1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Bitcode/BitcodeReader.h" 24 #include "llvm/Bitcode/BitcodeWriter.h" 25 #include "llvm/Bitcode/BitcodeWriterPass.h" 26 #include "llvm/CodeGen/RegAllocRegistry.h" 27 #include "llvm/CodeGen/SchedulerRegistry.h" 28 #include "llvm/CodeGen/TargetSubtargetInfo.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/IRPrintingPasses.h" 31 #include "llvm/IR/LegacyPassManager.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSummaryIndex.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/LTO/LTOBackend.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/SubtargetFeature.h" 38 #include "llvm/Passes/PassBuilder.h" 39 #include "llvm/Passes/PassPlugin.h" 40 #include "llvm/Passes/StandardInstrumentations.h" 41 #include "llvm/Support/BuryPointer.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/MemoryBuffer.h" 44 #include "llvm/Support/PrettyStackTrace.h" 45 #include "llvm/Support/TargetRegistry.h" 46 #include "llvm/Support/TimeProfiler.h" 47 #include "llvm/Support/Timer.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Target/TargetMachine.h" 50 #include "llvm/Target/TargetOptions.h" 51 #include "llvm/Transforms/Coroutines.h" 52 #include "llvm/Transforms/IPO.h" 53 #include "llvm/Transforms/IPO/AlwaysInliner.h" 54 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 55 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 56 #include "llvm/Transforms/InstCombine/InstCombine.h" 57 #include "llvm/Transforms/Instrumentation.h" 58 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 59 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 60 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 61 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 62 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 63 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 64 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 65 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 66 #include "llvm/Transforms/ObjCARC.h" 67 #include "llvm/Transforms/Scalar.h" 68 #include "llvm/Transforms/Scalar/GVN.h" 69 #include "llvm/Transforms/Utils.h" 70 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 71 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 72 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 73 #include "llvm/Transforms/Utils/SymbolRewriter.h" 74 #include <memory> 75 using namespace clang; 76 using namespace llvm; 77 78 namespace { 79 80 // Default filename used for profile generation. 81 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 82 83 class EmitAssemblyHelper { 84 DiagnosticsEngine &Diags; 85 const HeaderSearchOptions &HSOpts; 86 const CodeGenOptions &CodeGenOpts; 87 const clang::TargetOptions &TargetOpts; 88 const LangOptions &LangOpts; 89 Module *TheModule; 90 91 Timer CodeGenerationTime; 92 93 std::unique_ptr<raw_pwrite_stream> OS; 94 95 TargetIRAnalysis getTargetIRAnalysis() const { 96 if (TM) 97 return TM->getTargetIRAnalysis(); 98 99 return TargetIRAnalysis(); 100 } 101 102 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 103 104 /// Generates the TargetMachine. 105 /// Leaves TM unchanged if it is unable to create the target machine. 106 /// Some of our clang tests specify triples which are not built 107 /// into clang. This is okay because these tests check the generated 108 /// IR, and they require DataLayout which depends on the triple. 109 /// In this case, we allow this method to fail and not report an error. 110 /// When MustCreateTM is used, we print an error if we are unable to load 111 /// the requested target. 112 void CreateTargetMachine(bool MustCreateTM); 113 114 /// Add passes necessary to emit assembly or LLVM IR. 115 /// 116 /// \return True on success. 117 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 118 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 119 120 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 121 std::error_code EC; 122 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 123 llvm::sys::fs::OF_None); 124 if (EC) { 125 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 126 F.reset(); 127 } 128 return F; 129 } 130 131 public: 132 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 133 const HeaderSearchOptions &HeaderSearchOpts, 134 const CodeGenOptions &CGOpts, 135 const clang::TargetOptions &TOpts, 136 const LangOptions &LOpts, Module *M) 137 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 138 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 139 CodeGenerationTime("codegen", "Code Generation Time") {} 140 141 ~EmitAssemblyHelper() { 142 if (CodeGenOpts.DisableFree) 143 BuryPointer(std::move(TM)); 144 } 145 146 std::unique_ptr<TargetMachine> TM; 147 148 void EmitAssembly(BackendAction Action, 149 std::unique_ptr<raw_pwrite_stream> OS); 150 151 void EmitAssemblyWithNewPassManager(BackendAction Action, 152 std::unique_ptr<raw_pwrite_stream> OS); 153 }; 154 155 // We need this wrapper to access LangOpts and CGOpts from extension functions 156 // that we add to the PassManagerBuilder. 157 class PassManagerBuilderWrapper : public PassManagerBuilder { 158 public: 159 PassManagerBuilderWrapper(const Triple &TargetTriple, 160 const CodeGenOptions &CGOpts, 161 const LangOptions &LangOpts) 162 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 163 LangOpts(LangOpts) {} 164 const Triple &getTargetTriple() const { return TargetTriple; } 165 const CodeGenOptions &getCGOpts() const { return CGOpts; } 166 const LangOptions &getLangOpts() const { return LangOpts; } 167 168 private: 169 const Triple &TargetTriple; 170 const CodeGenOptions &CGOpts; 171 const LangOptions &LangOpts; 172 }; 173 } 174 175 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 176 if (Builder.OptLevel > 0) 177 PM.add(createObjCARCAPElimPass()); 178 } 179 180 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 181 if (Builder.OptLevel > 0) 182 PM.add(createObjCARCExpandPass()); 183 } 184 185 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 186 if (Builder.OptLevel > 0) 187 PM.add(createObjCARCOptPass()); 188 } 189 190 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 191 legacy::PassManagerBase &PM) { 192 PM.add(createAddDiscriminatorsPass()); 193 } 194 195 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 196 legacy::PassManagerBase &PM) { 197 PM.add(createBoundsCheckingLegacyPass()); 198 } 199 200 static SanitizerCoverageOptions 201 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 202 SanitizerCoverageOptions Opts; 203 Opts.CoverageType = 204 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 205 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 206 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 207 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 208 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 209 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 210 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 211 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 212 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 213 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 214 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 215 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 216 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 217 return Opts; 218 } 219 220 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 221 legacy::PassManagerBase &PM) { 222 const PassManagerBuilderWrapper &BuilderWrapper = 223 static_cast<const PassManagerBuilderWrapper &>(Builder); 224 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 225 auto Opts = getSancovOptsFromCGOpts(CGOpts); 226 PM.add(createModuleSanitizerCoverageLegacyPassPass(Opts)); 227 } 228 229 // Check if ASan should use GC-friendly instrumentation for globals. 