1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/ADT/StringSwitch.h" 19 #include "llvm/ADT/Triple.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Bitcode/BitcodeWriterPass.h" 23 #include "llvm/Bitcode/ReaderWriter.h" 24 #include "llvm/CodeGen/RegAllocRegistry.h" 25 #include "llvm/CodeGen/SchedulerRegistry.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/ModuleSummaryIndex.h" 28 #include "llvm/IR/IRPrintingPasses.h" 29 #include "llvm/IR/LegacyPassManager.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/Verifier.h" 32 #include "llvm/LTO/LTOBackend.h" 33 #include "llvm/MC/SubtargetFeature.h" 34 #include "llvm/Object/ModuleSummaryIndexObjectFile.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/MemoryBuffer.h" 37 #include "llvm/Support/PrettyStackTrace.h" 38 #include "llvm/Support/TargetRegistry.h" 39 #include "llvm/Support/Timer.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetMachine.h" 42 #include "llvm/Target/TargetOptions.h" 43 #include "llvm/Target/TargetSubtargetInfo.h" 44 #include "llvm/Transforms/IPO.h" 45 #include "llvm/Transforms/IPO/AlwaysInliner.h" 46 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 47 #include "llvm/Transforms/Instrumentation.h" 48 #include "llvm/Transforms/ObjCARC.h" 49 #include "llvm/Transforms/Scalar.h" 50 #include "llvm/Transforms/Scalar/GVN.h" 51 #include "llvm/Transforms/Utils/SymbolRewriter.h" 52 #include <memory> 53 using namespace clang; 54 using namespace llvm; 55 56 namespace { 57 58 class EmitAssemblyHelper { 59 DiagnosticsEngine &Diags; 60 const CodeGenOptions &CodeGenOpts; 61 const clang::TargetOptions &TargetOpts; 62 const LangOptions &LangOpts; 63 Module *TheModule; 64 65 Timer CodeGenerationTime; 66 67 std::unique_ptr<raw_pwrite_stream> OS; 68 69 private: 70 TargetIRAnalysis getTargetIRAnalysis() const { 71 if (TM) 72 return TM->getTargetIRAnalysis(); 73 74 return TargetIRAnalysis(); 75 } 76 77 /// Set LLVM command line options passed through -backend-option. 78 void setCommandLineOpts(); 79 80 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 81 82 /// Generates the TargetMachine. 83 /// Leaves TM unchanged if it is unable to create the target machine. 84 /// Some of our clang tests specify triples which are not built 85 /// into clang. This is okay because these tests check the generated 86 /// IR, and they require DataLayout which depends on the triple. 87 /// In this case, we allow this method to fail and not report an error. 88 /// When MustCreateTM is used, we print an error if we are unable to load 89 /// the requested target. 90 void CreateTargetMachine(bool MustCreateTM); 91 92 /// Add passes necessary to emit assembly or LLVM IR. 93 /// 94 /// \return True on success. 95 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 96 raw_pwrite_stream &OS); 97 98 public: 99 EmitAssemblyHelper(DiagnosticsEngine &_Diags, const CodeGenOptions &CGOpts, 100 const clang::TargetOptions &TOpts, 101 const LangOptions &LOpts, Module *M) 102 : Diags(_Diags), CodeGenOpts(CGOpts), TargetOpts(TOpts), LangOpts(LOpts), 103 TheModule(M), CodeGenerationTime("Code Generation Time") {} 104 105 ~EmitAssemblyHelper() { 106 if (CodeGenOpts.DisableFree) 107 BuryPointer(std::move(TM)); 108 } 109 110 std::unique_ptr<TargetMachine> TM; 111 112 void EmitAssembly(BackendAction Action, 113 std::unique_ptr<raw_pwrite_stream> OS); 114 }; 115 116 // We need this wrapper to access LangOpts and CGOpts from extension functions 117 // that we add to the PassManagerBuilder. 118 class PassManagerBuilderWrapper : public PassManagerBuilder { 119 public: 120 PassManagerBuilderWrapper(const CodeGenOptions &CGOpts, 121 const LangOptions &LangOpts) 122 : PassManagerBuilder(), CGOpts(CGOpts), LangOpts(LangOpts) {} 123 const CodeGenOptions &getCGOpts() const { return CGOpts; } 124 const LangOptions &getLangOpts() const { return LangOpts; } 125 private: 126 const CodeGenOptions &CGOpts; 127 const LangOptions &LangOpts; 128 }; 129 130 } 131 132 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 133 if (Builder.OptLevel > 0) 134 PM.add(createObjCARCAPElimPass()); 135 } 136 137 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 138 if (Builder.OptLevel > 0) 