1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/ADT/StringSwitch.h" 19 #include "llvm/ADT/Triple.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Bitcode/BitcodeWriterPass.h" 23 #include "llvm/Bitcode/BitcodeWriter.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/CodeGen/RegAllocRegistry.h" 26 #include "llvm/CodeGen/SchedulerRegistry.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/ModuleSummaryIndex.h" 29 #include "llvm/IR/IRPrintingPasses.h" 30 #include "llvm/IR/LegacyPassManager.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/Verifier.h" 33 #include "llvm/LTO/LTOBackend.h" 34 #include "llvm/MC/SubtargetFeature.h" 35 #include "llvm/Object/ModuleSummaryIndexObjectFile.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/MemoryBuffer.h" 38 #include "llvm/Support/PrettyStackTrace.h" 39 #include "llvm/Support/TargetRegistry.h" 40 #include "llvm/Support/Timer.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Target/TargetMachine.h" 43 #include "llvm/Target/TargetOptions.h" 44 #include "llvm/Target/TargetSubtargetInfo.h" 45 #include "llvm/Transforms/Coroutines.h" 46 #include "llvm/Transforms/IPO.h" 47 #include "llvm/Transforms/IPO/AlwaysInliner.h" 48 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 49 #include "llvm/Transforms/Instrumentation.h" 50 #include "llvm/Transforms/ObjCARC.h" 51 #include "llvm/Transforms/Scalar.h" 52 #include "llvm/Transforms/Scalar/GVN.h" 53 #include "llvm/Transforms/Utils/SymbolRewriter.h" 54 #include <memory> 55 using namespace clang; 56 using namespace llvm; 57 58 namespace { 59 60 class EmitAssemblyHelper { 61 DiagnosticsEngine &Diags; 62 const CodeGenOptions &CodeGenOpts; 63 const clang::TargetOptions &TargetOpts; 64 const LangOptions &LangOpts; 65 Module *TheModule; 66 67 Timer CodeGenerationTime; 68 69 std::unique_ptr<raw_pwrite_stream> OS; 70 71 private: 72 TargetIRAnalysis getTargetIRAnalysis() const { 73 if (TM) 74 return TM->getTargetIRAnalysis(); 75 76 return TargetIRAnalysis(); 77 } 78 79 /// Set LLVM command line options passed through -backend-option. 80 void setCommandLineOpts(); 81 82 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 83 84 /// Generates the TargetMachine. 85 /// Leaves TM unchanged if it is unable to create the target machine. 86 /// Some of our clang tests specify triples which are not built 87 /// into clang. This is okay because these tests check the generated 88 /// IR, and they require DataLayout which depends on the triple. 89 /// In this case, we allow this method to fail and not report an error. 90 /// When MustCreateTM is used, we print an error if we are unable to load 91 /// the requested target. 92 void CreateTargetMachine(bool MustCreateTM); 93 94 /// Add passes necessary to emit assembly or LLVM IR. 95 /// 96 /// \return True on success. 97 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 98 raw_pwrite_stream &OS); 99 100 public: 101 EmitAssemblyHelper(DiagnosticsEngine &_Diags, const CodeGenOptions &CGOpts, 102 const clang::TargetOptions &TOpts, 103 const LangOptions &LOpts, Module *M) 104 : Diags(_Diags), CodeGenOpts(CGOpts), TargetOpts(TOpts), LangOpts(LOpts), 105 TheModule(M), CodeGenerationTime("codegen", "Code Generation Time") {} 106 107 ~EmitAssemblyHelper() { 108 if (CodeGenOpts.DisableFree) 109 BuryPointer(std::move(TM)); 110 } 111 112 std::unique_ptr<TargetMachine> TM; 113 114 void EmitAssembly(BackendAction Action, 115 std::unique_ptr<raw_pwrite_stream> OS); 116 }; 117 118 // We need this wrapper to access LangOpts and CGOpts from extension functions 119 // that we add to the PassManagerBuilder. 