1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Bitcode/BitcodeReader.h" 24 #include "llvm/Bitcode/BitcodeWriter.h" 25 #include "llvm/Bitcode/BitcodeWriterPass.h" 26 #include "llvm/CodeGen/RegAllocRegistry.h" 27 #include "llvm/CodeGen/SchedulerRegistry.h" 28 #include "llvm/CodeGen/TargetSubtargetInfo.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/IRPrintingPasses.h" 31 #include "llvm/IR/LegacyPassManager.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSummaryIndex.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/LTO/LTOBackend.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/SubtargetFeature.h" 38 #include "llvm/Passes/PassBuilder.h" 39 #include "llvm/Passes/PassPlugin.h" 40 #include "llvm/Support/BuryPointer.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/MemoryBuffer.h" 43 #include "llvm/Support/PrettyStackTrace.h" 44 #include "llvm/Support/TargetRegistry.h" 45 #include "llvm/Support/Timer.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include "llvm/Transforms/Coroutines.h" 50 #include "llvm/Transforms/IPO.h" 51 #include "llvm/Transforms/IPO/AlwaysInliner.h" 52 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 53 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 54 #include "llvm/Transforms/InstCombine/InstCombine.h" 55 #include "llvm/Transforms/Instrumentation.h" 56 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 57 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 58 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 59 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 60 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 61 #include "llvm/Transforms/ObjCARC.h" 62 #include "llvm/Transforms/Scalar.h" 63 #include "llvm/Transforms/Scalar/GVN.h" 64 #include "llvm/Transforms/Utils.h" 65 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 66 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 67 #include "llvm/Transforms/Utils/SymbolRewriter.h" 68 #include <memory> 69 using namespace clang; 70 using namespace llvm; 71 72 namespace { 73 74 // Default filename used for profile generation. 75 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 76 77 class EmitAssemblyHelper { 78 DiagnosticsEngine &Diags; 79 const HeaderSearchOptions &HSOpts; 80 const CodeGenOptions &CodeGenOpts; 81 const clang::TargetOptions &TargetOpts; 82 const LangOptions &LangOpts; 83 Module *TheModule; 84 85 Timer CodeGenerationTime; 86 87 std::unique_ptr<raw_pwrite_stream> OS; 88 89 TargetIRAnalysis getTargetIRAnalysis() const { 90 if (TM) 91 return TM->getTargetIRAnalysis(); 92 93 return TargetIRAnalysis(); 94 } 95 96 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 97 98 /// Generates the TargetMachine. 99 /// Leaves TM unchanged if it is unable to create the target machine. 100 /// Some of our clang tests specify triples which are not built 101 /// into clang. This is okay because these tests check the generated 102 /// IR, and they require DataLayout which depends on the triple. 103 /// In this case, we allow this method to fail and not report an error. 104 /// When MustCreateTM is used, we print an error if we are unable to load 105 /// the requested target. 106 void CreateTargetMachine(bool MustCreateTM); 107 108 /// Add passes necessary to emit assembly or LLVM IR. 109 /// 110 /// \return True on success. 111 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 112 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 113 114 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 115 std::error_code EC; 116 auto F = llvm::make_unique<llvm::ToolOutputFile>(Path, EC, 117 llvm::sys::fs::F_None); 118 if (EC) { 119 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 120 F.reset(); 121 } 122 return F; 123 } 124 125 public: 126 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 127 const HeaderSearchOptions &HeaderSearchOpts, 128 const CodeGenOptions &CGOpts, 129 const clang::TargetOptions &TOpts, 130 const LangOptions &LOpts, Module *M) 131 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 132 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 133 CodeGenerationTime("codegen", "Code Generation Time") {} 134 135 ~EmitAssemblyHelper() { 136 if (CodeGenOpts.DisableFree) 137 BuryPointer(std::move(TM)); 138 } 139 140 std::unique_ptr<TargetMachine> TM; 141 142 void EmitAssembly(BackendAction Action, 143 std::unique_ptr<raw_pwrite_stream> OS); 144 145 void EmitAssemblyWithNewPassManager(BackendAction Action, 146 std::unique_ptr<raw_pwrite_stream> OS); 147 }; 148 149 // We need this wrapper to access LangOpts and CGOpts from extension functions 150 // that we add to the PassManagerBuilder. 151 class PassManagerBuilderWrapper : public PassManagerBuilder { 152 public: 153 PassManagerBuilderWrapper(const Triple &TargetTriple, 154 const CodeGenOptions &CGOpts, 155 const LangOptions &LangOpts) 156 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 157 LangOpts(LangOpts) {} 158 const Triple &getTargetTriple() const { return TargetTriple; } 159 const CodeGenOptions &getCGOpts() const { return CGOpts; } 160 const LangOptions &getLangOpts() const { return LangOpts; } 161 162 private: 163 const Triple &TargetTriple; 164 const CodeGenOptions &CGOpts; 165 const LangOptions &LangOpts; 166 }; 167 } 168 169 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 170 if (Builder.OptLevel > 0) 171 PM.add(createObjCARCAPElimPass()); 172 } 173 174 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 175 if (Builder.OptLevel > 0) 176 PM.add(createObjCARCExpandPass()); 177 } 178 179 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 180 if (Builder.OptLevel > 0) 181 PM.add(createObjCARCOptPass()); 182 } 183 184 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 185 legacy::PassManagerBase &PM) { 186 PM.add(createAddDiscriminatorsPass()); 187 } 188 189 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 190 legacy::PassManagerBase &PM) { 191 PM.add(createBoundsCheckingLegacyPass()); 192 } 193 194 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 195 legacy::PassManagerBase &PM) { 196 const PassManagerBuilderWrapper &BuilderWrapper = 197 static_cast<const PassManagerBuilderWrapper&>(Builder); 198 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 199 SanitizerCoverageOptions Opts; 200 Opts.CoverageType = 201 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 202 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 203 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 204 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 205 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 206 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 207 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 208 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 209 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 210 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 211 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 212 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 213 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 214 PM.add(createSanitizerCoverageModulePass(Opts)); 215 } 216 217 // Check if ASan should use GC-friendly instrumentation for globals. 