Triple::MachO: 1318 return "__LLVM,__bitcode"; 1319 case Triple::COFF: 1320 case Triple::ELF: 1321 case Triple::Wasm: 1322 case Triple::UnknownObjectFormat: 1323 return ".llvmbc"; 1324 } 1325 llvm_unreachable("Unimplemented ObjectFormatType"); 1326 } 1327 1328 static const char* getSectionNameForCommandline(const Triple &T) { 1329 switch (T.getObjectFormat()) { 1330 case Triple::MachO: 1331 return "__LLVM,__cmdline"; 1332 case Triple::COFF: 1333 case Triple::ELF: 1334 case Triple::Wasm: 1335 case Triple::UnknownObjectFormat: 1336 return ".llvmcmd"; 1337 } 1338 llvm_unreachable("Unimplemented ObjectFormatType"); 1339 } 1340 1341 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1342 // __LLVM,__bitcode section. 1343 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1344 llvm::MemoryBufferRef Buf) { 1345 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1346 return; 1347 1348 // Save llvm.compiler.used and remote it. 1349 SmallVector<Constant*, 2> UsedArray; 1350 SmallPtrSet<GlobalValue*, 4> UsedGlobals; 1351 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1352 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1353 for (auto *GV : UsedGlobals) { 1354 if (GV->getName() != "llvm.embedded.module" && 1355 GV->getName() != "llvm.cmdline") 1356 UsedArray.push_back( 1357 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1358 } 1359 if (Used) 1360 Used->eraseFromParent(); 1361 1362 // Embed the bitcode for the llvm module. 1363 std::string Data; 1364 ArrayRef<uint8_t> ModuleData; 1365 Triple T(M->getTargetTriple()); 1366 // Create a constant that contains the bitcode. 1367 // In case of embedding a marker, ignore the input Buf and use the empty 1368 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1369 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1370 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1371 (const unsigned char *)Buf.getBufferEnd())) { 1372 // If the input is LLVM Assembly, bitcode is produced by serializing 1373 // the module. Use-lists order need to be perserved in this case. 1374 llvm::raw_string_ostream OS(Data); 1375 llvm::WriteBitcodeToFile(*M, OS, /* ShouldPreserveUseListOrder */ true); 1376 ModuleData = 1377 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1378 } else 1379 // If the input is LLVM bitcode, write the input byte stream directly. 1380 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1381 Buf.getBufferSize()); 1382 } 1383 llvm::Constant *ModuleConstant = 1384 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1385 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1386 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1387 ModuleConstant); 1388 GV->setSection(getSectionNameForBitcode(T)); 1389 UsedArray.push_back( 1390 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1391 if (llvm::GlobalVariable *Old = 1392 M->getGlobalVariable("llvm.embedded.module", true)) { 1393 assert(Old->hasOneUse() && 1394 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1395 GV->takeName(Old); 1396 Old->eraseFromParent(); 1397 } else { 1398 GV->setName("llvm.embedded.module"); 1399 } 1400 1401 // Skip if only bitcode needs to be embedded. 1402 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1403 // Embed command-line options. 1404 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1405 CGOpts.CmdArgs.size()); 1406 llvm::Constant *CmdConstant = 1407 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1408 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1409 llvm::GlobalValue::PrivateLinkage, 1410 CmdConstant); 1411 GV->setSection(getSectionNameForCommandline(T)); 1412 UsedArray.push_back( 1413 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1414 if (llvm::GlobalVariable *Old = 1415 M->getGlobalVariable("llvm.cmdline", true)) { 1416 assert(Old->hasOneUse() && 1417 "llvm.cmdline can only be used once in llvm.compiler.used"); 1418 GV->takeName(Old); 1419 Old->eraseFromParent(); 1420 } else { 1421 GV->setName("llvm.cmdline"); 1422 } 1423 } 1424 1425 if (UsedArray.empty()) 1426 return; 1427 1428 // Recreate llvm.compiler.used. 1429 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1430 auto *NewUsed = new GlobalVariable( 1431 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1432 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1433 NewUsed->setSection("llvm.metadata"); 1434 } 1435