120 class PassManagerBuilderWrapper : public PassManagerBuilder { 121 public: 122 PassManagerBuilderWrapper(const CodeGenOptions &CGOpts, 123 const LangOptions &LangOpts) 124 : PassManagerBuilder(), CGOpts(CGOpts), LangOpts(LangOpts) {} 125 const CodeGenOptions &getCGOpts() const { return CGOpts; } 126 const LangOptions &getLangOpts() const { return LangOpts; } 127 private: 128 const CodeGenOptions &CGOpts; 129 const LangOptions &LangOpts; 130 }; 131 132 } 133 134 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 135 if (Builder.OptLevel > 0) 136 PM.add(createObjCARCAPElimPass()); 137 } 138 139 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 140 if (Builder.OptLevel > 0) 141 PM.add(createObjCARCExpandPass()); 142 } 143 144 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 145 if (Builder.OptLevel > 0) 146 PM.add(createObjCARCOptPass()); 147 } 148 149 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 150 legacy::PassManagerBase &PM) { 151 PM.add(createAddDiscriminatorsPass()); 152 } 153 154 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 155 legacy::PassManagerBase &PM) { 156 PM.add(createBoundsCheckingPass()); 157 } 158 159 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 160 legacy::PassManagerBase &PM) { 161 const PassManagerBuilderWrapper &BuilderWrapper = 162 static_cast<const PassManagerBuilderWrapper&>(Builder); 163 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 164 SanitizerCoverageOptions Opts; 165 Opts.CoverageType = 166 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 167 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 168 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 169 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 170 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 171 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 172 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 173 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 174 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 175 PM.add(createSanitizerCoverageModulePass(Opts)); 176 } 177 178 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 179 legacy::PassManagerBase &PM) { 180 const PassManagerBuilderWrapper &BuilderWrapper = 181 static_cast<const PassManagerBuilderWrapper&>(Builder); 182 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 183 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 184 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 185 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 186 UseAfterScope)); 187 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/false, Recover)); 188 } 189 190 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 191 legacy::PassManagerBase &PM) { 192 PM.add(createAddressSanitizerFunctionPass( 193 /*CompileKernel*/ true, 194 /*Recover*/ true, /*UseAfterScope*/ false)); 195 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/true, 196 /*Recover*/true)); 197 } 198 199 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 200 legacy::PassManagerBase &PM) { 201 const PassManagerBuilderWrapper &BuilderWrapper = 202 static_cast<const PassManagerBuilderWrapper&>(Builder); 203 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 204 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 205 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 206 PM.add(createMemorySanitizerPass(TrackOrigins, Recover)); 207 208 // MemorySanitizer inserts complex instrumentation that mostly follows 209 // the logic of the original code, but operates on "shadow" values. 210 // It can benefit from re-running some general purpose optimization passes. 211 if (Builder.OptLevel > 0) { 212 PM.add(createEarlyCSEPass()); 213 PM.add(createReassociatePass()); 214 PM.add(createLICMPass()); 215 PM.add(createGVNPass()); 216 PM.add(createInstructionCombiningPass()); 217 PM.add(createDeadStoreEliminationPass()); 218 } 219 } 220 221 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 222 legacy::PassManagerBase &PM) { 223 PM.add(createThreadSanitizerPass()); 224 } 225 226 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 227 legacy::PassManagerBase &PM) { 228 const PassManagerBuilderWrapper &BuilderWrapper = 229 static_cast<const PassManagerBuilderWrapper&>(Builder); 230 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 231 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 232 } 233 234 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 235 legacy::PassManagerBase &PM) { 236 const PassManagerBuilderWrapper &BuilderWrapper = 237 static_cast<const PassManagerBuilderWrapper&>(Builder); 238 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 239 EfficiencySanitizerOptions Opts; 240 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 241 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 242 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 243 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 244 PM.add(createEfficiencySanitizerPass(Opts)); 245 } 246 247 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 248 const CodeGenOptions &CodeGenOpts) { 249 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 250 if (!CodeGenOpts.SimplifyLibCalls) 251 TLII->disableAllFunctions(); 252 else { 253 // Disable individual libc/libm calls in TargetLibraryInfo. 