218 // First of all, there is no point if -fdata-sections is off (expect for MachO, 219 // where this is not a factor). Also, on ELF this feature requires an assembler 220 // extension that only works with -integrated-as at the moment. 221 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 222 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 223 return false; 224 switch (T.getObjectFormat()) { 225 case Triple::MachO: 226 case Triple::COFF: 227 return true; 228 case Triple::ELF: 229 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 230 default: 231 return false; 232 } 233 } 234 235 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 236 legacy::PassManagerBase &PM) { 237 const PassManagerBuilderWrapper &BuilderWrapper = 238 static_cast<const PassManagerBuilderWrapper&>(Builder); 239 const Triple &T = BuilderWrapper.getTargetTriple(); 240 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 241 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 242 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 243 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 244 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 245 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 246 UseAfterScope)); 247 PM.add(createModuleAddressSanitizerLegacyPassPass( 248 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator)); 249 } 250 251 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 252 legacy::PassManagerBase &PM) { 253 PM.add(createAddressSanitizerFunctionPass( 254 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 255 PM.add(createModuleAddressSanitizerLegacyPassPass( 256 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 257 /*UseOdrIndicator*/ false)); 258 } 259 260 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 261 legacy::PassManagerBase &PM) { 262 const PassManagerBuilderWrapper &BuilderWrapper = 263 static_cast<const PassManagerBuilderWrapper &>(Builder); 264 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 265 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 266 PM.add(createHWAddressSanitizerPass(/*CompileKernel*/ false, Recover)); 267 } 268 269 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 270 legacy::PassManagerBase &PM) { 271 PM.add(createHWAddressSanitizerPass( 272 /*CompileKernel*/ true, /*Recover*/ true)); 273 } 274 275 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 276 legacy::PassManagerBase &PM, 277 bool CompileKernel) { 278 const PassManagerBuilderWrapper &BuilderWrapper = 279 static_cast<const PassManagerBuilderWrapper&>(Builder); 280 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 281 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 282 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 283 PM.add(createMemorySanitizerLegacyPassPass( 284 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 285 286 // MemorySanitizer inserts complex instrumentation that mostly follows 287 // the logic of the original code, but operates on "shadow" values. 288 // It can benefit from re-running some general purpose optimization passes. 289 if (Builder.OptLevel > 0) { 290 PM.add(createEarlyCSEPass()); 291 PM.add(createReassociatePass()); 292 PM.add(createLICMPass()); 293 PM.add(createGVNPass()); 294 PM.add(createInstructionCombiningPass()); 295 PM.add(createDeadStoreEliminationPass()); 296 } 297 } 298 299 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 300 legacy::PassManagerBase &PM) { 301 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 302 } 303 304 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 305 legacy::PassManagerBase &PM) { 306 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 307 } 308 309 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 310 legacy::PassManagerBase &PM) { 311 PM.add(createThreadSanitizerLegacyPassPass()); 312 } 313 314 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 315 legacy::PassManagerBase &PM) { 316 const PassManagerBuilderWrapper &BuilderWrapper = 317 static_cast<const PassManagerBuilderWrapper&>(Builder); 318 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 319 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 320 } 321 322 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 323 const CodeGenOptions &CodeGenOpts) { 324 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 325 if (!CodeGenOpts.SimplifyLibCalls) 326 TLII->disableAllFunctions(); 327 else { 328 // Disable individual libc/libm calls in TargetLibraryInfo. 329 LibFunc F; 330 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 331 if (TLII->getLibFunc(FuncName, F)) 332 TLII->setUnavailable(F); 333 } 334 335 switch (CodeGenOpts.getVecLib()) { 336 case CodeGenOptions::Accelerate: 337 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 338 break; 339 case CodeGenOptions::SVML: 340 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 341 break; 342 default: 343 break; 344 } 345 return TLII; 346 } 347 348 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 349 legacy::PassManager *MPM) { 350 llvm::SymbolRewriter::RewriteDescriptorList DL; 351 352 llvm::SymbolRewriter::RewriteMapParser MapParser; 353 for (const auto &MapFile : Opts.RewriteMapFiles) 354 MapParser.parse(MapFile, &DL); 355 356 MPM->add(createRewriteSymbolsPass(DL)); 357 } 358 359 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 360 switch (CodeGenOpts.OptimizationLevel) { 361 default: 362 llvm_unreachable("Invalid optimization level!"); 363 case 0: 364 return CodeGenOpt::None; 365 case 1: 366 return CodeGenOpt::Less; 367 case 2: 368 return CodeGenOpt::Default; // O2/Os/Oz 369 case 3: 370 return CodeGenOpt::Aggressive; 371 } 372 } 373 374 static Optional<llvm::CodeModel::Model> 375 getCodeModel(const CodeGenOptions &CodeGenOpts) { 376 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 377 .Case("tiny", llvm::CodeModel::Tiny) 378 .Case("small", llvm::CodeModel::Small) 379 .Case("kernel", llvm::CodeModel::Kernel) 380 .Case("medium", llvm::CodeModel::Medium) 381 .Case("large", llvm::CodeModel::Large) 382 .Case("default", ~1u) 383 .Default(~0u); 384 assert(CodeModel != ~0u && "invalid code model!"); 385 if (CodeModel == ~1u) 386 return None; 387 return static_cast<llvm::CodeModel::Model>(CodeModel); 388 } 389 390 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 391 if (Action == Backend_EmitObj) 392 return TargetMachine::CGFT_ObjectFile; 393 else if (Action == Backend_EmitMCNull) 394 return TargetMachine::CGFT_Null; 395 else { 396 assert(Action == Backend_EmitAssembly && "Invalid action!"); 397 return TargetMachine::CGFT_AssemblyFile; 398 } 399 } 400 401 static void initTargetOptions(llvm::TargetOptions &Options, 402 const CodeGenOptions &CodeGenOpts, 403 const clang::TargetOptions &TargetOpts, 404 const LangOptions &LangOpts, 405 const HeaderSearchOptions &HSOpts) { 406 Options.ThreadModel = 407 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 408 .Case("posix", llvm::ThreadModel::POSIX) 409 .Case("single", llvm::ThreadModel::Single); 410 411 // Set float ABI type. 412 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 413 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 414 "Invalid Floating Point ABI!"); 415 Options.FloatABIType = 416 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 417 .Case("soft", llvm::FloatABI::Soft) 418 .Case("softfp", llvm::FloatABI::Soft) 419 .Case("hard", llvm::FloatABI::Hard) 420 .Default(llvm::FloatABI::Default); 421 422 // Set FP fusion mode. 423 switch (LangOpts.getDefaultFPContractMode()) { 424 case LangOptions::FPC_Off: 425 // Preserve any contraction performed by the front-end. (Strict performs 426 // splitting of the muladd intrinsic in the backend.) 