230 // First of all, there is no point if -fdata-sections is off (expect for MachO, 231 // where this is not a factor). Also, on ELF this feature requires an assembler 232 // extension that only works with -integrated-as at the moment. 233 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 234 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 235 return false; 236 switch (T.getObjectFormat()) { 237 case Triple::MachO: 238 case Triple::COFF: 239 return true; 240 case Triple::ELF: 241 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 242 case Triple::XCOFF: 243 llvm::report_fatal_error("ASan not implemented for XCOFF."); 244 case Triple::Wasm: 245 case Triple::UnknownObjectFormat: 246 break; 247 } 248 return false; 249 } 250 251 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 252 legacy::PassManagerBase &PM) { 253 const PassManagerBuilderWrapper &BuilderWrapper = 254 static_cast<const PassManagerBuilderWrapper&>(Builder); 255 const Triple &T = BuilderWrapper.getTargetTriple(); 256 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 257 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 258 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 259 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 260 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 261 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 262 UseAfterScope)); 263 PM.add(createModuleAddressSanitizerLegacyPassPass( 264 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator)); 265 } 266 267 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 268 legacy::PassManagerBase &PM) { 269 PM.add(createAddressSanitizerFunctionPass( 270 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 271 PM.add(createModuleAddressSanitizerLegacyPassPass( 272 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 273 /*UseOdrIndicator*/ false)); 274 } 275 276 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 277 legacy::PassManagerBase &PM) { 278 const PassManagerBuilderWrapper &BuilderWrapper = 279 static_cast<const PassManagerBuilderWrapper &>(Builder); 280 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 281 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 282 PM.add( 283 createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover)); 284 } 285 286 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 287 legacy::PassManagerBase &PM) { 288 PM.add(createHWAddressSanitizerLegacyPassPass( 289 /*CompileKernel*/ true, /*Recover*/ true)); 290 } 291 292 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 293 legacy::PassManagerBase &PM, 294 bool CompileKernel) { 295 const PassManagerBuilderWrapper &BuilderWrapper = 296 static_cast<const PassManagerBuilderWrapper&>(Builder); 297 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 298 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 299 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 300 PM.add(createMemorySanitizerLegacyPassPass( 301 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 302 303 // MemorySanitizer inserts complex instrumentation that mostly follows 304 // the logic of the original code, but operates on "shadow" values. 305 // It can benefit from re-running some general purpose optimization passes. 306 if (Builder.OptLevel > 0) { 307 PM.add(createEarlyCSEPass()); 308 PM.add(createReassociatePass()); 309 PM.add(createLICMPass()); 310 PM.add(createGVNPass()); 311 PM.add(createInstructionCombiningPass()); 312 PM.add(createDeadStoreEliminationPass()); 313 } 314 } 315 316 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 317 legacy::PassManagerBase &PM) { 318 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 319 } 320 321 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 322 legacy::PassManagerBase &PM) { 323 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 324 } 325 326 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 327 legacy::PassManagerBase &PM) { 328 PM.add(createThreadSanitizerLegacyPassPass()); 329 } 330 331 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 332 legacy::PassManagerBase &PM) { 333 const PassManagerBuilderWrapper &BuilderWrapper = 334 static_cast<const PassManagerBuilderWrapper&>(Builder); 335 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 336 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 337 } 338 339 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 340 const CodeGenOptions &CodeGenOpts) { 341 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 342 343 switch (CodeGenOpts.getVecLib()) { 344 case CodeGenOptions::Accelerate: 345 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 346 break; 347 case CodeGenOptions::MASSV: 348 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 349 break; 350 case CodeGenOptions::SVML: 351 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 352 break; 353 default: 354 break; 355 } 356 return TLII; 357 } 358 359 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 360 legacy::PassManager *MPM) { 361 llvm::SymbolRewriter::RewriteDescriptorList DL; 362 363 llvm::SymbolRewriter::RewriteMapParser MapParser; 364 for (const auto &MapFile : Opts.RewriteMapFiles) 365 MapParser.parse(MapFile, &DL); 366 367 MPM->add(createRewriteSymbolsPass(DL)); 368 } 369 370 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 371 switch (CodeGenOpts.OptimizationLevel) { 372 default: 373 llvm_unreachable("Invalid optimization level!"); 374 case 0: 375 return CodeGenOpt::None; 376 case 1: 377 return CodeGenOpt::Less; 378 case 2: 379 return CodeGenOpt::Default; // O2/Os/Oz 380 case 3: 381 return CodeGenOpt::Aggressive; 382 } 383 } 384 385 static Optional<llvm::CodeModel::Model> 386 getCodeModel(const CodeGenOptions &CodeGenOpts) { 387 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 388 .Case("tiny", llvm::CodeModel::Tiny) 389 .Case("small", llvm::CodeModel::Small) 390 .Case("kernel", llvm::CodeModel::Kernel) 391 .Case("medium", llvm::CodeModel::Medium) 392 .Case("large", llvm::CodeModel::Large) 393 .Case("default", ~1u) 394 .Default(~0u); 395 assert(CodeModel != ~0u && "invalid code model!"); 396 if (CodeModel == ~1u) 397 return None; 398 return static_cast<llvm::CodeModel::Model>(CodeModel); 399 } 400 401 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 402 if (Action == Backend_EmitObj) 403 return CGFT_ObjectFile; 404 else if (Action == Backend_EmitMCNull) 405 return CGFT_Null; 406 else { 407 assert(Action == Backend_EmitAssembly && "Invalid action!"); 408 return CGFT_AssemblyFile; 409 } 410 } 411 412 static void initTargetOptions(llvm::TargetOptions &Options, 413 const CodeGenOptions &CodeGenOpts, 414 const clang::TargetOptions &TargetOpts, 415 const LangOptions &LangOpts, 416 const HeaderSearchOptions &HSOpts) { 417 Options.ThreadModel = 418 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 419 .Case("posix", llvm::ThreadModel::POSIX) 420 .Case("single", llvm::ThreadModel::Single); 421 422 // Set float ABI type. 423 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 424 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 425 "Invalid Floating Point ABI!"); 426 Options.FloatABIType = 427 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 428 .Case("soft", llvm::FloatABI::Soft) 429 .Case("softfp", llvm::FloatABI::Soft) 430 .Case("hard", llvm::FloatABI::Hard) 431 .Default(llvm::FloatABI::Default); 432 433 // Set FP fusion mode. 434 switch (LangOpts.getDefaultFPContractMode()) { 435 case LangOptions::FPC_Off: 436 // Preserve any contraction performed by the front-end. (Strict performs 437 // splitting of the muladd intrinsic in the backend.) 438 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 439 break; 440 case LangOptions::FPC_On: 441 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 442 break; 443 case LangOptions::FPC_Fast: 444 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 445 break; 446 } 447 448 Options.UseInitArray = CodeGenOpts.UseInitArray; 449 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 450 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 451 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 452 453 // Set EABI version. 454 Options.EABIVersion = TargetOpts.EABIVersion; 455 456 if (LangOpts.SjLjExceptions) 457 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 458 if (LangOpts.SEHExceptions) 459 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 460 if (LangOpts.DWARFExceptions) 461 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 462 if (LangOpts.WasmExceptions) 463 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 464 465 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 466 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 467 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 468 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 469 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 470 Options.FunctionSections = CodeGenOpts.FunctionSections; 471 Options.DataSections = CodeGenOpts.DataSections; 472 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 473 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 474 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 475 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 476 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 477 Options.EmitAddrsig = CodeGenOpts.Addrsig; 478 Options.EnableDebugEntryValues = CodeGenOpts.EnableDebugEntryValues; 479 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 480 481 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 482 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 483 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 484 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 485 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 486 Options.MCOptions.MCIncrementalLinkerCompatible = 487 CodeGenOpts.IncrementalLinkerCompatible; 488 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 489 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 490 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 491 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 492 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 493 Options.MCOptions.ABIName = TargetOpts.ABI; 494 for (const auto &Entry : HSOpts.UserEntries) 495 if (!Entry.IsFramework && 496 (Entry.Group == frontend::IncludeDirGroup::Quoted || 497 Entry.Group == frontend::IncludeDirGroup::Angled || 498 Entry.Group == frontend::IncludeDirGroup::System)) 499 Options.MCOptions.IASSearchPaths.push_back( 500 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 501 } 502 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 503 if (CodeGenOpts.DisableGCov) 504 return None; 505 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 506 return None; 507 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 508 // LLVM's -default-gcov-version flag is set to something invalid. 509 GCOVOptions Options; 510 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 511 Options.EmitData = CodeGenOpts.EmitGcovArcs; 512 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 513 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 514 Options.NoRedZone = CodeGenOpts.DisableRedZone; 515 Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData; 516 Options.Filter = CodeGenOpts.ProfileFilterFiles; 517 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 518 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 519 return Options; 520 } 521 522 static Optional<InstrProfOptions> 523 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 524 const LangOptions &LangOpts) { 525 if (!CodeGenOpts.hasProfileClangInstr()) 526 return None; 527 InstrProfOptions Options; 528 Options.NoRedZone = CodeGenOpts.DisableRedZone; 529 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 530 531 // TODO: Surface the option to emit atomic profile counter increments at 532 // the driver level. 533 Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread); 534 return Options; 535 } 536 537 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 538 legacy::FunctionPassManager &FPM) { 539 // Handle disabling of all LLVM passes, where we want to preserve the 540 // internal module before any optimization. 541 if (CodeGenOpts.DisableLLVMPasses) 542 return; 543 544 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 545 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 546 // are inserted before PMBuilder ones - they'd get the default-constructed 547 // TLI with an unknown target otherwise. 548 Triple TargetTriple(TheModule->getTargetTriple()); 549 std::unique_ptr<TargetLibraryInfoImpl> TLII( 550 createTLII(TargetTriple, CodeGenOpts)); 551 552 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 553 554 // At O0 and O1 we only run the always inliner which is more efficient. At 555 // higher optimization levels we run the normal inliner. 556 if (CodeGenOpts.OptimizationLevel <= 1) { 557 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 558 !CodeGenOpts.DisableLifetimeMarkers); 559 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 560 } else { 561 // We do not want to inline hot callsites for SamplePGO module-summary build 562 // because profile annotation will happen again in ThinLTO backend, and we 563 // want the IR of the hot path to match the profile. 564 PMBuilder.Inliner = createFunctionInliningPass( 565 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 566 (!CodeGenOpts.SampleProfileFile.empty() && 567 CodeGenOpts.PrepareForThinLTO)); 568 } 569 570 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 571 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 572 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 573 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 574 575 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 576 // Loop interleaving in the loop vectorizer has historically been set to be 577 // enabled when loop unrolling is enabled. 