139 PM.add(createObjCARCExpandPass()); 140 } 141 142 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 143 if (Builder.OptLevel > 0) 144 PM.add(createObjCARCOptPass()); 145 } 146 147 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 148 legacy::PassManagerBase &PM) { 149 PM.add(createAddDiscriminatorsPass()); 150 } 151 152 static void addCleanupPassesForSampleProfiler( 153 const PassManagerBuilder &Builder, legacy::PassManagerBase &PM) { 154 // instcombine is needed before sample profile annotation because it converts 155 // certain function calls to be inlinable. simplifycfg and sroa are needed 156 // before instcombine for necessary preparation. E.g. load store is eliminated 157 // properly so that instcombine will not introduce unecessary liverange. 158 PM.add(createCFGSimplificationPass()); 159 PM.add(createSROAPass()); 160 PM.add(createInstructionCombiningPass()); 161 } 162 163 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 164 legacy::PassManagerBase &PM) { 165 PM.add(createBoundsCheckingPass()); 166 } 167 168 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 169 legacy::PassManagerBase &PM) { 170 const PassManagerBuilderWrapper &BuilderWrapper = 171 static_cast<const PassManagerBuilderWrapper&>(Builder); 172 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 173 SanitizerCoverageOptions Opts; 174 Opts.CoverageType = 175 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 176 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 177 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 178 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 179 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 180 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 181 PM.add(createSanitizerCoverageModulePass(Opts)); 182 } 183 184 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 185 legacy::PassManagerBase &PM) { 186 const PassManagerBuilderWrapper &BuilderWrapper = 187 static_cast<const PassManagerBuilderWrapper&>(Builder); 188 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 189 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 190 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 191 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 192 UseAfterScope)); 193 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/false, Recover)); 194 } 195 196 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 197 legacy::PassManagerBase &PM) { 198 PM.add(createAddressSanitizerFunctionPass( 199 /*CompileKernel*/ true, 200 /*Recover*/ true, /*UseAfterScope*/ false)); 201 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/true, 202 /*Recover*/true)); 203 } 204 205 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 206 legacy::PassManagerBase &PM) { 207 const PassManagerBuilderWrapper &BuilderWrapper = 208 static_cast<const PassManagerBuilderWrapper&>(Builder); 209 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 210 PM.add(createMemorySanitizerPass(CGOpts.SanitizeMemoryTrackOrigins)); 211 212 // MemorySanitizer inserts complex instrumentation that mostly follows 213 // the logic of the original code, but operates on "shadow" values. 214 // It can benefit from re-running some general purpose optimization passes. 215 if (Builder.OptLevel > 0) { 216 PM.add(createEarlyCSEPass()); 217 PM.add(createReassociatePass()); 218 PM.add(createLICMPass()); 219 PM.add(createGVNPass()); 220 PM.add(createInstructionCombiningPass()); 221 PM.add(createDeadStoreEliminationPass()); 222 } 223 } 224 225 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 226 legacy::PassManagerBase &PM) { 227 PM.add(createThreadSanitizerPass()); 228 } 229 230 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 231 legacy::PassManagerBase &PM) { 232 const PassManagerBuilderWrapper &BuilderWrapper = 233 static_cast<const PassManagerBuilderWrapper&>(Builder); 234 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 235 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 236 } 237 238 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 239 legacy::PassManagerBase &PM) { 240 const PassManagerBuilderWrapper &BuilderWrapper = 241 static_cast<const PassManagerBuilderWrapper&>(Builder); 242 