427 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 428 break; 429 case LangOptions::FPC_On: 430 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 431 break; 432 case LangOptions::FPC_Fast: 433 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 434 break; 435 } 436 437 Options.UseInitArray = CodeGenOpts.UseInitArray; 438 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 439 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 440 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 441 442 // Set EABI version. 443 Options.EABIVersion = TargetOpts.EABIVersion; 444 445 if (LangOpts.SjLjExceptions) 446 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 447 if (LangOpts.SEHExceptions) 448 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 449 if (LangOpts.DWARFExceptions) 450 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 451 452 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 453 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 454 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 455 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 456 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 457 Options.FunctionSections = CodeGenOpts.FunctionSections; 458 Options.DataSections = CodeGenOpts.DataSections; 459 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 460 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 461 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 462 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 463 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 464 Options.EmitAddrsig = CodeGenOpts.Addrsig; 465 466 if (CodeGenOpts.getSplitDwarfMode() != CodeGenOptions::NoFission) 467 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 468 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 469 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 470 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 471 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 472 Options.MCOptions.MCIncrementalLinkerCompatible = 473 CodeGenOpts.IncrementalLinkerCompatible; 474 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 475 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 476 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 477 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 478 Options.MCOptions.ABIName = TargetOpts.ABI; 479 for (const auto &Entry : HSOpts.UserEntries) 480 if (!Entry.IsFramework && 481 (Entry.Group == frontend::IncludeDirGroup::Quoted || 482 Entry.Group == frontend::IncludeDirGroup::Angled || 483 Entry.Group == frontend::IncludeDirGroup::System)) 484 Options.MCOptions.IASSearchPaths.push_back( 485 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 486 } 487 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 488 if (CodeGenOpts.DisableGCov) 489 return None; 490 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 491 return None; 492 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 493 // LLVM's -default-gcov-version flag is set to something invalid. 494 GCOVOptions Options; 495 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 496 Options.EmitData = CodeGenOpts.EmitGcovArcs; 497 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 498 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 499 Options.NoRedZone = CodeGenOpts.DisableRedZone; 500 Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData; 501 Options.Filter = CodeGenOpts.ProfileFilterFiles; 502 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 503 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 504 return Options; 505 } 506 507 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 508 legacy::FunctionPassManager &FPM) { 509 // Handle disabling of all LLVM passes, where we want to preserve the 510 // internal module before any optimization. 511 if (CodeGenOpts.DisableLLVMPasses) 512 return; 513 514 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 515 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 516 // are inserted before PMBuilder ones - they'd get the default-constructed 517 // TLI with an unknown target otherwise. 518 Triple TargetTriple(TheModule->getTargetTriple()); 519 std::unique_ptr<TargetLibraryInfoImpl> TLII( 520 createTLII(TargetTriple, CodeGenOpts)); 521 522 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 523 524 // At O0 and O1 we only run the always inliner which is more efficient. At 525 // higher optimization levels we run the normal inliner. 526 if (CodeGenOpts.OptimizationLevel <= 1) { 527 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 528 !CodeGenOpts.DisableLifetimeMarkers); 529 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 530 } else { 531 // We do not want to inline hot callsites for SamplePGO module-summary build 532 // because profile annotation will happen again in ThinLTO backend, and we 533 // want the IR of the hot path to match the profile. 534 PMBuilder.Inliner = createFunctionInliningPass( 535 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 536 (!CodeGenOpts.SampleProfileFile.empty() && 537 CodeGenOpts.PrepareForThinLTO)); 538 } 539 540 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 541 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 542 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 543 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 544 545 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 546 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 547 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 548 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 549 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 550 551 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 552 553 if (TM) 554 TM->adjustPassManager(PMBuilder); 555 556 if (CodeGenOpts.DebugInfoForProfiling || 557 !CodeGenOpts.SampleProfileFile.empty()) 558 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 559 addAddDiscriminatorsPass); 560 561 // In ObjC ARC mode, add the main ARC optimization passes. 