254 LibFunc::Func F; 255 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 256 if (TLII->getLibFunc(FuncName, F)) 257 TLII->setUnavailable(F); 258 } 259 260 switch (CodeGenOpts.getVecLib()) { 261 case CodeGenOptions::Accelerate: 262 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 263 break; 264 case CodeGenOptions::SVML: 265 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 266 break; 267 default: 268 break; 269 } 270 return TLII; 271 } 272 273 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 274 legacy::PassManager *MPM) { 275 llvm::SymbolRewriter::RewriteDescriptorList DL; 276 277 llvm::SymbolRewriter::RewriteMapParser MapParser; 278 for (const auto &MapFile : Opts.RewriteMapFiles) 279 MapParser.parse(MapFile, &DL); 280 281 MPM->add(createRewriteSymbolsPass(DL)); 282 } 283 284 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 285 legacy::FunctionPassManager &FPM) { 286 if (CodeGenOpts.DisableLLVMPasses) 287 return; 288 289 unsigned OptLevel = CodeGenOpts.OptimizationLevel; 290 CodeGenOptions::InliningMethod Inlining = CodeGenOpts.getInlining(); 291 292 // Handle disabling of LLVM optimization, where we want to preserve the 293 // internal module before any optimization. 294 if (CodeGenOpts.DisableLLVMOpts) { 295 OptLevel = 0; 296 Inlining = CodeGenOpts.NoInlining; 297 } 298 299 PassManagerBuilderWrapper PMBuilder(CodeGenOpts, LangOpts); 300 301 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 302 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 303 // are inserted before PMBuilder ones - they'd get the default-constructed 304 // TLI with an unknown target otherwise. 305 Triple TargetTriple(TheModule->getTargetTriple()); 306 std::unique_ptr<TargetLibraryInfoImpl> TLII( 307 createTLII(TargetTriple, CodeGenOpts)); 308 309 switch (Inlining) { 310 case CodeGenOptions::NoInlining: 311 break; 312 case CodeGenOptions::NormalInlining: 313 case CodeGenOptions::OnlyHintInlining: { 314 PMBuilder.Inliner = 315 createFunctionInliningPass(OptLevel, CodeGenOpts.OptimizeSize); 316 break; 317 } 318 case CodeGenOptions::OnlyAlwaysInlining: 319 // Respect always_inline. 320 if (OptLevel == 0) 321 // Do not insert lifetime intrinsics at -O0. 322 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(false); 323 else 324 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(); 325 break; 326 } 327 328 PMBuilder.OptLevel = OptLevel; 329 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 330 PMBuilder.BBVectorize = CodeGenOpts.VectorizeBB; 331 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 332 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 333 334 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 335 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 336 PMBuilder.PrepareForThinLTO = CodeGenOpts.EmitSummaryIndex; 337 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 338 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 339 340 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 341 342 // Add target-specific passes that need to run as early as possible. 343 if (TM) 344 PMBuilder.addExtension( 345 PassManagerBuilder::EP_EarlyAsPossible, 346 [&](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 347 TM->addEarlyAsPossiblePasses(PM); 348 }); 349 350 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 351 addAddDiscriminatorsPass); 352 353 // In ObjC ARC mode, add the main ARC optimization passes. 