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 243 EfficiencySanitizerOptions Opts; 244 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 245 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 246 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 247 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 248 PM.add(createEfficiencySanitizerPass(Opts)); 249 } 250 251 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 252 const CodeGenOptions &CodeGenOpts) { 253 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 254 if (!CodeGenOpts.SimplifyLibCalls) 255 TLII->disableAllFunctions(); 256 else { 257 // Disable individual libc/libm calls in TargetLibraryInfo. 258 LibFunc::Func F; 259 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 260 if (TLII->getLibFunc(FuncName, F)) 261 TLII->setUnavailable(F); 262 } 263 264 switch (CodeGenOpts.getVecLib()) { 265 case CodeGenOptions::Accelerate: 266 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 267 break; 268 case CodeGenOptions::SVML: 269 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 270 break; 271 default: 272 break; 273 } 274 return TLII; 275 } 276 277 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 278 legacy::PassManager *MPM) { 279 llvm::SymbolRewriter::RewriteDescriptorList DL; 280 281 llvm::SymbolRewriter::RewriteMapParser MapParser; 282 for (const auto &MapFile : Opts.RewriteMapFiles) 283 MapParser.parse(MapFile, &DL); 284 285 MPM->add(createRewriteSymbolsPass(DL)); 286 } 287 288 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 289 legacy::FunctionPassManager &FPM) { 290 if (CodeGenOpts.DisableLLVMPasses) 291 return; 292 293 unsigned OptLevel = CodeGenOpts.OptimizationLevel; 294 CodeGenOptions::InliningMethod Inlining = CodeGenOpts.getInlining(); 295 296 // Handle disabling of LLVM optimization, where we want to preserve the 297 // internal module before any optimization. 298 if (CodeGenOpts.DisableLLVMOpts) { 299 OptLevel = 0; 300 Inlining = CodeGenOpts.NoInlining; 301 } 302 303 PassManagerBuilderWrapper PMBuilder(CodeGenOpts, LangOpts); 304 305 // Figure out TargetLibraryInfo. 306 Triple TargetTriple(TheModule->getTargetTriple()); 307 PMBuilder.LibraryInfo = createTLII(TargetTriple, CodeGenOpts); 308 309 switch (Inlining) { 310 case CodeGenOptions::NoInlining: 311 break; 312 case CodeGenOptions::NormalInlining: 313 case CodeGenOptions::OnlyHintInlining: { 314 PMBuilder.Inliner = 315 createFunctionInliningPass(OptLevel, CodeGenOpts.OptimizeSize); 316 break; 317 } 318 case CodeGenOptions::OnlyAlwaysInlining: 319 // Respect always_inline. 320 if (OptLevel == 0) 321 // Do not insert lifetime intrinsics at -O0. 322 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(false); 323 else 324 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(); 325 break; 326 } 327 328 PMBuilder.OptLevel = OptLevel; 329 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 330 PMBuilder.BBVectorize = CodeGenOpts.VectorizeBB; 331 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 332 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 333 334 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 335 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 336 PMBuilder.PrepareForThinLTO = CodeGenOpts.EmitSummaryIndex; 337 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 338 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 339 340 // Add target-specific passes that need to run as early as possible. 341 if (TM) 342 PMBuilder.addExtension( 343 PassManagerBuilder::EP_EarlyAsPossible, 344 [&](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 345 TM->addEarlyAsPossiblePasses(PM); 346 }); 347 348 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 349 addAddDiscriminatorsPass); 350 351 // In ObjC ARC mode, add the main ARC optimization passes. 