562 if (LangOpts.ObjCAutoRefCount) { 563 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 564 addObjCARCExpandPass); 565 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 566 addObjCARCAPElimPass); 567 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 568 addObjCARCOptPass); 569 } 570 571 if (LangOpts.Coroutines) 572 addCoroutinePassesToExtensionPoints(PMBuilder); 573 574 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 575 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 576 addBoundsCheckingPass); 577 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 578 addBoundsCheckingPass); 579 } 580 581 if (CodeGenOpts.SanitizeCoverageType || 582 CodeGenOpts.SanitizeCoverageIndirectCalls || 583 CodeGenOpts.SanitizeCoverageTraceCmp) { 584 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 585 addSanitizerCoveragePass); 586 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 587 addSanitizerCoveragePass); 588 } 589 590 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 591 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 592 addAddressSanitizerPasses); 593 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 594 addAddressSanitizerPasses); 595 } 596 597 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 598 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 599 addKernelAddressSanitizerPasses); 600 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 601 addKernelAddressSanitizerPasses); 602 } 603 604 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 605 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 606 addHWAddressSanitizerPasses); 607 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 608 addHWAddressSanitizerPasses); 609 } 610 611 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 612 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 613 addKernelHWAddressSanitizerPasses); 614 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 615 addKernelHWAddressSanitizerPasses); 616 } 617 618 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 619 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 620 addMemorySanitizerPass); 621 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 622 addMemorySanitizerPass); 623 } 624 625 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 626 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 627 addKernelMemorySanitizerPass); 628 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 629 addKernelMemorySanitizerPass); 630 } 631 632 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 633 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 634 addThreadSanitizerPass); 635 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 636 addThreadSanitizerPass); 637 } 638 639 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 640 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 641 addDataFlowSanitizerPass); 642 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 643 addDataFlowSanitizerPass); 644 } 645 646 // Set up the per-function pass manager. 647 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 648 if (CodeGenOpts.VerifyModule) 649 FPM.add(createVerifierPass()); 650 651 // Set up the per-module pass manager. 652 if (!CodeGenOpts.RewriteMapFiles.empty()) 653 addSymbolRewriterPass(CodeGenOpts, &MPM); 654 655 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 656 MPM.add(createGCOVProfilerPass(*Options)); 657 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 658 MPM.add(createStripSymbolsPass(true)); 659 } 660 661 if (CodeGenOpts.hasProfileClangInstr()) { 662 InstrProfOptions Options; 663 Options.NoRedZone = CodeGenOpts.DisableRedZone; 664 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 665 666 // TODO: Surface the option to emit atomic profile counter increments at 667 // the driver level. 668 Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread); 669 670 MPM.add(createInstrProfilingLegacyPass(Options, false)); 671 } 672 bool hasIRInstr = false; 673 if (CodeGenOpts.hasProfileIRInstr()) { 674 PMBuilder.EnablePGOInstrGen = true; 675 hasIRInstr = true; 676 } 677 if (CodeGenOpts.hasProfileCSIRInstr()) { 678 assert(!CodeGenOpts.hasProfileCSIRUse() && 679 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 680 "same time"); 681 assert(!hasIRInstr && 682 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 683 "same time"); 684 PMBuilder.EnablePGOCSInstrGen = true; 685 hasIRInstr = true; 686 } 687 if (hasIRInstr) { 688 if (!CodeGenOpts.InstrProfileOutput.empty()) 689 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 690 else 691 PMBuilder.PGOInstrGen = DefaultProfileGenName; 692 } 693 if (CodeGenOpts.hasProfileIRUse()) { 694 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 695 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 696 } 697 698 if (!CodeGenOpts.SampleProfileFile.empty()) 699 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 700 701 PMBuilder.populateFunctionPassManager(FPM); 702 PMBuilder.populateModulePassManager(MPM); 703 } 704 705 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 706 SmallVector<const char *, 16> BackendArgs; 707 BackendArgs.push_back("clang"); // Fake program name. 708 if (!CodeGenOpts.DebugPass.empty()) { 709 BackendArgs.push_back("-debug-pass"); 710 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 711 } 712 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 713 BackendArgs.push_back("-limit-float-precision"); 714 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 715 } 716 BackendArgs.push_back(nullptr); 717 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 718 BackendArgs.data()); 719 } 720 721 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 722 // Create the TargetMachine for generating code. 723 std::string Error; 724 std::string Triple = TheModule->getTargetTriple(); 725 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 726 if (!TheTarget) { 727 if (MustCreateTM) 728 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 729 return; 730 } 731 732 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 733 std::string FeaturesStr = 734 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 735 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 736 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 737 738 llvm::TargetOptions Options; 739 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 740 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 741 Options, RM, CM, OptLevel)); 742 } 743 744 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 745 BackendAction Action, 746 raw_pwrite_stream &OS, 747 raw_pwrite_stream *DwoOS) { 748 // Add LibraryInfo. 749 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 750 std::unique_ptr<TargetLibraryInfoImpl> TLII( 751 createTLII(TargetTriple, CodeGenOpts)); 752 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 753 754 // Normal mode, emit a .s or .o file by running the code generator. Note, 755 // this also adds codegenerator level optimization passes. 756 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 757 758 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 759 // "codegen" passes so that it isn't run multiple times when there is 760 // inlining happening. 