578 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 579 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 580 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 581 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 582 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 583 584 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 585 586 if (TM) 587 TM->adjustPassManager(PMBuilder); 588 589 if (CodeGenOpts.DebugInfoForProfiling || 590 !CodeGenOpts.SampleProfileFile.empty()) 591 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 592 addAddDiscriminatorsPass); 593 594 // In ObjC ARC mode, add the main ARC optimization passes. 595 if (LangOpts.ObjCAutoRefCount) { 596 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 597 addObjCARCExpandPass); 598 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 599 addObjCARCAPElimPass); 600 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 601 addObjCARCOptPass); 602 } 603 604 if (LangOpts.Coroutines) 605 addCoroutinePassesToExtensionPoints(PMBuilder); 606 607 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 608 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 609 addBoundsCheckingPass); 610 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 611 addBoundsCheckingPass); 612 } 613 614 if (CodeGenOpts.SanitizeCoverageType || 615 CodeGenOpts.SanitizeCoverageIndirectCalls || 616 CodeGenOpts.SanitizeCoverageTraceCmp) { 617 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 618 addSanitizerCoveragePass); 619 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 620 addSanitizerCoveragePass); 621 } 622 623 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 624 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 625 addAddressSanitizerPasses); 626 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 627 addAddressSanitizerPasses); 628 } 629 630 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 631 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 632 addKernelAddressSanitizerPasses); 633 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 634 addKernelAddressSanitizerPasses); 635 } 636 637 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 638 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 639 addHWAddressSanitizerPasses); 640 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 641 addHWAddressSanitizerPasses); 642 } 643 644 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 645 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 646 addKernelHWAddressSanitizerPasses); 647 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 648 addKernelHWAddressSanitizerPasses); 649 } 650 651 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 652 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 653 addMemorySanitizerPass); 654 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 655 addMemorySanitizerPass); 656 } 657 658 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 659 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 660 addKernelMemorySanitizerPass); 661 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 662 addKernelMemorySanitizerPass); 663 } 664 665 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 666 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 667 addThreadSanitizerPass); 668 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 669 addThreadSanitizerPass); 670 } 671 672 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 673 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 674 addDataFlowSanitizerPass); 675 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 676 addDataFlowSanitizerPass); 677 } 678 679 // Set up the per-function pass manager. 680 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 681 if (CodeGenOpts.VerifyModule) 682 FPM.add(createVerifierPass()); 683 684 // Set up the per-module pass manager. 685 if (!CodeGenOpts.RewriteMapFiles.empty()) 686 addSymbolRewriterPass(CodeGenOpts, &MPM); 687 688 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 689 MPM.add(createGCOVProfilerPass(*Options)); 690 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 691 MPM.add(createStripSymbolsPass(true)); 692 } 693 694 if (Optional<InstrProfOptions> Options = 695 getInstrProfOptions(CodeGenOpts, LangOpts)) 696 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 697 698 bool hasIRInstr = false; 699 if (CodeGenOpts.hasProfileIRInstr()) { 700 PMBuilder.EnablePGOInstrGen = true; 701 hasIRInstr = true; 702 } 703 if (CodeGenOpts.hasProfileCSIRInstr()) { 704 assert(!CodeGenOpts.hasProfileCSIRUse() && 705 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 706 "same time"); 707 assert(!hasIRInstr && 708 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 709 "same time"); 710 PMBuilder.EnablePGOCSInstrGen = true; 711 hasIRInstr = true; 712 } 713 if (hasIRInstr) { 714 if (!CodeGenOpts.InstrProfileOutput.empty()) 715 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 716 else 717 PMBuilder.PGOInstrGen = DefaultProfileGenName; 718 } 719 if (CodeGenOpts.hasProfileIRUse()) { 720 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 721 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 722 } 723 724 if (!CodeGenOpts.SampleProfileFile.empty()) 725 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 726 727 PMBuilder.populateFunctionPassManager(FPM); 728 PMBuilder.populateModulePassManager(MPM); 729 } 730 731 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 732 SmallVector<const char *, 16> BackendArgs; 733 BackendArgs.push_back("clang"); // Fake program name. 734 if (!CodeGenOpts.DebugPass.empty()) { 735 BackendArgs.push_back("-debug-pass"); 736 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 737 } 738 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 739 BackendArgs.push_back("-limit-float-precision"); 740 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 741 } 742 BackendArgs.push_back(nullptr); 743 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 744 BackendArgs.data()); 745 } 746 747 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 748 // Create the TargetMachine for generating code. 749 std::string Error; 750 std::string Triple = TheModule->getTargetTriple(); 751 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 752 if (!TheTarget) { 753 if (MustCreateTM) 754 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 755 return; 756 } 757 758 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 759 std::string FeaturesStr = 760 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 761 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 762 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 763 764 llvm::TargetOptions Options; 765 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 766 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 767 Options, RM, CM, OptLevel)); 768 } 769 770 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 771 BackendAction Action, 772 raw_pwrite_stream &OS, 773 raw_pwrite_stream *DwoOS) { 774 // Add LibraryInfo. 