352 if (LangOpts.ObjCAutoRefCount) { 353 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 354 addObjCARCExpandPass); 355 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 356 addObjCARCAPElimPass); 357 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 358 addObjCARCOptPass); 359 } 360 361 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 362 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 363 addBoundsCheckingPass); 364 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 365 addBoundsCheckingPass); 366 } 367 368 if (CodeGenOpts.SanitizeCoverageType || 369 CodeGenOpts.SanitizeCoverageIndirectCalls || 370 CodeGenOpts.SanitizeCoverageTraceCmp) { 371 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 372 addSanitizerCoveragePass); 373 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 374 addSanitizerCoveragePass); 375 } 376 377 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 378 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 379 addAddressSanitizerPasses); 380 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 381 addAddressSanitizerPasses); 382 } 383 384 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 385 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 386 addKernelAddressSanitizerPasses); 387 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 388 addKernelAddressSanitizerPasses); 389 } 390 391 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 392 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 393 addMemorySanitizerPass); 394 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 395 addMemorySanitizerPass); 396 } 397 398 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 399 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 400 addThreadSanitizerPass); 401 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 402 addThreadSanitizerPass); 403 } 404 405 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 406 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 407 addDataFlowSanitizerPass); 408 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 409 addDataFlowSanitizerPass); 410 } 411 412 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 413 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 414 addEfficiencySanitizerPass); 415 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 416 addEfficiencySanitizerPass); 417 } 418 419 // Set up the per-function pass manager. 420 if (CodeGenOpts.VerifyModule) 421 FPM.add(createVerifierPass()); 422 423 // Set up the per-module pass manager. 424 if (!CodeGenOpts.RewriteMapFiles.empty()) 425 addSymbolRewriterPass(CodeGenOpts, &MPM); 426 427 if (!CodeGenOpts.DisableGCov && 428 (CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)) { 429 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 430 // LLVM's -default-gcov-version flag is set to something invalid. 431 GCOVOptions Options; 432 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 433 Options.EmitData = CodeGenOpts.EmitGcovArcs; 434 memcpy(Options.Version, CodeGenOpts.CoverageVersion, 4); 435 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 436 Options.NoRedZone = CodeGenOpts.DisableRedZone; 437 Options.FunctionNamesInData = 438 !CodeGenOpts.CoverageNoFunctionNamesInData; 439 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 440 MPM.add(createGCOVProfilerPass(Options)); 441 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 442 MPM.add(createStripSymbolsPass(true)); 443 } 444 445 if (CodeGenOpts.hasProfileClangInstr()) { 446 InstrProfOptions Options; 447 Options.NoRedZone = CodeGenOpts.DisableRedZone; 448 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 449 MPM.add(createInstrProfilingLegacyPass(Options)); 450 } 451 if (CodeGenOpts.hasProfileIRInstr()) { 452 PMBuilder.EnablePGOInstrGen = true; 453 if (!CodeGenOpts.InstrProfileOutput.empty()) 454 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 455 else 456 PMBuilder.PGOInstrGen = "default_%m.profraw"; 457 } 458 if (CodeGenOpts.hasProfileIRUse()) 459 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 460 461 if (!CodeGenOpts.SampleProfileFile.empty()) { 462 MPM.add(createPruneEHPass()); 463 MPM.add(createSampleProfileLoaderPass(CodeGenOpts.SampleProfileFile)); 464 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 465 addCleanupPassesForSampleProfiler); 466 } 467 468 PMBuilder.populateFunctionPassManager(FPM); 469 PMBuilder.populateModulePassManager(MPM); 470 } 471 472 void EmitAssemblyHelper::setCommandLineOpts() { 473 SmallVector<const char *, 16> BackendArgs; 474 BackendArgs.push_back("clang"); // Fake program name. 475 