354 if (LangOpts.ObjCAutoRefCount) { 355 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 356 addObjCARCExpandPass); 357 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 358 addObjCARCAPElimPass); 359 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 360 addObjCARCOptPass); 361 } 362 363 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 364 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 365 addBoundsCheckingPass); 366 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 367 addBoundsCheckingPass); 368 } 369 370 if (CodeGenOpts.SanitizeCoverageType || 371 CodeGenOpts.SanitizeCoverageIndirectCalls || 372 CodeGenOpts.SanitizeCoverageTraceCmp) { 373 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 374 addSanitizerCoveragePass); 375 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 376 addSanitizerCoveragePass); 377 } 378 379 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 380 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 381 addAddressSanitizerPasses); 382 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 383 addAddressSanitizerPasses); 384 } 385 386 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 387 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 388 addKernelAddressSanitizerPasses); 389 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 390 addKernelAddressSanitizerPasses); 391 } 392 393 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 394 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 395 addMemorySanitizerPass); 396 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 397 addMemorySanitizerPass); 398 } 399 400 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 401 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 402 addThreadSanitizerPass); 403 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 404 addThreadSanitizerPass); 405 } 406 407 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 408 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 409 addDataFlowSanitizerPass); 410 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 411 addDataFlowSanitizerPass); 412 } 413 414 if (LangOpts.CoroutinesTS) 415 addCoroutinePassesToExtensionPoints(PMBuilder); 416 417 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 418 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 419 addEfficiencySanitizerPass); 420 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 421 addEfficiencySanitizerPass); 422 } 423 424 // Set up the per-function pass manager. 425 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 426 if (CodeGenOpts.VerifyModule) 427 FPM.add(createVerifierPass()); 428 429 // Set up the per-module pass manager. 430 if (!CodeGenOpts.RewriteMapFiles.empty()) 431 addSymbolRewriterPass(CodeGenOpts, &MPM); 432 433 if (!CodeGenOpts.DisableGCov && 434 (CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)) { 435 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 436 // LLVM's -default-gcov-version flag is set to something invalid. 437 GCOVOptions Options; 438 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 439 Options.EmitData = CodeGenOpts.EmitGcovArcs; 440 memcpy(Options.Version, CodeGenOpts.CoverageVersion, 4); 441 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 442 Options.NoRedZone = CodeGenOpts.DisableRedZone; 443 Options.FunctionNamesInData = 444 !CodeGenOpts.CoverageNoFunctionNamesInData; 445 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 446 MPM.add(createGCOVProfilerPass(Options)); 447 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 448 MPM.add(createStripSymbolsPass(true)); 449 } 450 451 if (CodeGenOpts.hasProfileClangInstr()) { 452 InstrProfOptions Options; 453 Options.NoRedZone = CodeGenOpts.DisableRedZone; 454 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 455 MPM.add(createInstrProfilingLegacyPass(Options)); 456 } 457 if (CodeGenOpts.hasProfileIRInstr()) { 458 PMBuilder.EnablePGOInstrGen = true; 459 if (!CodeGenOpts.InstrProfileOutput.empty()) 460 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 461 else 462 PMBuilder.PGOInstrGen = "default_%m.profraw"; 463 } 464 if (CodeGenOpts.hasProfileIRUse()) 465 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 466 467 if (!CodeGenOpts.SampleProfileFile.empty()) 468 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 469 470 PMBuilder.populateFunctionPassManager(FPM); 471 PMBuilder.populateModulePassManager(MPM); 472 } 473 474 void EmitAssemblyHelper::setCommandLineOpts() { 475 SmallVector<const char *, 16> BackendArgs; 476 BackendArgs.push_back("clang"); // Fake program name. 477 if (!CodeGenOpts.DebugPass.empty()) { 478 