761 if (CodeGenOpts.OptimizationLevel > 0) 762 CodeGenPasses.add(createObjCARCContractPass()); 763 764 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 765 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 766 Diags.Report(diag::err_fe_unable_to_interface_with_target); 767 return false; 768 } 769 770 return true; 771 } 772 773 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 774 std::unique_ptr<raw_pwrite_stream> OS) { 775 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 776 777 setCommandLineOpts(CodeGenOpts); 778 779 bool UsesCodeGen = (Action != Backend_EmitNothing && 780 Action != Backend_EmitBC && 781 Action != Backend_EmitLL); 782 CreateTargetMachine(UsesCodeGen); 783 784 if (UsesCodeGen && !TM) 785 return; 786 if (TM) 787 TheModule->setDataLayout(TM->createDataLayout()); 788 789 legacy::PassManager PerModulePasses; 790 PerModulePasses.add( 791 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 792 793 legacy::FunctionPassManager PerFunctionPasses(TheModule); 794 PerFunctionPasses.add( 795 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 796 797 CreatePasses(PerModulePasses, PerFunctionPasses); 798 799 legacy::PassManager CodeGenPasses; 800 CodeGenPasses.add( 801 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 802 803 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 804 805 switch (Action) { 806 case Backend_EmitNothing: 807 break; 808 809 case Backend_EmitBC: 810 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 811 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 812 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 813 if (!ThinLinkOS) 814 return; 815 } 816 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 817 CodeGenOpts.EnableSplitLTOUnit); 818 PerModulePasses.add(createWriteThinLTOBitcodePass( 819 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 820 } else { 821 // Emit a module summary by default for Regular LTO except for ld64 822 // targets 823 bool EmitLTOSummary = 824 (CodeGenOpts.PrepareForLTO && 825 !CodeGenOpts.DisableLLVMPasses && 826 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 827 llvm::Triple::Apple); 828 if (EmitLTOSummary) { 829 if (!TheModule->getModuleFlag("ThinLTO")) 830 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 831 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 832 CodeGenOpts.EnableSplitLTOUnit); 833 } 834 835 PerModulePasses.add(createBitcodeWriterPass( 836 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 837 } 838 break; 839 840 case Backend_EmitLL: 841 PerModulePasses.add( 842 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 843 break; 844 845 default: 846 if (!CodeGenOpts.SplitDwarfFile.empty() && 847 (CodeGenOpts.getSplitDwarfMode() == CodeGenOptions::SplitFileFission)) { 848 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfFile); 849 if (!DwoOS) 850 return; 851 } 852 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 853 DwoOS ? &DwoOS->os() : nullptr)) 854 return; 855 } 856 857 // Before executing passes, print the final values of the LLVM options. 858 cl::PrintOptionValues(); 859 860 // Run passes. For now we do all passes at once, but eventually we 861 // would like to have the option of streaming code generation. 862 863 { 864 PrettyStackTraceString CrashInfo("Per-function optimization"); 865 866 PerFunctionPasses.doInitialization(); 867 for (Function &F : *TheModule) 868 if (!F.isDeclaration()) 869 PerFunctionPasses.run(F); 870 PerFunctionPasses.doFinalization(); 871 } 872 873 { 874 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 875 PerModulePasses.run(*TheModule); 876 } 877 878 { 879 PrettyStackTraceString CrashInfo("Code generation"); 880 CodeGenPasses.run(*TheModule); 881 } 882 883 if (ThinLinkOS) 884 ThinLinkOS->keep(); 885 if (DwoOS) 886 DwoOS->keep(); 887 } 888 889 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 890 switch (Opts.OptimizationLevel) { 891 default: 892 llvm_unreachable("Invalid optimization level!"); 893 894 case 1: 895 return PassBuilder::O1; 896 897 case 2: 898 switch (Opts.OptimizeSize) { 899 default: 900 llvm_unreachable("Invalid optimization level for size!"); 901 902 case 0: 903 return PassBuilder::O2; 904 905 case 1: 906 return PassBuilder::Os; 907 908 case 2: 909 return PassBuilder::Oz; 910 } 911 912 case 3: 913 return PassBuilder::O3; 914 } 915 } 916 917 void addSanitizersAtO0(ModulePassManager &MPM, const Triple &TargetTriple, 918 const LangOptions &LangOpts, 919 const CodeGenOptions &CodeGenOpts) { 920 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 921 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 922 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address); 923 MPM.addPass(createModuleToFunctionPassAdaptor( 924 AddressSanitizerPass(/*CompileKernel=*/false, Recover, 925 CodeGenOpts.SanitizeAddressUseAfterScope))); 926 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 927 MPM.addPass(ModuleAddressSanitizerPass( 928 /*CompileKernel=*/false, Recover, ModuleUseAfterScope, 929 CodeGenOpts.SanitizeAddressUseOdrIndicator)); 930 } 931 932 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 933 MPM.addPass(createModuleToFunctionPassAdaptor(MemorySanitizerPass({}))); 934 } 935 936 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 937 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 938 } 939 } 940 941 /// A clean version of `EmitAssembly` that uses the new pass manager. 942 /// 943 /// Not all features are currently supported in this system, but where 944 /// necessary it falls back to the legacy pass manager to at least provide 945 /// basic functionality. 946 /// 947 /// This API is planned to have its functionality finished and then to replace 948 /// `EmitAssembly` at some point in the future when the default switches. 949 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 950 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 951 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 952 setCommandLineOpts(CodeGenOpts); 953 954 // The new pass manager always makes a target machine available to passes 955 // during construction. 956 CreateTargetMachine(/*MustCreateTM*/ true); 957 if (!TM) 958 // This will already be diagnosed, just bail. 959 return; 960 TheModule->setDataLayout(TM->createDataLayout()); 961 962 Optional<PGOOptions> PGOOpt; 963 964 if (CodeGenOpts.hasProfileIRInstr()) 965 // -fprofile-generate. 966 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 967 ? DefaultProfileGenName 968 : CodeGenOpts.InstrProfileOutput, 969 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 970 CodeGenOpts.DebugInfoForProfiling); 971 else if (CodeGenOpts.hasProfileIRUse()) { 972 // -fprofile-use. 973 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 974 : PGOOptions::NoCSAction; 975 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 976 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 977 CSAction, CodeGenOpts.DebugInfoForProfiling); 978 } else if (!CodeGenOpts.SampleProfileFile.empty()) 979 // -fprofile-sample-use 980 PGOOpt = 981 PGOOptions(CodeGenOpts.SampleProfileFile, "", 982 CodeGenOpts.ProfileRemappingFile, PGOOptions::SampleUse, 983 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling); 984 else if (CodeGenOpts.DebugInfoForProfiling) 985 // -fdebug-info-for-profiling 986 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 987 PGOOptions::NoCSAction, true); 988 989 // Check to see if we want to generate a CS profile. 