775 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 776 std::unique_ptr<TargetLibraryInfoImpl> TLII( 777 createTLII(TargetTriple, CodeGenOpts)); 778 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 779 780 // Normal mode, emit a .s or .o file by running the code generator. Note, 781 // this also adds codegenerator level optimization passes. 782 CodeGenFileType CGFT = getCodeGenFileType(Action); 783 784 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 785 // "codegen" passes so that it isn't run multiple times when there is 786 // inlining happening. 787 if (CodeGenOpts.OptimizationLevel > 0) 788 CodeGenPasses.add(createObjCARCContractPass()); 789 790 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 791 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 792 Diags.Report(diag::err_fe_unable_to_interface_with_target); 793 return false; 794 } 795 796 return true; 797 } 798 799 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 800 std::unique_ptr<raw_pwrite_stream> OS) { 801 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 802 803 setCommandLineOpts(CodeGenOpts); 804 805 bool UsesCodeGen = (Action != Backend_EmitNothing && 806 Action != Backend_EmitBC && 807 Action != Backend_EmitLL); 808 CreateTargetMachine(UsesCodeGen); 809 810 if (UsesCodeGen && !TM) 811 return; 812 if (TM) 813 TheModule->setDataLayout(TM->createDataLayout()); 814 815 legacy::PassManager PerModulePasses; 816 PerModulePasses.add( 817 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 818 819 legacy::FunctionPassManager PerFunctionPasses(TheModule); 820 PerFunctionPasses.add( 821 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 822 823 CreatePasses(PerModulePasses, PerFunctionPasses); 824 825 legacy::PassManager CodeGenPasses; 826 CodeGenPasses.add( 827 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 828 829 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 830 831 switch (Action) { 832 case Backend_EmitNothing: 833 break; 834 835 case Backend_EmitBC: 836 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 837 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 838 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 839 if (!ThinLinkOS) 840 return; 841 } 842 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 843 CodeGenOpts.EnableSplitLTOUnit); 844 PerModulePasses.add(createWriteThinLTOBitcodePass( 845 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 846 } else { 847 // Emit a module summary by default for Regular LTO except for ld64 848 // targets 849 bool EmitLTOSummary = 850 (CodeGenOpts.PrepareForLTO && 851 !CodeGenOpts.DisableLLVMPasses && 852 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 853 llvm::Triple::Apple); 854 if (EmitLTOSummary) { 855 if (!TheModule->getModuleFlag("ThinLTO")) 856 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 857 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 858 uint32_t(1)); 859 } 860 861 PerModulePasses.add(createBitcodeWriterPass( 862 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 863 } 864 break; 865 866 case Backend_EmitLL: 867 PerModulePasses.add( 868 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 869 break; 870 871 default: 872 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 873 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 874 if (!DwoOS) 875 return; 876 } 877 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 878 DwoOS ? &DwoOS->os() : nullptr)) 879 return; 880 } 881 882 // Before executing passes, print the final values of the LLVM options. 883 cl::PrintOptionValues(); 884 885 // Run passes. For now we do all passes at once, but eventually we 886 // would like to have the option of streaming code generation. 887 888 { 889 PrettyStackTraceString CrashInfo("Per-function optimization"); 890 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 891 892 PerFunctionPasses.doInitialization(); 893 for (Function &F : *TheModule) 894 if (!F.isDeclaration()) 895 PerFunctionPasses.run(F); 896 PerFunctionPasses.doFinalization(); 897 } 898 899 { 900 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 901 llvm::TimeTraceScope TimeScope("PerModulePasses"); 902 PerModulePasses.run(*TheModule); 903 } 904 905 { 906 PrettyStackTraceString CrashInfo("Code generation"); 907 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 908 CodeGenPasses.run(*TheModule); 909 } 910 911 if (ThinLinkOS) 912 ThinLinkOS->keep(); 913 if (DwoOS) 914 DwoOS->keep(); 915 } 916 917 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 918 switch (Opts.OptimizationLevel) { 919 default: 920 llvm_unreachable("Invalid optimization level!"); 921 922 case 1: 923 return PassBuilder::O1; 924 925 case 2: 926 switch (Opts.OptimizeSize) { 927 default: 928 llvm_unreachable("Invalid optimization level for size!"); 929 930 case 0: 931 return PassBuilder::O2; 932 933 case 1: 934 return PassBuilder::Os; 935 936 case 2: 937 return PassBuilder::Oz; 938 } 939 940 case 3: 941 return PassBuilder::O3; 942 } 943 } 944 945 static void addSanitizersAtO0(ModulePassManager &MPM, 946 const Triple &TargetTriple, 947 const LangOptions &LangOpts, 948 const CodeGenOptions &CodeGenOpts) { 949 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 950 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 951 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 952 MPM.addPass(createModuleToFunctionPassAdaptor(AddressSanitizerPass( 953 CompileKernel, Recover, CodeGenOpts.SanitizeAddressUseAfterScope))); 954 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 955 MPM.addPass( 956 ModuleAddressSanitizerPass(CompileKernel, Recover, ModuleUseAfterScope, 957 CodeGenOpts.SanitizeAddressUseOdrIndicator)); 958 }; 959 960 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 961 ASanPass(SanitizerKind::Address, /*CompileKernel=*/false); 962 } 963 964 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 965 ASanPass(SanitizerKind::KernelAddress, /*CompileKernel=*/true); 966 } 967 968 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 969 MPM.addPass(MemorySanitizerPass({})); 970 MPM.addPass(createModuleToFunctionPassAdaptor(MemorySanitizerPass({}))); 971 } 972 973 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 974 MPM.addPass(createModuleToFunctionPassAdaptor( 975 MemorySanitizerPass({0, false, /*Kernel=*/true}))); 976 } 977 978 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 979 MPM.addPass(ThreadSanitizerPass()); 980 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 981 } 982 } 983 984 /// A clean version of `EmitAssembly` that uses the new pass manager. 985 /// 986 /// Not all features are currently supported in this system, but where 987 /// necessary it falls back to the legacy pass manager to at least provide 988 /// basic functionality. 989 /// 990 /// This API is planned to have its functionality finished and then to replace 991 /// `EmitAssembly` at some point in the future when the default switches. 