BackendArgs.push_back("-debug-pass"); 479 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 480 } 481 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 482 BackendArgs.push_back("-limit-float-precision"); 483 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 484 } 485 for (const std::string &BackendOption : CodeGenOpts.BackendOptions) 486 BackendArgs.push_back(BackendOption.c_str()); 487 BackendArgs.push_back(nullptr); 488 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 489 BackendArgs.data()); 490 } 491 492 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 493 // Create the TargetMachine for generating code. 494 std::string Error; 495 std::string Triple = TheModule->getTargetTriple(); 496 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 497 if (!TheTarget) { 498 if (MustCreateTM) 499 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 500 return; 501 } 502 503 unsigned CodeModel = 504 llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 505 .Case("small", llvm::CodeModel::Small) 506 .Case("kernel", llvm::CodeModel::Kernel) 507 .Case("medium", llvm::CodeModel::Medium) 508 .Case("large", llvm::CodeModel::Large) 509 .Case("default", llvm::CodeModel::Default) 510 .Default(~0u); 511 assert(CodeModel != ~0u && "invalid code model!"); 512 llvm::CodeModel::Model CM = static_cast<llvm::CodeModel::Model>(CodeModel); 513 514 std::string FeaturesStr = 515 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 516 517 // Keep this synced with the equivalent code in tools/driver/cc1as_main.cpp. 518 llvm::Optional<llvm::Reloc::Model> RM; 519 if (CodeGenOpts.RelocationModel == "static") { 520 RM = llvm::Reloc::Static; 521 } else if (CodeGenOpts.RelocationModel == "pic") { 522 RM = llvm::Reloc::PIC_; 523 } else if (CodeGenOpts.RelocationModel == "ropi") { 524 RM = llvm::Reloc::ROPI; 525 } else if (CodeGenOpts.RelocationModel == "rwpi") { 526 RM = llvm::Reloc::RWPI; 527 } else if (CodeGenOpts.RelocationModel == "ropi-rwpi") { 528 RM = llvm::Reloc::ROPI_RWPI; 529 } else { 530 assert(CodeGenOpts.RelocationModel == "dynamic-no-pic" && 531 "Invalid PIC model!"); 532 RM = llvm::Reloc::DynamicNoPIC; 533 } 534 535 CodeGenOpt::Level OptLevel = CodeGenOpt::Default; 536 switch (CodeGenOpts.OptimizationLevel) { 537 default: break; 538 case 0: OptLevel = CodeGenOpt::None; break; 539 case 3: OptLevel = CodeGenOpt::Aggressive; break; 540 } 541 542 llvm::TargetOptions Options; 543 544 Options.ThreadModel = 545 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 546 .Case("posix", llvm::ThreadModel::POSIX) 547 .Case("single", llvm::ThreadModel::Single); 548 549 // Set float ABI type. 550 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 551 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 552 "Invalid Floating Point ABI!"); 553 Options.FloatABIType = 554 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 555 .Case("soft", llvm::FloatABI::Soft) 556 .Case("softfp", llvm::FloatABI::Soft) 557 .Case("hard", llvm::FloatABI::Hard) 558 .Default(llvm::FloatABI::Default); 559 560 // Set FP fusion mode. 561 switch (CodeGenOpts.getFPContractMode()) { 562 case CodeGenOptions::FPC_Off: 563 Options.AllowFPOpFusion = llvm::FPOpFusion::Strict; 564 break; 565 case CodeGenOptions::FPC_On: 566 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 567 break; 568 case CodeGenOptions::FPC_Fast: 569 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 570 break; 571 } 572 573 Options.UseInitArray = CodeGenOpts.UseInitArray; 574 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 575 Options.CompressDebugSections = CodeGenOpts.CompressDebugSections; 576 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 577 578 // Set EABI version. 