990 if (CodeGenOpts.hasProfileCSIRInstr()) { 991 assert(!CodeGenOpts.hasProfileCSIRUse() && 992 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 993 "the same time"); 994 if (PGOOpt.hasValue()) { 995 assert(PGOOpt->Action != PGOOptions::IRInstr && 996 PGOOpt->Action != PGOOptions::SampleUse && 997 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 998 " pass"); 999 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1000 ? DefaultProfileGenName 1001 : CodeGenOpts.InstrProfileOutput; 1002 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1003 } else 1004 PGOOpt = PGOOptions("", 1005 CodeGenOpts.InstrProfileOutput.empty() 1006 ? DefaultProfileGenName 1007 : CodeGenOpts.InstrProfileOutput, 1008 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1009 CodeGenOpts.DebugInfoForProfiling); 1010 } 1011 1012 PassBuilder PB(TM.get(), PGOOpt); 1013 1014 // Attempt to load pass plugins and register their callbacks with PB. 1015 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1016 auto PassPlugin = PassPlugin::Load(PluginFN); 1017 if (PassPlugin) { 1018 PassPlugin->registerPassBuilderCallbacks(PB); 1019 } else { 1020 Diags.Report(diag::err_fe_unable_to_load_plugin) 1021 << PluginFN << toString(PassPlugin.takeError()); 1022 } 1023 } 1024 1025 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 1026 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 1027 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 1028 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 1029 1030 // Register the AA manager first so that our version is the one used. 1031 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1032 1033 // Register the target library analysis directly and give it a customized 1034 // preset TLI. 1035 Triple TargetTriple(TheModule->getTargetTriple()); 1036 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1037 createTLII(TargetTriple, CodeGenOpts)); 1038 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1039 MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1040 1041 // Register all the basic analyses with the managers. 1042 PB.registerModuleAnalyses(MAM); 1043 PB.registerCGSCCAnalyses(CGAM); 1044 PB.registerFunctionAnalyses(FAM); 1045 PB.registerLoopAnalyses(LAM); 1046 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1047 1048 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 1049 1050 if (!CodeGenOpts.DisableLLVMPasses) { 1051 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1052 bool IsLTO = CodeGenOpts.PrepareForLTO; 1053 1054 if (CodeGenOpts.OptimizationLevel == 0) { 1055 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1056 MPM.addPass(GCOVProfilerPass(*Options)); 1057 1058 // Build a minimal pipeline based on the semantics required by Clang, 1059 // which is just that always inlining occurs. 1060 MPM.addPass(AlwaysInlinerPass()); 1061 1062 // At -O0 we directly run necessary sanitizer passes. 1063 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1064 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 1065 1066 // Lastly, add semantically necessary passes for LTO. 1067 if (IsLTO || IsThinLTO) { 1068 MPM.addPass(CanonicalizeAliasesPass()); 1069 MPM.addPass(NameAnonGlobalPass()); 1070 } 1071 } else { 1072 // Map our optimization levels into one of the distinct levels used to 1073 // configure the pipeline. 1074 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1075 1076 // Register callbacks to schedule sanitizer passes at the appropriate part of 1077 // the pipeline. 1078 // FIXME: either handle asan/the remaining sanitizers or error out 1079 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1080 PB.registerScalarOptimizerLateEPCallback( 1081 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1082 FPM.addPass(BoundsCheckingPass()); 1083 }); 1084 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 1085 PB.registerOptimizerLastEPCallback( 1086 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1087 FPM.addPass(MemorySanitizerPass({})); 1088 }); 1089 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) 1090 PB.registerOptimizerLastEPCallback( 1091 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1092 FPM.addPass(ThreadSanitizerPass()); 1093 }); 1094 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1095 PB.registerPipelineStartEPCallback([&](ModulePassManager &MPM) { 1096 MPM.addPass( 1097 RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1098 }); 1099 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address); 1100 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1101 PB.registerOptimizerLastEPCallback( 1102 [Recover, UseAfterScope](FunctionPassManager &FPM, 1103 PassBuilder::OptimizationLevel Level) { 1104 FPM.addPass(AddressSanitizerPass( 1105 /*CompileKernel=*/false, Recover, UseAfterScope)); 1106 }); 1107 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1108 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1109 PB.registerPipelineStartEPCallback( 1110 [Recover, ModuleUseAfterScope, 1111 UseOdrIndicator](ModulePassManager &MPM) { 1112 MPM.addPass(ModuleAddressSanitizerPass( 1113 /*CompileKernel=*/false, Recover, ModuleUseAfterScope, 1114 UseOdrIndicator)); 1115 }); 1116 } 1117 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1118 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1119 MPM.addPass(GCOVProfilerPass(*Options)); 1120 }); 1121 1122 if (IsThinLTO) { 1123 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 1124 Level, CodeGenOpts.DebugPassManager); 1125 MPM.addPass(CanonicalizeAliasesPass()); 1126 MPM.addPass(NameAnonGlobalPass()); 1127 } else if (IsLTO) { 1128 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 1129 CodeGenOpts.DebugPassManager); 1130 MPM.addPass(CanonicalizeAliasesPass()); 1131 MPM.addPass(NameAnonGlobalPass()); 1132 } else { 1133 MPM = PB.buildPerModuleDefaultPipeline(Level, 1134 CodeGenOpts.DebugPassManager); 1135 } 1136 } 1137 1138 if (CodeGenOpts.OptimizationLevel == 0) 1139 addSanitizersAtO0(MPM, TargetTriple, LangOpts, CodeGenOpts); 1140 } 1141 1142 // FIXME: We still use the legacy pass manager to do code generation. We 1143 // create that pass manager here and use it as needed below. 1144 legacy::PassManager CodeGenPasses; 1145 bool NeedCodeGen = false; 1146 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1147 1148 // Append any output we need to the pass manager. 