1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/StackSafetyAnalysis.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/Bitcode/BitcodeReader.h" 26 #include "llvm/Bitcode/BitcodeWriter.h" 27 #include "llvm/Bitcode/BitcodeWriterPass.h" 28 #include "llvm/CodeGen/RegAllocRegistry.h" 29 #include "llvm/CodeGen/SchedulerRegistry.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/IRPrintingPasses.h" 33 #include "llvm/IR/LegacyPassManager.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/ModuleSummaryIndex.h" 36 #include "llvm/IR/PassManager.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/LTO/LTOBackend.h" 39 #include "llvm/MC/MCAsmInfo.h" 40 #include "llvm/MC/SubtargetFeature.h" 41 #include "llvm/Passes/PassBuilder.h" 42 #include "llvm/Passes/PassPlugin.h" 43 #include "llvm/Passes/StandardInstrumentations.h" 44 #include "llvm/Support/BuryPointer.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/MemoryBuffer.h" 47 #include "llvm/Support/PrettyStackTrace.h" 48 #include "llvm/Support/TargetRegistry.h" 49 #include "llvm/Support/TimeProfiler.h" 50 #include "llvm/Support/Timer.h" 51 #include "llvm/Support/ToolOutputFile.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include "llvm/Target/TargetOptions.h" 55 #include "llvm/Transforms/Coroutines.h" 56 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 57 #include "llvm/Transforms/Coroutines/CoroEarly.h" 58 #include "llvm/Transforms/Coroutines/CoroElide.h" 59 #include "llvm/Transforms/Coroutines/CoroSplit.h" 60 #include "llvm/Transforms/IPO.h" 61 #include "llvm/Transforms/IPO/AlwaysInliner.h" 62 #include "llvm/Transforms/IPO/LowerTypeTests.h" 63 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 64 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 65 #include "llvm/Transforms/InstCombine/InstCombine.h" 66 #include "llvm/Transforms/Instrumentation.h" 67 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 68 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 69 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 70 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 71 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 72 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 73 #include "llvm/Transforms/Instrumentation/MemProfiler.h" 74 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 75 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 76 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 77 #include "llvm/Transforms/ObjCARC.h" 78 #include "llvm/Transforms/Scalar.h" 79 #include "llvm/Transforms/Scalar/EarlyCSE.h" 80 #include "llvm/Transforms/Scalar/GVN.h" 81 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" 82 #include "llvm/Transforms/Utils.h" 83 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 84 #include "llvm/Transforms/Utils/Debugify.h" 85 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 86 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 87 #include "llvm/Transforms/Utils/SymbolRewriter.h" 88 #include <memory> 89 using namespace clang; 90 using namespace llvm; 91 92 #define HANDLE_EXTENSION(Ext) \ 93 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 94 #include "llvm/Support/Extension.def" 95 96 namespace { 97 98 // Default filename used for profile generation. 99 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 100 101 class EmitAssemblyHelper { 102 DiagnosticsEngine &Diags; 103 const HeaderSearchOptions &HSOpts; 104 const CodeGenOptions &CodeGenOpts; 105 const clang::TargetOptions &TargetOpts; 106 const LangOptions &LangOpts; 107 Module *TheModule; 108 109 Timer CodeGenerationTime; 110 111 std::unique_ptr<raw_pwrite_stream> OS; 112 113 TargetIRAnalysis getTargetIRAnalysis() const { 114 if (TM) 115 return TM->getTargetIRAnalysis(); 116 117 return TargetIRAnalysis(); 118 } 119 120 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 121 122 /// Generates the TargetMachine. 123 /// Leaves TM unchanged if it is unable to create the target machine. 124 /// Some of our clang tests specify triples which are not built 125 /// into clang. This is okay because these tests check the generated 126 /// IR, and they require DataLayout which depends on the triple. 127 /// In this case, we allow this method to fail and not report an error. 128 /// When MustCreateTM is used, we print an error if we are unable to load 129 /// the requested target. 