579 Options.EABIVersion = llvm::StringSwitch<llvm::EABI>(TargetOpts.EABIVersion) 580 .Case("4", llvm::EABI::EABI4) 581 .Case("5", llvm::EABI::EABI5) 582 .Case("gnu", llvm::EABI::GNU) 583 .Default(llvm::EABI::Default); 584 585 if (LangOpts.SjLjExceptions) 586 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 587 588 Options.LessPreciseFPMADOption = CodeGenOpts.LessPreciseFPMAD; 589 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 590 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 591 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 592 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 593 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 594 Options.FunctionSections = CodeGenOpts.FunctionSections; 595 Options.DataSections = CodeGenOpts.DataSections; 596 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 597 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 598 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 599 600 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 601 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 602 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 603 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 604 Options.MCOptions.MCIncrementalLinkerCompatible = 605 CodeGenOpts.IncrementalLinkerCompatible; 606 Options.MCOptions.MCPIECopyRelocations = 607 CodeGenOpts.PIECopyRelocations; 608 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 609 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 610 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 611 Options.MCOptions.ABIName = TargetOpts.ABI; 612 613 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 614 Options, RM, CM, OptLevel)); 615 } 616 617 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 618 BackendAction Action, 619 raw_pwrite_stream &OS) { 620 // Add LibraryInfo. 621 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 622 std::unique_ptr<TargetLibraryInfoImpl> TLII( 623 createTLII(TargetTriple, CodeGenOpts)); 624 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 625 626 // Normal mode, emit a .s or .o file by running the code generator. Note, 627 // this also adds codegenerator level optimization passes. 628 TargetMachine::CodeGenFileType CGFT = TargetMachine::CGFT_AssemblyFile; 629 if (Action == Backend_EmitObj) 630 CGFT = TargetMachine::CGFT_ObjectFile; 631 else if (Action == Backend_EmitMCNull) 632 CGFT = TargetMachine::CGFT_Null; 633 else 634 assert(Action == Backend_EmitAssembly && "Invalid action!"); 635 636 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 637 // "codegen" passes so that it isn't run multiple times when there is 638 // inlining happening. 639 if (CodeGenOpts.OptimizationLevel > 0) 640 CodeGenPasses.add(createObjCARCContractPass()); 641 642 if (TM->addPassesToEmitFile(CodeGenPasses, OS, CGFT, 643 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 644 Diags.Report(diag::err_fe_unable_to_interface_with_target); 645 return false; 646 } 647 648 return true; 649 } 650 651 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 652 std::unique_ptr<raw_pwrite_stream> OS) { 653 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 654 655 setCommandLineOpts(); 656 657 bool UsesCodeGen = (Action != Backend_EmitNothing && 658 Action != Backend_EmitBC && 659 Action != Backend_EmitLL); 660 CreateTargetMachine(UsesCodeGen); 661 662 if (UsesCodeGen && !TM) 663 return; 664 if (TM) 665 TheModule->setDataLayout(TM->createDataLayout()); 666 667 legacy::PassManager PerModulePasses; 668 PerModulePasses.add( 669 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 670 671 legacy::FunctionPassManager PerFunctionPasses(TheModule); 672 PerFunctionPasses.add( 673 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 674 675 CreatePasses(PerModulePasses, PerFunctionPasses); 676 677 legacy::PassManager CodeGenPasses; 678 CodeGenPasses.add( 679 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 680 681 switch (Action) { 682 case Backend_EmitNothing: 683 break; 684 685 case Backend_EmitBC: 686 PerModulePasses.add(createBitcodeWriterPass( 687 *OS, CodeGenOpts.EmitLLVMUseLists, CodeGenOpts.EmitSummaryIndex, 688 CodeGenOpts.EmitSummaryIndex)); 689 break; 690 691 case Backend_EmitLL: 692 PerModulePasses.add( 693 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 694 break; 695 696 default: 697 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 698 return; 699 } 700 701 // Before executing passes, print the final values of the LLVM options. 702 cl::PrintOptionValues(); 703 704 // Run passes. For now we do all passes at once, but eventually we 705 // would like to have the option of streaming code generation. 