1149 switch (Action) { 1150 case Backend_EmitNothing: 1151 break; 1152 1153 case Backend_EmitBC: 1154 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1155 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1156 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1157 if (!ThinLinkOS) 1158 return; 1159 } 1160 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1161 CodeGenOpts.EnableSplitLTOUnit); 1162 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1163 : nullptr)); 1164 } else { 1165 // Emit a module summary by default for Regular LTO except for ld64 1166 // targets 1167 bool EmitLTOSummary = 1168 (CodeGenOpts.PrepareForLTO && 1169 !CodeGenOpts.DisableLLVMPasses && 1170 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1171 llvm::Triple::Apple); 1172 if (EmitLTOSummary) { 1173 if (!TheModule->getModuleFlag("ThinLTO")) 1174 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1175 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1176 CodeGenOpts.EnableSplitLTOUnit); 1177 } 1178 MPM.addPass( 1179 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1180 } 1181 break; 1182 1183 case Backend_EmitLL: 1184 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1185 break; 1186 1187 case Backend_EmitAssembly: 1188 case Backend_EmitMCNull: 1189 case Backend_EmitObj: 1190 NeedCodeGen = true; 1191 CodeGenPasses.add( 1192 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1193 if (!CodeGenOpts.SplitDwarfFile.empty()) { 1194 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfFile); 1195 if (!DwoOS) 1196 return; 1197 } 1198 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1199 DwoOS ? &DwoOS->os() : nullptr)) 1200 // FIXME: Should we handle this error differently? 1201 return; 1202 break; 1203 } 1204 1205 // Before executing passes, print the final values of the LLVM options. 1206 cl::PrintOptionValues(); 1207 1208 // Now that we have all of the passes ready, run them. 1209 { 1210 PrettyStackTraceString CrashInfo("Optimizer"); 1211 MPM.run(*TheModule, MAM); 1212 } 1213 1214 // Now if needed, run the legacy PM for codegen. 1215 if (NeedCodeGen) { 1216 PrettyStackTraceString CrashInfo("Code generation"); 1217 CodeGenPasses.run(*TheModule); 1218 } 1219 1220 if (ThinLinkOS) 1221 ThinLinkOS->keep(); 1222 if (DwoOS) 1223 DwoOS->keep(); 1224 } 1225 1226 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1227 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1228 if (!BMsOrErr) 1229 return BMsOrErr.takeError(); 1230 1231 // The bitcode file may contain multiple modules, we want the one that is 1232 // marked as being the ThinLTO module. 1233 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1234 return *Bm; 1235 1236 return make_error<StringError>("Could not find module summary", 1237 inconvertibleErrorCode()); 1238 } 1239 1240 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1241 for (BitcodeModule &BM : BMs) { 1242 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1243 if (LTOInfo && LTOInfo->IsThinLTO) 1244 return &BM; 1245 } 1246 return nullptr; 1247 } 1248 1249 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1250 const HeaderSearchOptions &HeaderOpts, 1251 const CodeGenOptions &CGOpts, 1252 const clang::TargetOptions &TOpts, 1253 const LangOptions &LOpts, 1254 std::unique_ptr<raw_pwrite_stream> OS, 1255 std::string SampleProfile, 1256 std::string ProfileRemapping, 1257 BackendAction Action) { 1258 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1259 ModuleToDefinedGVSummaries; 1260 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1261 1262 setCommandLineOpts(CGOpts); 1263 1264 // We can simply import the values mentioned in the combined index, since 1265 // we should only invoke this using the individual indexes written out 1266 // via a WriteIndexesThinBackend. 1267 FunctionImporter::ImportMapTy ImportList; 1268 for (auto &GlobalList : *CombinedIndex) { 1269 // Ignore entries for undefined references. 1270 if (GlobalList.second.SummaryList.empty()) 1271 continue; 1272 1273 auto GUID = GlobalList.first; 1274 for (auto &Summary : GlobalList.second.SummaryList) { 1275 // Skip the summaries for the importing module. These are included to 1276 // e.g. record required linkage changes. 1277 if (Summary->modulePath() == M->getModuleIdentifier()) 1278 continue; 1279 // Add an entry to provoke importing by thinBackend. 1280 ImportList[Summary->modulePath()].insert(GUID); 1281 } 1282 } 1283 1284 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1285 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1286 1287 for (auto &I : ImportList) { 1288 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1289 llvm::MemoryBuffer::getFile(I.first()); 1290 if (!MBOrErr) { 1291 errs() << "Error loading imported file '" << I.first() 1292 << "': " << MBOrErr.getError().message() << "\n"; 1293 return; 1294 } 1295 1296 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1297 if (!BMOrErr) { 1298 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1299 errs() << "Error loading imported file '" << I.first() 1300 << "': " << EIB.message() << '\n'; 1301 }); 1302 return; 1303 } 1304 ModuleMap.insert({I.first(), *BMOrErr}); 1305 1306 OwnedImports.push_back(std::move(*MBOrErr)); 1307 } 1308 auto AddStream = [&](size_t Task) { 1309 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 1310 }; 1311 lto::Config Conf; 1312 if (CGOpts.SaveTempsFilePrefix != "") { 1313 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1314 /* UseInputModulePath */ false)) { 1315 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1316 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1317 << '\n'; 1318 }); 1319 } 1320 } 1321 Conf.CPU = TOpts.CPU; 1322 Conf.CodeModel = getCodeModel(CGOpts); 1323 Conf.MAttrs = TOpts.Features; 1324 Conf.RelocModel = CGOpts.RelocationModel; 1325 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1326 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1327 Conf.SampleProfile = std::move(SampleProfile); 1328 1329 // Context sensitive profile. 1330 if (CGOpts.hasProfileCSIRInstr()) { 1331 Conf.RunCSIRInstr = true; 1332 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1333 } else if (CGOpts.hasProfileCSIRUse()) { 1334 Conf.RunCSIRInstr = false; 1335 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1336 } 1337 1338 Conf.ProfileRemapping = std::move(ProfileRemapping); 1339 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1340 Conf.DebugPassManager = CGOpts.DebugPassManager; 1341 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1342 Conf.RemarksFilename = CGOpts.OptRecordFile; 1343 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1344 Conf.DwoPath = CGOpts.SplitDwarfFile; 1345 switch (Action) { 1346 case Backend_EmitNothing: 1347 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1348 return false; 1349 }; 1350 break; 1351 case Backend_EmitLL: 1352 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1353 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1354 return false; 1355 }; 1356 break; 1357 case Backend_EmitBC: 1358 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1359 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1360 return false; 1361 }; 1362 break; 1363 default: 1364 Conf.CGFileType = getCodeGenFileType(Action); 1365 break; 1366 } 1367 if (Error E = thinBackend( 1368 Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1369 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1370 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1371 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1372 }); 1373 } 1374 } 1375 1376 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1377 const HeaderSearchOptions &HeaderOpts, 1378 const CodeGenOptions &CGOpts, 1379 const clang::TargetOptions &TOpts, 1380 const LangOptions &LOpts, 1381 const llvm::DataLayout &TDesc, Module *M, 1382 BackendAction Action, 1383 std::unique_ptr<raw_pwrite_stream> OS) { 1384 std::unique_ptr<llvm::Module> EmptyModule; 1385 if (!CGOpts.ThinLTOIndexFile.empty()) { 1386 // If we are performing a ThinLTO importing compile, load the function index 1387 // into memory and pass it into runThinLTOBackend, which will run the 1388 // function importer and invoke LTO passes. 