992 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 993 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 994 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 995 setCommandLineOpts(CodeGenOpts); 996 997 bool RequiresCodeGen = (Action != Backend_EmitNothing && 998 Action != Backend_EmitBC && 999 Action != Backend_EmitLL); 1000 CreateTargetMachine(RequiresCodeGen); 1001 1002 if (RequiresCodeGen && !TM) 1003 return; 1004 if (TM) 1005 TheModule->setDataLayout(TM->createDataLayout()); 1006 1007 Optional<PGOOptions> PGOOpt; 1008 1009 if (CodeGenOpts.hasProfileIRInstr()) 1010 // -fprofile-generate. 1011 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1012 ? DefaultProfileGenName 1013 : CodeGenOpts.InstrProfileOutput, 1014 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1015 CodeGenOpts.DebugInfoForProfiling); 1016 else if (CodeGenOpts.hasProfileIRUse()) { 1017 // -fprofile-use. 1018 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1019 : PGOOptions::NoCSAction; 1020 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1021 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1022 CSAction, CodeGenOpts.DebugInfoForProfiling); 1023 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1024 // -fprofile-sample-use 1025 PGOOpt = 1026 PGOOptions(CodeGenOpts.SampleProfileFile, "", 1027 CodeGenOpts.ProfileRemappingFile, PGOOptions::SampleUse, 1028 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling); 1029 else if (CodeGenOpts.DebugInfoForProfiling) 1030 // -fdebug-info-for-profiling 1031 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1032 PGOOptions::NoCSAction, true); 1033 1034 // Check to see if we want to generate a CS profile. 1035 if (CodeGenOpts.hasProfileCSIRInstr()) { 1036 assert(!CodeGenOpts.hasProfileCSIRUse() && 1037 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1038 "the same time"); 1039 if (PGOOpt.hasValue()) { 1040 assert(PGOOpt->Action != PGOOptions::IRInstr && 1041 PGOOpt->Action != PGOOptions::SampleUse && 1042 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1043 " pass"); 1044 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1045 ? DefaultProfileGenName 1046 : CodeGenOpts.InstrProfileOutput; 1047 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1048 } else 1049 PGOOpt = PGOOptions("", 1050 CodeGenOpts.InstrProfileOutput.empty() 1051 ? DefaultProfileGenName 1052 : CodeGenOpts.InstrProfileOutput, 1053 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1054 CodeGenOpts.DebugInfoForProfiling); 1055 } 1056 1057 PipelineTuningOptions PTO; 1058 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1059 // For historical reasons, loop interleaving is set to mirror setting for loop 1060 // unrolling. 1061 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1062 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1063 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1064 1065 PassInstrumentationCallbacks PIC; 1066 StandardInstrumentations SI; 1067 SI.registerCallbacks(PIC); 1068 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 1069 1070 // Attempt to load pass plugins and register their callbacks with PB. 1071 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1072 auto PassPlugin = PassPlugin::Load(PluginFN); 1073 if (PassPlugin) { 1074 PassPlugin->registerPassBuilderCallbacks(PB); 1075 } else { 1076 Diags.Report(diag::err_fe_unable_to_load_plugin) 1077 << PluginFN << toString(PassPlugin.takeError()); 1078 } 1079 } 1080 1081 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 1082 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 1083 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 1084 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 1085 1086 // Register the AA manager first so that our version is the one used. 1087 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1088 1089 // Register the target library analysis directly and give it a customized 1090 // preset TLI. 1091 Triple TargetTriple(TheModule->getTargetTriple()); 1092 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1093 createTLII(TargetTriple, CodeGenOpts)); 1094 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1095 1096 // Register all the basic analyses with the managers. 1097 PB.registerModuleAnalyses(MAM); 1098 PB.registerCGSCCAnalyses(CGAM); 1099 PB.registerFunctionAnalyses(FAM); 1100 PB.registerLoopAnalyses(LAM); 1101 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1102 1103 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 1104 1105 if (!CodeGenOpts.DisableLLVMPasses) { 1106 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1107 bool IsLTO = CodeGenOpts.PrepareForLTO; 1108 1109 if (CodeGenOpts.OptimizationLevel == 0) { 1110 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1111 MPM.addPass(GCOVProfilerPass(*Options)); 1112 if (Optional<InstrProfOptions> Options = 1113 getInstrProfOptions(CodeGenOpts, LangOpts)) 1114 MPM.addPass(InstrProfiling(*Options, false)); 1115 1116 // Build a minimal pipeline based on the semantics required by Clang, 1117 // which is just that always inlining occurs. Further, disable generating 1118 // lifetime intrinsics to avoid enabling further optimizations during 1119 // code generation. 1120 MPM.addPass(AlwaysInlinerPass(/*InsertLifetimeIntrinsics=*/false)); 1121 1122 // At -O0, we can still do PGO. Add all the requested passes for 1123 // instrumentation PGO, if requested. 1124 if (PGOOpt && (PGOOpt->Action == PGOOptions::IRInstr || 1125 PGOOpt->Action == PGOOptions::IRUse)) 1126 PB.addPGOInstrPassesForO0( 1127 MPM, CodeGenOpts.DebugPassManager, 1128 /* RunProfileGen */ (PGOOpt->Action == PGOOptions::IRInstr), 1129 /* IsCS */ false, PGOOpt->ProfileFile, 1130 PGOOpt->ProfileRemappingFile); 1131 1132 // At -O0 we directly run necessary sanitizer passes. 1133 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1134 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 1135 1136 // Lastly, add semantically necessary passes for LTO. 1137 if (IsLTO || IsThinLTO) { 1138 MPM.addPass(CanonicalizeAliasesPass()); 1139 MPM.addPass(NameAnonGlobalPass()); 1140 } 1141 } else { 1142 // Map our optimization levels into one of the distinct levels used to 1143 // configure the pipeline. 1144 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1145 1146 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1147 MPM.addPass(createModuleToFunctionPassAdaptor( 1148 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1149 }); 1150 1151 // Register callbacks to schedule sanitizer passes at the appropriate part of 1152 // the pipeline. 