if (!CodeGenOpts.DebugPass.empty()) { 476 BackendArgs.push_back("-debug-pass"); 477 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 478 } 479 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 480 BackendArgs.push_back("-limit-float-precision"); 481 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 482 } 483 for (const std::string &BackendOption : CodeGenOpts.BackendOptions) 484 BackendArgs.push_back(BackendOption.c_str()); 485 BackendArgs.push_back(nullptr); 486 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 487 BackendArgs.data()); 488 } 489 490 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 491 // Create the TargetMachine for generating code. 492 std::string Error; 493 std::string Triple = TheModule->getTargetTriple(); 494 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 495 if (!TheTarget) { 496 if (MustCreateTM) 497 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 498 return; 499 } 500 501 unsigned CodeModel = 502 llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 503 .Case("small", llvm::CodeModel::Small) 504 .Case("kernel", llvm::CodeModel::Kernel) 505 .Case("medium", llvm::CodeModel::Medium) 506 .Case("large", llvm::CodeModel::Large) 507 .Case("default", llvm::CodeModel::Default) 508 .Default(~0u); 509 assert(CodeModel != ~0u && "invalid code model!"); 510 llvm::CodeModel::Model CM = static_cast<llvm::CodeModel::Model>(CodeModel); 511 512 std::string FeaturesStr = 513 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 514 515 // Keep this synced with the equivalent code in tools/driver/cc1as_main.cpp. 516 llvm::Optional<llvm::Reloc::Model> RM; 517 if (CodeGenOpts.RelocationModel == "static") { 518 RM = llvm::Reloc::Static; 519 } else if (CodeGenOpts.RelocationModel == "pic") { 520 RM = llvm::Reloc::PIC_; 521 } else if (CodeGenOpts.RelocationModel == "ropi") { 522 RM = llvm::Reloc::ROPI; 523 } else if (CodeGenOpts.RelocationModel == "rwpi") { 524 RM = llvm::Reloc::RWPI; 525 } else if (CodeGenOpts.RelocationModel == "ropi-rwpi") { 526 RM = llvm::Reloc::ROPI_RWPI; 527 } else { 528 assert(CodeGenOpts.RelocationModel == "dynamic-no-pic" && 529 "Invalid PIC model!"); 530 RM = llvm::Reloc::DynamicNoPIC; 531 } 532 533 CodeGenOpt::Level OptLevel = CodeGenOpt::Default; 534 switch (CodeGenOpts.OptimizationLevel) { 535 default: break; 536 case 0: OptLevel = CodeGenOpt::None; break; 537 case 3: OptLevel = CodeGenOpt::Aggressive; break; 538 } 539 540 llvm::TargetOptions Options; 541 542 if (!TargetOpts.Reciprocals.empty()) 543 Options.Reciprocals = TargetRecip(TargetOpts.Reciprocals); 544 545 Options.ThreadModel = 546 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 547 .Case("posix", llvm::ThreadModel::POSIX) 548 .Case("single", llvm::ThreadModel::Single); 549 550 // Set float ABI type. 551 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 552 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 553 "Invalid Floating Point ABI!"); 554 Options.FloatABIType = 555 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 556 .Case("soft", llvm::FloatABI::Soft) 557 .Case("softfp", llvm::FloatABI::Soft) 558 .Case("hard", llvm::FloatABI::Hard) 559 .Default(llvm::FloatABI::Default); 560 561 // Set FP fusion mode. 562 switch (CodeGenOpts.getFPContractMode()) { 563 case CodeGenOptions::FPC_Off: 564 Options.AllowFPOpFusion = llvm::FPOpFusion::Strict; 565 break; 566 case CodeGenOptions::FPC_On: 567 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 568 break; 569 case CodeGenOptions::FPC_Fast: 570 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 571 break; 572 } 573 574 Options.UseInitArray = CodeGenOpts.UseInitArray; 575 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 576 Options.CompressDebugSections = CodeGenOpts.CompressDebugSections; 577 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 578 579 // Set EABI version. 