706 707 { 708 PrettyStackTraceString CrashInfo("Per-function optimization"); 709 710 PerFunctionPasses.doInitialization(); 711 for (Function &F : *TheModule) 712 if (!F.isDeclaration()) 713 PerFunctionPasses.run(F); 714 PerFunctionPasses.doFinalization(); 715 } 716 717 { 718 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 719 PerModulePasses.run(*TheModule); 720 } 721 722 { 723 PrettyStackTraceString CrashInfo("Code generation"); 724 CodeGenPasses.run(*TheModule); 725 } 726 } 727 728 static void runThinLTOBackend(const CodeGenOptions &CGOpts, Module *M, 729 std::unique_ptr<raw_pwrite_stream> OS) { 730 // If we are performing a ThinLTO importing compile, load the function index 731 // into memory and pass it into thinBackend, which will run the function 732 // importer and invoke LTO passes. 733 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 734 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile); 735 if (!IndexOrErr) { 736 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 737 "Error loading index file '" + 738 CGOpts.ThinLTOIndexFile + "': "); 739 return; 740 } 741 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 742 743 StringMap<std::map<GlobalValue::GUID, GlobalValueSummary *>> 744 ModuleToDefinedGVSummaries; 745 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 746 747 // FIXME: We could simply import the modules mentioned in the combined index 748 // here. 749 FunctionImporter::ImportMapTy ImportList; 750 ComputeCrossModuleImportForModule(M->getModuleIdentifier(), *CombinedIndex, 751 ImportList); 752 753 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 754 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 755 756 for (auto &I : ImportList) { 757 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 758 llvm::MemoryBuffer::getFile(I.first()); 759 if (!MBOrErr) { 760 errs() << "Error loading imported file '" << I.first() 761 << "': " << MBOrErr.getError().message() << "\n"; 762 return; 763 } 764 765 Expected<std::vector<BitcodeModule>> BMsOrErr = 766 getBitcodeModuleList(**MBOrErr); 767 if (!BMsOrErr) { 768 handleAllErrors(BMsOrErr.takeError(), [&](ErrorInfoBase &EIB) { 769 errs() << "Error loading imported file '" << I.first() 770 << "': " << EIB.message() << '\n'; 771 }); 772 return; 773 } 774 775 // The bitcode file may contain multiple modules, we want the one with a 776 // summary. 777 bool FoundModule = false; 778 for (BitcodeModule &BM : *BMsOrErr) { 779 Expected<bool> HasSummary = BM.hasSummary(); 780 if (HasSummary && *HasSummary) { 781 ModuleMap.insert({I.first(), BM}); 782 FoundModule = true; 783 break; 784 } 785 } 786 if (!FoundModule) { 787 errs() << "Error loading imported file '" << I.first() 788 << "': Could not find module summary\n"; 789 return; 790 } 791 792 OwnedImports.push_back(std::move(*MBOrErr)); 793 } 794 auto AddStream = [&](size_t Task) { 795 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 796 }; 797 lto::Config Conf; 798 if (Error E = thinBackend( 799 Conf, 0, AddStream, *M, *CombinedIndex, ImportList, 800 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 801 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 802 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 803 }); 804 } 805 } 806 807 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 808 const CodeGenOptions &CGOpts, 809 const clang::TargetOptions &TOpts, 810 const LangOptions &LOpts, const llvm::DataLayout &TDesc, 811 Module *M, BackendAction Action, 812 std::unique_ptr<raw_pwrite_stream> OS) { 813 if (!CGOpts.ThinLTOIndexFile.empty()) { 814 runThinLTOBackend(CGOpts, M, std::move(OS)); 815 return; 816 } 817 818 EmitAssemblyHelper AsmHelper(Diags, CGOpts, TOpts, LOpts, M); 819 820 AsmHelper.EmitAssembly(Action, std::move(OS)); 821 822 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 823 // DataLayout. 