1153 // FIXME: either handle asan/the remaining sanitizers or error out 1154 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1155 PB.registerScalarOptimizerLateEPCallback( 1156 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1157 FPM.addPass(BoundsCheckingPass()); 1158 }); 1159 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 1160 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1161 MPM.addPass(MemorySanitizerPass({})); 1162 }); 1163 PB.registerOptimizerLastEPCallback( 1164 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1165 FPM.addPass(MemorySanitizerPass({})); 1166 }); 1167 } 1168 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1169 PB.registerPipelineStartEPCallback( 1170 [](ModulePassManager &MPM) { MPM.addPass(ThreadSanitizerPass()); }); 1171 PB.registerOptimizerLastEPCallback( 1172 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1173 FPM.addPass(ThreadSanitizerPass()); 1174 }); 1175 } 1176 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1177 PB.registerPipelineStartEPCallback([&](ModulePassManager &MPM) { 1178 MPM.addPass( 1179 RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1180 }); 1181 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address); 1182 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1183 PB.registerOptimizerLastEPCallback( 1184 [Recover, UseAfterScope](FunctionPassManager &FPM, 1185 PassBuilder::OptimizationLevel Level) { 1186 FPM.addPass(AddressSanitizerPass( 1187 /*CompileKernel=*/false, Recover, UseAfterScope)); 1188 }); 1189 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1190 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1191 PB.registerPipelineStartEPCallback( 1192 [Recover, ModuleUseAfterScope, 1193 UseOdrIndicator](ModulePassManager &MPM) { 1194 MPM.addPass(ModuleAddressSanitizerPass( 1195 /*CompileKernel=*/false, Recover, ModuleUseAfterScope, 1196 UseOdrIndicator)); 1197 }); 1198 } 1199 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1200 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1201 MPM.addPass(GCOVProfilerPass(*Options)); 1202 }); 1203 if (Optional<InstrProfOptions> Options = 1204 getInstrProfOptions(CodeGenOpts, LangOpts)) 1205 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1206 MPM.addPass(InstrProfiling(*Options, false)); 1207 }); 1208 1209 if (IsThinLTO) { 1210 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 1211 Level, CodeGenOpts.DebugPassManager); 1212 MPM.addPass(CanonicalizeAliasesPass()); 1213 MPM.addPass(NameAnonGlobalPass()); 1214 } else if (IsLTO) { 1215 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 1216 CodeGenOpts.DebugPassManager); 1217 MPM.addPass(CanonicalizeAliasesPass()); 1218 MPM.addPass(NameAnonGlobalPass()); 1219 } else { 1220 MPM = PB.buildPerModuleDefaultPipeline(Level, 1221 CodeGenOpts.DebugPassManager); 1222 } 1223 } 1224 1225 if (CodeGenOpts.SanitizeCoverageType || 1226 CodeGenOpts.SanitizeCoverageIndirectCalls || 1227 CodeGenOpts.SanitizeCoverageTraceCmp) { 1228 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1229 MPM.addPass(ModuleSanitizerCoveragePass(SancovOpts)); 1230 } 1231 1232 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 1233 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 1234 MPM.addPass(HWAddressSanitizerPass( 1235 /*CompileKernel=*/false, Recover)); 1236 } 1237 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 1238 MPM.addPass(HWAddressSanitizerPass( 1239 /*CompileKernel=*/true, /*Recover=*/true)); 1240 } 1241 1242 if (CodeGenOpts.OptimizationLevel == 0) { 1243 addSanitizersAtO0(MPM, TargetTriple, LangOpts, CodeGenOpts); 1244 } 1245 } 1246 1247 // FIXME: We still use the legacy pass manager to do code generation. We 1248 // create that pass manager here and use it as needed below. 1249 legacy::PassManager CodeGenPasses; 1250 bool NeedCodeGen = false; 1251 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1252 1253 // Append any output we need to the pass manager. 1254 switch (Action) { 1255 case Backend_EmitNothing: 1256 break; 1257 1258 case Backend_EmitBC: 1259 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1260 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1261 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1262 if (!ThinLinkOS) 1263 return; 1264 } 1265 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1266 CodeGenOpts.EnableSplitLTOUnit); 1267 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1268 : nullptr)); 1269 } else { 1270 // Emit a module summary by default for Regular LTO except for ld64 1271 // targets 1272 bool EmitLTOSummary = 1273 (CodeGenOpts.PrepareForLTO && 1274 !CodeGenOpts.DisableLLVMPasses && 1275 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1276 llvm::Triple::Apple); 1277 if (EmitLTOSummary) { 1278 if (!TheModule->getModuleFlag("ThinLTO")) 1279 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1280 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1281 uint32_t(1)); 1282 } 1283 MPM.addPass( 1284 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1285 } 1286 break; 1287 1288 case Backend_EmitLL: 1289 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1290 break; 1291 1292 case Backend_EmitAssembly: 1293 case Backend_EmitMCNull: 1294 case Backend_EmitObj: 1295 NeedCodeGen = true; 1296 CodeGenPasses.add( 1297 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1298 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1299 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1300 if (!DwoOS) 1301 return; 1302 } 1303 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1304 DwoOS ? &DwoOS->os() : nullptr)) 1305 // FIXME: Should we handle this error differently? 1306 return; 1307 break; 1308 } 1309 1310 // Before executing passes, print the final values of the LLVM options. 1311 cl::PrintOptionValues(); 1312 1313 // Now that we have all of the passes ready, run them. 1314 { 1315 PrettyStackTraceString CrashInfo("Optimizer"); 1316 MPM.run(*TheModule, MAM); 1317 } 1318 1319 // Now if needed, run the legacy PM for codegen. 1320 if (NeedCodeGen) { 1321 PrettyStackTraceString CrashInfo("Code generation"); 1322 CodeGenPasses.run(*TheModule); 1323 } 1324 1325 if (ThinLinkOS) 1326 ThinLinkOS->keep(); 1327 if (DwoOS) 1328 DwoOS->keep(); 1329 } 1330 1331 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1332 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1333 if (!BMsOrErr) 1334 return BMsOrErr.takeError(); 1335 1336 // The bitcode file may contain multiple modules, we want the one that is 1337 // marked as being the ThinLTO module. 1338 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1339 return *Bm; 1340 1341 return make_error<StringError>("Could not find module summary", 1342 inconvertibleErrorCode()); 1343 } 1344 1345 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1346 for (BitcodeModule &BM : BMs) { 1347 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1348 if (LTOInfo && LTOInfo->IsThinLTO) 1349 return &BM; 1350 } 1351 return nullptr; 1352 } 1353 1354 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1355 const HeaderSearchOptions &HeaderOpts, 1356 const CodeGenOptions &CGOpts, 1357 const clang::TargetOptions &TOpts, 1358 const LangOptions &LOpts, 1359 std::unique_ptr<raw_pwrite_stream> OS, 1360 std::string SampleProfile, 1361 std::string ProfileRemapping, 1362 BackendAction Action) { 1363 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1364 ModuleToDefinedGVSummaries; 1365 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1366 1367 setCommandLineOpts(CGOpts); 1368 1369 // We can simply import the values mentioned in the combined index, since 1370 // we should only invoke this using the individual indexes written out 1371 // via a WriteIndexesThinBackend. 