580 Options.EABIVersion = llvm::StringSwitch<llvm::EABI>(TargetOpts.EABIVersion) 581 .Case("4", llvm::EABI::EABI4) 582 .Case("5", llvm::EABI::EABI5) 583 .Case("gnu", llvm::EABI::GNU) 584 .Default(llvm::EABI::Default); 585 586 if (LangOpts.SjLjExceptions) 587 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 588 589 Options.LessPreciseFPMADOption = CodeGenOpts.LessPreciseFPMAD; 590 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 591 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 592 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 593 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 594 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 595 Options.FunctionSections = CodeGenOpts.FunctionSections; 596 Options.DataSections = CodeGenOpts.DataSections; 597 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 598 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 599 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 600 601 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 602 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 603 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 604 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 605 Options.MCOptions.MCIncrementalLinkerCompatible = 606 CodeGenOpts.IncrementalLinkerCompatible; 607 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 608 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 609 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 610 Options.MCOptions.ABIName = TargetOpts.ABI; 611 612 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 613 Options, RM, CM, OptLevel)); 614 } 615 616 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 617 BackendAction Action, 618 raw_pwrite_stream &OS) { 619 // Add LibraryInfo. 620 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 621 std::unique_ptr<TargetLibraryInfoImpl> TLII( 622 createTLII(TargetTriple, CodeGenOpts)); 623 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 624 625 // Normal mode, emit a .s or .o file by running the code generator. Note, 626 // this also adds codegenerator level optimization passes. 627 TargetMachine::CodeGenFileType CGFT = TargetMachine::CGFT_AssemblyFile; 628 if (Action == Backend_EmitObj) 629 CGFT = TargetMachine::CGFT_ObjectFile; 630 else if (Action == Backend_EmitMCNull) 631 CGFT = TargetMachine::CGFT_Null; 632 else 633 assert(Action == Backend_EmitAssembly && "Invalid action!"); 634 635 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 636 // "codegen" passes so that it isn't run multiple times when there is 637 // inlining happening. 638 if (CodeGenOpts.OptimizationLevel > 0) 639 CodeGenPasses.add(createObjCARCContractPass()); 640 641 if (TM->addPassesToEmitFile(CodeGenPasses, OS, CGFT, 642 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 643 Diags.Report(diag::err_fe_unable_to_interface_with_target); 644 return false; 645 } 646 647 return true; 648 } 649 650 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 651 std::unique_ptr<raw_pwrite_stream> OS) { 652 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 653 654 setCommandLineOpts(); 655 656 bool UsesCodeGen = (Action != Backend_EmitNothing && 657 Action != Backend_EmitBC && 658 Action != Backend_EmitLL); 659 CreateTargetMachine(UsesCodeGen); 660 661 if (UsesCodeGen && !TM) 662 return; 663 if (TM) 664 TheModule->setDataLayout(TM->createDataLayout()); 665 666 legacy::PassManager PerModulePasses; 667 PerModulePasses.add( 668 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 669 670 legacy::FunctionPassManager PerFunctionPasses(TheModule); 671 PerFunctionPasses.add( 672 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 673 674 CreatePasses(PerModulePasses, PerFunctionPasses); 675 676 legacy::PassManager CodeGenPasses; 677 CodeGenPasses.add( 678 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 679 680 switch (Action) { 681 case Backend_EmitNothing: 682 break; 683 684 case Backend_EmitBC: 685 PerModulePasses.add(createBitcodeWriterPass( 686 *OS, CodeGenOpts.EmitLLVMUseLists, CodeGenOpts.EmitSummaryIndex, 687 CodeGenOpts.EmitSummaryIndex)); 688 break; 689 690 case Backend_EmitLL: 691 PerModulePasses.add( 692 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 693 break; 694 695 default: 696 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 697 return; 698 } 699 700 // Before executing passes, print the final values of the LLVM options. 701 cl::PrintOptionValues(); 702 703 // Run passes. For now we do all passes at once, but eventually we 704 // would like to have the option of streaming code generation. 