130 void CreateTargetMachine(bool MustCreateTM); 131 132 /// Add passes necessary to emit assembly or LLVM IR. 133 /// 134 /// \return True on success. 135 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 136 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 137 138 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 139 std::error_code EC; 140 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 141 llvm::sys::fs::OF_None); 142 if (EC) { 143 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 144 F.reset(); 145 } 146 return F; 147 } 148 149 public: 150 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 151 const HeaderSearchOptions &HeaderSearchOpts, 152 const CodeGenOptions &CGOpts, 153 const clang::TargetOptions &TOpts, 154 const LangOptions &LOpts, Module *M) 155 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 156 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 157 CodeGenerationTime("codegen", "Code Generation Time") {} 158 159 ~EmitAssemblyHelper() { 160 if (CodeGenOpts.DisableFree) 161 BuryPointer(std::move(TM)); 162 } 163 164 std::unique_ptr<TargetMachine> TM; 165 166 void EmitAssembly(BackendAction Action, 167 std::unique_ptr<raw_pwrite_stream> OS); 168 169 void EmitAssemblyWithNewPassManager(BackendAction Action, 170 std::unique_ptr<raw_pwrite_stream> OS); 171 }; 172 173 // We need this wrapper to access LangOpts and CGOpts from extension functions 174 // that we add to the PassManagerBuilder. 175 class PassManagerBuilderWrapper : public PassManagerBuilder { 176 public: 177 PassManagerBuilderWrapper(const Triple &TargetTriple, 178 const CodeGenOptions &CGOpts, 179 const LangOptions &LangOpts) 180 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 181 LangOpts(LangOpts) {} 182 const Triple &getTargetTriple() const { return TargetTriple; } 183 const CodeGenOptions &getCGOpts() const { return CGOpts; } 184 const LangOptions &getLangOpts() const { return LangOpts; } 185 186 private: 187 const Triple &TargetTriple; 188 const CodeGenOptions &CGOpts; 189 const LangOptions &LangOpts; 190 }; 191 } 192 193 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 194 if (Builder.OptLevel > 0) 195 PM.add(createObjCARCAPElimPass()); 196 } 197 198 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 199 if (Builder.OptLevel > 0) 200 PM.add(createObjCARCExpandPass()); 201 } 202 203 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 204 if (Builder.OptLevel > 0) 205 PM.add(createObjCARCOptPass()); 206 } 207 208 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 209 legacy::PassManagerBase &PM) { 210 PM.add(createAddDiscriminatorsPass()); 211 } 212 213 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 214 legacy::PassManagerBase &PM) { 215 PM.add(createBoundsCheckingLegacyPass()); 216 } 217 218 static SanitizerCoverageOptions 219 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 220 SanitizerCoverageOptions Opts; 221 Opts.CoverageType = 222 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 223 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 224 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 225 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 226 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 227 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 228 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 229 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 230 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 231 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 232 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 233 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 234 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 235 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 236 return Opts; 237 } 238 239 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 240 legacy::PassManagerBase &PM) { 241 const PassManagerBuilderWrapper &BuilderWrapper = 242 static_cast<const PassManagerBuilderWrapper &>(Builder); 243 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 244 auto Opts = getSancovOptsFromCGOpts(CGOpts); 245 PM.add(createModuleSanitizerCoverageLegacyPassPass( 246 Opts, CGOpts.SanitizeCoverageAllowlistFiles, 247 CGOpts.SanitizeCoverageIgnorelistFiles)); 248 } 249 250 // Check if ASan should use GC-friendly instrumentation for globals. 