824 if (AsmHelper.TM) { 825 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 826 if (DLDesc != TDesc.getStringRepresentation()) { 827 unsigned DiagID = Diags.getCustomDiagID( 828 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 829 "expected target description '%1'"); 830 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 831 } 832 } 833 } 834 835 static const char* getSectionNameForBitcode(const Triple &T) { 836 switch (T.getObjectFormat()) { 837 case Triple::MachO: 838 return "__LLVM,__bitcode"; 839 case Triple::COFF: 840 case Triple::ELF: 841 case Triple::UnknownObjectFormat: 842 return ".llvmbc"; 843 } 844 llvm_unreachable("Unimplemented ObjectFormatType"); 845 } 846 847 static const char* getSectionNameForCommandline(const Triple &T) { 848 switch (T.getObjectFormat()) { 849 case Triple::MachO: 850 return "__LLVM,__cmdline"; 851 case Triple::COFF: 852 case Triple::ELF: 853 case Triple::UnknownObjectFormat: 854 return ".llvmcmd"; 855 } 856 llvm_unreachable("Unimplemented ObjectFormatType"); 857 } 858 859 // With -fembed-bitcode, save a copy of the llvm IR as data in the 860 // __LLVM,__bitcode section. 861 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 862 llvm::MemoryBufferRef Buf) { 863 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 864 return; 865 866 // Save llvm.compiler.used and remote it. 867 SmallVector<Constant*, 2> UsedArray; 868 SmallSet<GlobalValue*, 4> UsedGlobals; 869 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 870 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 871 for (auto *GV : UsedGlobals) { 872 if (GV->getName() != "llvm.embedded.module" && 873 GV->getName() != "llvm.cmdline") 874 UsedArray.push_back( 875 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 876 } 877 if (Used) 878 Used->eraseFromParent(); 879 880 // Embed the bitcode for the llvm module. 881 std::string Data; 882 ArrayRef<uint8_t> ModuleData; 883 Triple T(M->getTargetTriple()); 884 // Create a constant that contains the bitcode. 885 // In case of embedding a marker, ignore the input Buf and use the empty 886 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 887 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 888 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 889 (const unsigned char *)Buf.getBufferEnd())) { 890 // If the input is LLVM Assembly, bitcode is produced by serializing 891 // the module. Use-lists order need to be perserved in this case. 892 llvm::raw_string_ostream OS(Data); 893 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 894 ModuleData = 895 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 896 } else 897 // If the input is LLVM bitcode, write the input byte stream directly. 898 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 899 Buf.getBufferSize()); 900 } 901 llvm::Constant *ModuleConstant = 902 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 903 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 904 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 905 ModuleConstant); 906 GV->setSection(getSectionNameForBitcode(T)); 907 UsedArray.push_back( 908 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 909 if (llvm::GlobalVariable *Old = 910 M->getGlobalVariable("llvm.embedded.module", true)) { 911 assert(Old->hasOneUse() && 912 "llvm.embedded.module can only be used once in llvm.compiler.used"); 913 GV->takeName(Old); 914 Old->eraseFromParent(); 915 } else { 916 GV->setName("llvm.embedded.module"); 917 } 918 919 // Skip if only bitcode needs to be embedded. 920 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 921 // Embed command-line options. 922 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 923 CGOpts.CmdArgs.size()); 924 llvm::Constant *CmdConstant = 925 llvm::ConstantDataArray::get(M->getContext(), CmdData); 926 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 927 llvm::GlobalValue::PrivateLinkage, 928 CmdConstant); 929 GV->setSection(getSectionNameForCommandline(T)); 930 UsedArray.push_back( 931 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 932 if (llvm::GlobalVariable *Old = 933 M->getGlobalVariable("llvm.cmdline", true)) { 934 assert(Old->hasOneUse() && 935 "llvm.cmdline can only be used once in llvm.compiler.used"); 936 GV->takeName(Old); 937 Old->eraseFromParent(); 938 } else { 939 GV->setName("llvm.cmdline"); 940 } 941 } 942 943 if (UsedArray.empty()) 944 return; 945 946 // Recreate llvm.compiler.used. 947 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 948 auto *NewUsed = new GlobalVariable( 949 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 950 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 951 NewUsed->setSection("llvm.metadata"); 952 } 953