1389 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1390 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1391 /*IgnoreEmptyThinLTOIndexFile*/true); 1392 if (!IndexOrErr) { 1393 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1394 "Error loading index file '" + 1395 CGOpts.ThinLTOIndexFile + "': "); 1396 return; 1397 } 1398 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1399 // A null CombinedIndex means we should skip ThinLTO compilation 1400 // (LLVM will optionally ignore empty index files, returning null instead 1401 // of an error). 1402 if (CombinedIndex) { 1403 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1404 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1405 LOpts, std::move(OS), CGOpts.SampleProfileFile, 1406 CGOpts.ProfileRemappingFile, Action); 1407 return; 1408 } 1409 // Distributed indexing detected that nothing from the module is needed 1410 // for the final linking. So we can skip the compilation. We sill need to 1411 // output an empty object file to make sure that a linker does not fail 1412 // trying to read it. Also for some features, like CFI, we must skip 1413 // the compilation as CombinedIndex does not contain all required 1414 // information. 1415 EmptyModule = llvm::make_unique<llvm::Module>("empty", M->getContext()); 1416 EmptyModule->setTargetTriple(M->getTargetTriple()); 1417 M = EmptyModule.get(); 1418 } 1419 } 1420 1421 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1422 1423 if (CGOpts.ExperimentalNewPassManager) 1424 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1425 else 1426 AsmHelper.EmitAssembly(Action, std::move(OS)); 1427 1428 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1429 // DataLayout. 1430 if (AsmHelper.TM) { 1431 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1432 if (DLDesc != TDesc.getStringRepresentation()) { 1433 unsigned DiagID = Diags.getCustomDiagID( 1434 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1435 "expected target description '%1'"); 1436 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1437 } 1438 } 1439 } 1440 1441 static const char* getSectionNameForBitcode(const Triple &T) { 1442 switch (T.getObjectFormat()) { 1443 case Triple::MachO: 1444 return "__LLVM,__bitcode"; 1445 case Triple::COFF: 1446 case Triple::ELF: 1447 case Triple::Wasm: 1448 case Triple::UnknownObjectFormat: 1449 return ".llvmbc"; 1450 } 1451 llvm_unreachable("Unimplemented ObjectFormatType"); 1452 } 1453 1454 static const char* getSectionNameForCommandline(const Triple &T) { 1455 switch (T.getObjectFormat()) { 1456 case Triple::MachO: 1457 return "__LLVM,__cmdline"; 1458 case Triple::COFF: 1459 case Triple::ELF: 1460 case Triple::Wasm: 1461 case Triple::UnknownObjectFormat: 1462 return ".llvmcmd"; 1463 } 1464 llvm_unreachable("Unimplemented ObjectFormatType"); 1465 } 1466 1467 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1468 // __LLVM,__bitcode section. 1469 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1470 llvm::MemoryBufferRef Buf) { 1471 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1472 return; 1473 1474 // Save llvm.compiler.used and remote it. 1475 SmallVector<Constant*, 2> UsedArray; 1476 SmallPtrSet<GlobalValue*, 4> UsedGlobals; 1477 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1478 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1479 for (auto *GV : UsedGlobals) { 1480 if (GV->getName() != "llvm.embedded.module" && 1481 GV->getName() != "llvm.cmdline") 1482 UsedArray.push_back( 1483 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1484 } 1485 if (Used) 1486 Used->eraseFromParent(); 1487 1488 // Embed the bitcode for the llvm module. 1489 std::string Data; 1490 ArrayRef<uint8_t> ModuleData; 1491 Triple T(M->getTargetTriple()); 1492 // Create a constant that contains the bitcode. 1493 // In case of embedding a marker, ignore the input Buf and use the empty 1494 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1495 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1496 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1497 (const unsigned char *)Buf.getBufferEnd())) { 1498 // If the input is LLVM Assembly, bitcode is produced by serializing 1499 // the module. Use-lists order need to be perserved in this case. 1500 llvm::raw_string_ostream OS(Data); 1501 llvm::WriteBitcodeToFile(*M, OS, /* ShouldPreserveUseListOrder */ true); 1502 ModuleData = 1503 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1504 } else 1505 // If the input is LLVM bitcode, write the input byte stream directly. 1506 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1507 Buf.getBufferSize()); 1508 } 1509 llvm::Constant *ModuleConstant = 1510 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1511 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1512 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1513 ModuleConstant); 1514 GV->setSection(getSectionNameForBitcode(T)); 1515 UsedArray.push_back( 1516 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1517 if (llvm::GlobalVariable *Old = 1518 M->getGlobalVariable("llvm.embedded.module", true)) { 1519 assert(Old->hasOneUse() && 1520 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1521 GV->takeName(Old); 1522 Old->eraseFromParent(); 1523 } else { 1524 GV->setName("llvm.embedded.module"); 1525 } 1526 1527 // Skip if only bitcode needs to be embedded. 1528 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1529 // Embed command-line options. 1530 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1531 CGOpts.CmdArgs.size()); 1532 llvm::Constant *CmdConstant = 1533 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1534 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1535 llvm::GlobalValue::PrivateLinkage, 1536 CmdConstant); 1537 GV->setSection(getSectionNameForCommandline(T)); 1538 UsedArray.push_back( 1539 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1540 if (llvm::GlobalVariable *Old = 1541 M->getGlobalVariable("llvm.cmdline", true)) { 1542 assert(Old->hasOneUse() && 1543 "llvm.cmdline can only be used once in llvm.compiler.used"); 1544 GV->takeName(Old); 1545 Old->eraseFromParent(); 1546 } else { 1547 GV->setName("llvm.cmdline"); 1548 } 1549 } 1550 1551 if (UsedArray.empty()) 1552 return; 1553 1554 // Recreate llvm.compiler.used. 1555 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1556 auto *NewUsed = new GlobalVariable( 1557 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1558 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1559 NewUsed->setSection("llvm.metadata"); 1560 } 1561