705 706 { 707 PrettyStackTraceString CrashInfo("Per-function optimization"); 708 709 PerFunctionPasses.doInitialization(); 710 for (Function &F : *TheModule) 711 if (!F.isDeclaration()) 712 PerFunctionPasses.run(F); 713 PerFunctionPasses.doFinalization(); 714 } 715 716 { 717 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 718 PerModulePasses.run(*TheModule); 719 } 720 721 { 722 PrettyStackTraceString CrashInfo("Code generation"); 723 CodeGenPasses.run(*TheModule); 724 } 725 } 726 727 namespace { 728 // Wrapper prodiving a stream for the ThinLTO backend. 729 class ThinLTOOutputWrapper : public lto::NativeObjectOutput { 730 std::unique_ptr<raw_pwrite_stream> OS; 731 732 public: 733 ThinLTOOutputWrapper(std::unique_ptr<raw_pwrite_stream> OS) 734 : OS(std::move(OS)) {} 735 std::unique_ptr<raw_pwrite_stream> getStream() override { 736 return std::move(OS); 737 } 738 }; 739 } 740 741 static void runThinLTOBackend(const CodeGenOptions &CGOpts, Module *M, 742 std::unique_ptr<raw_pwrite_stream> OS) { 743 // If we are performing a ThinLTO importing compile, load the function index 744 // into memory and pass it into thinBackend, which will run the function 745 // importer and invoke LTO passes. 746 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 747 llvm::getModuleSummaryIndexForFile( 748 CGOpts.ThinLTOIndexFile, 749 [&](const DiagnosticInfo &DI) { M->getContext().diagnose(DI); }); 750 if (std::error_code EC = IndexOrErr.getError()) { 751 std::string Error = EC.message(); 752 errs() << "Error loading index file '" << CGOpts.ThinLTOIndexFile 753 << "': " << Error << "\n"; 754 return; 755 } 756 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 757 758 StringMap<std::map<GlobalValue::GUID, GlobalValueSummary *>> 759 ModuleToDefinedGVSummaries; 760 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 761 762 // FIXME: We could simply import the modules mentioned in the combined index 763 // here. 764 FunctionImporter::ImportMapTy ImportList; 765 ComputeCrossModuleImportForModule(M->getModuleIdentifier(), *CombinedIndex, 766 ImportList); 767 768 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 769 MapVector<llvm::StringRef, llvm::MemoryBufferRef> ModuleMap; 770 771 for (auto &I : ImportList) { 772 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 773 llvm::MemoryBuffer::getFile(I.first()); 774 if (!MBOrErr) { 775 errs() << "Error loading imported file '" << I.first() 776 << "': " << MBOrErr.getError().message() << "\n"; 777 return; 778 } 779 ModuleMap[I.first()] = (*MBOrErr)->getMemBufferRef(); 780 OwnedImports.push_back(std::move(*MBOrErr)); 781 } 782 auto AddOutput = [&](size_t Task) { 783 return llvm::make_unique<ThinLTOOutputWrapper>(std::move(OS)); 784 }; 785 lto::Config Conf; 786 if (Error E = thinBackend( 787 Conf, 0, AddOutput, *M, *CombinedIndex, ImportList, 788 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 789 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 790 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 791 }); 792 } 793 } 794 795 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 796 const CodeGenOptions &CGOpts, 797 const clang::TargetOptions &TOpts, 798 const LangOptions &LOpts, const llvm::DataLayout &TDesc, 799 Module *M, BackendAction Action, 800 std::unique_ptr<raw_pwrite_stream> OS) { 801 if (!CGOpts.ThinLTOIndexFile.empty()) { 802 runThinLTOBackend(CGOpts, M, std::move(OS)); 803 return; 804 } 805 806 EmitAssemblyHelper AsmHelper(Diags, CGOpts, TOpts, LOpts, M); 807 808 AsmHelper.EmitAssembly(Action, std::move(OS)); 809 810 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 811 // DataLayout. 