1372 FunctionImporter::ImportMapTy ImportList; 1373 for (auto &GlobalList : *CombinedIndex) { 1374 // Ignore entries for undefined references. 1375 if (GlobalList.second.SummaryList.empty()) 1376 continue; 1377 1378 auto GUID = GlobalList.first; 1379 for (auto &Summary : GlobalList.second.SummaryList) { 1380 // Skip the summaries for the importing module. These are included to 1381 // e.g. record required linkage changes. 1382 if (Summary->modulePath() == M->getModuleIdentifier()) 1383 continue; 1384 // Add an entry to provoke importing by thinBackend. 1385 ImportList[Summary->modulePath()].insert(GUID); 1386 } 1387 } 1388 1389 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1390 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1391 1392 for (auto &I : ImportList) { 1393 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1394 llvm::MemoryBuffer::getFile(I.first()); 1395 if (!MBOrErr) { 1396 errs() << "Error loading imported file '" << I.first() 1397 << "': " << MBOrErr.getError().message() << "\n"; 1398 return; 1399 } 1400 1401 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1402 if (!BMOrErr) { 1403 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1404 errs() << "Error loading imported file '" << I.first() 1405 << "': " << EIB.message() << '\n'; 1406 }); 1407 return; 1408 } 1409 ModuleMap.insert({I.first(), *BMOrErr}); 1410 1411 OwnedImports.push_back(std::move(*MBOrErr)); 1412 } 1413 auto AddStream = [&](size_t Task) { 1414 return std::make_unique<lto::NativeObjectStream>(std::move(OS)); 1415 }; 1416 lto::Config Conf; 1417 if (CGOpts.SaveTempsFilePrefix != "") { 1418 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1419 /* UseInputModulePath */ false)) { 1420 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1421 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1422 << '\n'; 1423 }); 1424 } 1425 } 1426 Conf.CPU = TOpts.CPU; 1427 Conf.CodeModel = getCodeModel(CGOpts); 1428 Conf.MAttrs = TOpts.Features; 1429 Conf.RelocModel = CGOpts.RelocationModel; 1430 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1431 Conf.OptLevel = CGOpts.OptimizationLevel; 1432 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1433 Conf.SampleProfile = std::move(SampleProfile); 1434 1435 // Context sensitive profile. 1436 if (CGOpts.hasProfileCSIRInstr()) { 1437 Conf.RunCSIRInstr = true; 1438 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1439 } else if (CGOpts.hasProfileCSIRUse()) { 1440 Conf.RunCSIRInstr = false; 1441 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1442 } 1443 1444 Conf.ProfileRemapping = std::move(ProfileRemapping); 1445 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1446 Conf.DebugPassManager = CGOpts.DebugPassManager; 1447 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1448 Conf.RemarksFilename = CGOpts.OptRecordFile; 1449 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1450 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1451 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1452 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1453 switch (Action) { 1454 case Backend_EmitNothing: 1455 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1456 return false; 1457 }; 1458 break; 1459 case Backend_EmitLL: 1460 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1461 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1462 return false; 1463 }; 1464 break; 1465 case Backend_EmitBC: 1466 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1467 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1468 return false; 1469 }; 1470 break; 1471 default: 1472 Conf.CGFileType = getCodeGenFileType(Action); 1473 break; 1474 } 1475 if (Error E = thinBackend( 1476 Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1477 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1478 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1479 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1480 }); 1481 } 1482 } 1483 1484 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1485 const HeaderSearchOptions &HeaderOpts, 1486 const CodeGenOptions &CGOpts, 1487 const clang::TargetOptions &TOpts, 1488 const LangOptions &LOpts, 1489 const llvm::DataLayout &TDesc, Module *M, 1490 BackendAction Action, 1491 std::unique_ptr<raw_pwrite_stream> OS) { 1492 1493 llvm::TimeTraceScope TimeScope("Backend"); 1494 1495 std::unique_ptr<llvm::Module> EmptyModule; 1496 if (!CGOpts.ThinLTOIndexFile.empty()) { 1497 // If we are performing a ThinLTO importing compile, load the function index 1498 // into memory and pass it into runThinLTOBackend, which will run the 1499 // function importer and invoke LTO passes. 1500 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1501 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1502 /*IgnoreEmptyThinLTOIndexFile*/true); 1503 if (!IndexOrErr) { 1504 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1505 "Error loading index file '" + 1506 CGOpts.ThinLTOIndexFile + "': "); 1507 return; 1508 } 1509 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1510 // A null CombinedIndex means we should skip ThinLTO compilation 1511 // (LLVM will optionally ignore empty index files, returning null instead 1512 // of an error). 1513 if (CombinedIndex) { 1514 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1515 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1516 LOpts, std::move(OS), CGOpts.SampleProfileFile, 1517 CGOpts.ProfileRemappingFile, Action); 1518 return; 1519 } 1520 // Distributed indexing detected that nothing from the module is needed 1521 // for the final linking. So we can skip the compilation. We sill need to 1522 // output an empty object file to make sure that a linker does not fail 1523 // trying to read it. Also for some features, like CFI, we must skip 1524 // the compilation as CombinedIndex does not contain all required 1525 // information. 1526 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1527 EmptyModule->setTargetTriple(M->getTargetTriple()); 1528 M = EmptyModule.get(); 1529 } 1530 } 1531 1532 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1533 1534 if (CGOpts.ExperimentalNewPassManager) 1535 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1536 else 1537 AsmHelper.EmitAssembly(Action, std::move(OS)); 1538 1539 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1540 // DataLayout. 1541 if (AsmHelper.TM) { 1542 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1543 if (DLDesc != TDesc.getStringRepresentation()) { 1544 unsigned DiagID = Diags.getCustomDiagID( 1545 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1546 "expected target description '%1'"); 1547 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1548 } 1549 } 1550 } 1551 1552 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1553 // __LLVM,__bitcode section. 1554 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1555 llvm::MemoryBufferRef Buf) { 1556 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1557 return; 1558 llvm::EmbedBitcodeInModule( 1559 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1560 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1561 &CGOpts.CmdArgs); 1562 } 1563