812 if (AsmHelper.TM) { 813 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 814 if (DLDesc != TDesc.getStringRepresentation()) { 815 unsigned DiagID = Diags.getCustomDiagID( 816 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 817 "expected target description '%1'"); 818 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 819 } 820 } 821 } 822 823 static const char* getSectionNameForBitcode(const Triple &T) { 824 switch (T.getObjectFormat()) { 825 case Triple::MachO: 826 return "__LLVM,__bitcode"; 827 case Triple::COFF: 828 case Triple::ELF: 829 case Triple::UnknownObjectFormat: 830 return ".llvmbc"; 831 } 832 llvm_unreachable("Unimplemented ObjectFormatType"); 833 } 834 835 static const char* getSectionNameForCommandline(const Triple &T) { 836 switch (T.getObjectFormat()) { 837 case Triple::MachO: 838 return "__LLVM,__cmdline"; 839 case Triple::COFF: 840 case Triple::ELF: 841 case Triple::UnknownObjectFormat: 842 return ".llvmcmd"; 843 } 844 llvm_unreachable("Unimplemented ObjectFormatType"); 845 } 846 847 // With -fembed-bitcode, save a copy of the llvm IR as data in the 848 // __LLVM,__bitcode section. 849 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 850 llvm::MemoryBufferRef Buf) { 851 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 852 return; 853 854 // Save llvm.compiler.used and remote it. 855 SmallVector<Constant*, 2> UsedArray; 856 SmallSet<GlobalValue*, 4> UsedGlobals; 857 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 858 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 859 for (auto *GV : UsedGlobals) { 860 if (GV->getName() != "llvm.embedded.module" && 861 GV->getName() != "llvm.cmdline") 862 UsedArray.push_back( 863 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 864 } 865 if (Used) 866 Used->eraseFromParent(); 867 868 // Embed the bitcode for the llvm module. 869 std::string Data; 870 ArrayRef<uint8_t> ModuleData; 871 Triple T(M->getTargetTriple()); 872 // Create a constant that contains the bitcode. 873 // In case of embedding a marker, ignore the input Buf and use the empty 874 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 875 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 876 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 877 (const unsigned char *)Buf.getBufferEnd())) { 878 // If the input is LLVM Assembly, bitcode is produced by serializing 879 // the module. Use-lists order need to be perserved in this case. 880 llvm::raw_string_ostream OS(Data); 881 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 882 ModuleData = 883 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 884 } else 885 // If the input is LLVM bitcode, write the input byte stream directly. 886 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 887 Buf.getBufferSize()); 888 } 889 llvm::Constant *ModuleConstant = 890 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 891 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 892 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 893 ModuleConstant); 894 GV->setSection(getSectionNameForBitcode(T)); 895 UsedArray.push_back( 896 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 897 if (llvm::GlobalVariable *Old = 898 M->getGlobalVariable("llvm.embedded.module", true)) { 899 assert(Old->hasOneUse() && 900 "llvm.embedded.module can only be used once in llvm.compiler.used"); 901 GV->takeName(Old); 902 Old->eraseFromParent(); 903 } else { 904 GV->setName("llvm.embedded.module"); 905 } 906 907 // Skip if only bitcode needs to be embedded. 908 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 909 // Embed command-line options. 910 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 911 CGOpts.CmdArgs.size()); 912 llvm::Constant *CmdConstant = 913 llvm::ConstantDataArray::get(M->getContext(), CmdData); 914 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 915 llvm::GlobalValue::PrivateLinkage, 916 CmdConstant); 917 GV->setSection(getSectionNameForCommandline(T)); 918 UsedArray.push_back( 919 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 920 if (llvm::GlobalVariable *Old = 921 M->getGlobalVariable("llvm.cmdline", true)) { 922 assert(Old->hasOneUse() && 923 "llvm.cmdline can only be used once in llvm.compiler.used"); 924 GV->takeName(Old); 925 Old->eraseFromParent(); 926 } else { 927 GV->setName("llvm.cmdline"); 928 } 929 } 930 931 if (UsedArray.empty()) 932 return; 933 934 // Recreate llvm.compiler.used. 935 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 936 auto *NewUsed = new GlobalVariable( 937 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 938 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 939 NewUsed->setSection("llvm.metadata"); 940 } 941