251 // First of all, there is no point if -fdata-sections is off (expect for MachO, 252 // where this is not a factor). Also, on ELF this feature requires an assembler 253 // extension that only works with -integrated-as at the moment. 254 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 255 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 256 return false; 257 switch (T.getObjectFormat()) { 258 case Triple::MachO: 259 case Triple::COFF: 260 return true; 261 case Triple::ELF: 262 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 263 case Triple::GOFF: 264 llvm::report_fatal_error("ASan not implemented for GOFF"); 265 case Triple::XCOFF: 266 llvm::report_fatal_error("ASan not implemented for XCOFF."); 267 case Triple::Wasm: 268 case Triple::UnknownObjectFormat: 269 break; 270 } 271 return false; 272 } 273 274 static void addMemProfilerPasses(const PassManagerBuilder &Builder, 275 legacy::PassManagerBase &PM) { 276 PM.add(createMemProfilerFunctionPass()); 277 PM.add(createModuleMemProfilerLegacyPassPass()); 278 } 279 280 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 281 legacy::PassManagerBase &PM) { 282 const PassManagerBuilderWrapper &BuilderWrapper = 283 static_cast<const PassManagerBuilderWrapper&>(Builder); 284 const Triple &T = BuilderWrapper.getTargetTriple(); 285 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 286 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 287 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 288 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 289 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 290 llvm::AsanDtorKind DestructorKind = CGOpts.getSanitizeAddressDtor(); 291 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 292 UseAfterScope)); 293 PM.add(createModuleAddressSanitizerLegacyPassPass( 294 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator, 295 DestructorKind)); 296 } 297 298 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 299 legacy::PassManagerBase &PM) { 300 PM.add(createAddressSanitizerFunctionPass( 301 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 302 PM.add(createModuleAddressSanitizerLegacyPassPass( 303 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 304 /*UseOdrIndicator*/ false)); 305 } 306 307 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 308 legacy::PassManagerBase &PM) { 309 const PassManagerBuilderWrapper &BuilderWrapper = 310 static_cast<const PassManagerBuilderWrapper &>(Builder); 311 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 312 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 313 PM.add( 314 createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover)); 315 } 316 317 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 318 legacy::PassManagerBase &PM) { 319 PM.add(createHWAddressSanitizerLegacyPassPass( 320 /*CompileKernel*/ true, /*Recover*/ true)); 321 } 322 323 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 324 legacy::PassManagerBase &PM, 325 bool CompileKernel) { 326 const PassManagerBuilderWrapper &BuilderWrapper = 327 static_cast<const PassManagerBuilderWrapper&>(Builder); 328 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 329 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 330 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 331 PM.add(createMemorySanitizerLegacyPassPass( 332 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 333 334 // MemorySanitizer inserts complex instrumentation that mostly follows 335 // the logic of the original code, but operates on "shadow" values. 336 // It can benefit from re-running some general purpose optimization passes. 337 if (Builder.OptLevel > 0) { 338 PM.add(createEarlyCSEPass()); 339 PM.add(createReassociatePass()); 340 PM.add(createLICMPass()); 341 PM.add(createGVNPass()); 342 PM.add(createInstructionCombiningPass()); 343 PM.add(createDeadStoreEliminationPass()); 344 } 345 } 346 347 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 348 legacy::PassManagerBase &PM) { 349 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 350 } 351 352 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 353 legacy::PassManagerBase &PM) { 354 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 355 } 356 357 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 358 legacy::PassManagerBase &PM) { 359 PM.add(createThreadSanitizerLegacyPassPass()); 360 } 361 362 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 363 legacy::PassManagerBase &PM) { 364 const PassManagerBuilderWrapper &BuilderWrapper = 365 static_cast<const PassManagerBuilderWrapper&>(Builder); 366 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 367 PM.add(createDataFlowSanitizerLegacyPassPass(LangOpts.NoSanitizeFiles)); 368 } 369 370 static void addEntryExitInstrumentationPass(const PassManagerBuilder &Builder, 371 legacy::PassManagerBase &PM) { 372 PM.add(createEntryExitInstrumenterPass()); 373 } 374 375 static void 376 addPostInlineEntryExitInstrumentationPass(const PassManagerBuilder &Builder, 377 legacy::PassManagerBase &PM) { 378 PM.add(createPostInlineEntryExitInstrumenterPass()); 379 } 380 381 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 382 const CodeGenOptions &CodeGenOpts) { 383 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 384 385 switch (CodeGenOpts.getVecLib()) { 386 case CodeGenOptions::Accelerate: 387 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 388 break; 389 case CodeGenOptions::LIBMVEC: 390 switch(TargetTriple.getArch()) { 391 default: 392 break; 393 case llvm::Triple::x86_64: 394 TLII->addVectorizableFunctionsFromVecLib 395 (TargetLibraryInfoImpl::LIBMVEC_X86); 396 break; 397 } 398 break; 399 case CodeGenOptions::MASSV: 400 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 401 break; 402 case CodeGenOptions::SVML: 403 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 404 break; 405 case CodeGenOptions::Darwin_libsystem_m: 406 TLII->addVectorizableFunctionsFromVecLib( 407 TargetLibraryInfoImpl::DarwinLibSystemM); 408 break; 409 default: 410 break; 411 } 412 return TLII; 413 } 414 415 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 416 legacy::PassManager *MPM) { 417 llvm::SymbolRewriter::RewriteDescriptorList DL; 418 419 llvm::SymbolRewriter::RewriteMapParser MapParser; 420 for (const auto &MapFile : Opts.RewriteMapFiles) 421 MapParser.parse(MapFile, &DL); 422 423 MPM->add(createRewriteSymbolsPass(DL)); 424 } 425 426 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 427 switch (CodeGenOpts.OptimizationLevel) { 428 default: 429 llvm_unreachable("Invalid optimization level!"); 430 case 0: 431 return CodeGenOpt::None; 432 case 1: 433 return CodeGenOpt::Less; 434 case 2: 435 return CodeGenOpt::Default; // O2/Os/Oz 436 case 3: 437 return CodeGenOpt::Aggressive; 438 } 439 } 440 441 static Optional<llvm::CodeModel::Model> 442 getCodeModel(const CodeGenOptions &CodeGenOpts) { 443 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 444 .Case("tiny", llvm::CodeModel::Tiny) 445 .Case("small", llvm::CodeModel::Small) 446 .Case("kernel", llvm::CodeModel::Kernel) 447 .Case("medium", llvm::CodeModel::Medium) 448 .Case("large", llvm::CodeModel::Large) 449 .Case("default", ~1u) 450 .Default(~0u); 451 assert(CodeModel != ~0u && "invalid code model!"); 452 if (CodeModel == ~1u) 453 return None; 454 return static_cast<llvm::CodeModel::Model>(CodeModel); 455 } 456 457 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 458 if (Action == Backend_EmitObj) 459 return CGFT_ObjectFile; 460 else if (Action == Backend_EmitMCNull) 461 return CGFT_Null; 462 else { 463 assert(Action == Backend_EmitAssembly && "Invalid action!"); 464 return CGFT_AssemblyFile; 465 } 466 } 467 468 static bool initTargetOptions(DiagnosticsEngine &Diags, 469 llvm::TargetOptions &Options, 470 const CodeGenOptions &CodeGenOpts, 471 const clang::TargetOptions &TargetOpts, 472 const LangOptions &LangOpts, 473 const HeaderSearchOptions &HSOpts) { 474 switch (LangOpts.getThreadModel()) { 475 case LangOptions::ThreadModelKind::POSIX: 476 Options.ThreadModel = llvm::ThreadModel::POSIX; 477 break; 478 case LangOptions::ThreadModelKind::Single: 479 Options.ThreadModel = llvm::ThreadModel::Single; 480 break; 481 } 482 483 // Set float ABI type. 484 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 485 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 486 "Invalid Floating Point ABI!"); 487 Options.FloatABIType = 488 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 489 .Case("soft", llvm::FloatABI::Soft) 490 .Case("softfp", llvm::FloatABI::Soft) 491 .Case("hard", llvm::FloatABI::Hard) 492 .Default(llvm::FloatABI::Default); 493 494 // Set FP fusion mode. 495 switch (LangOpts.getDefaultFPContractMode()) { 496 case LangOptions::FPM_Off: 497 // Preserve any contraction performed by the front-end. (Strict performs 498 // splitting of the muladd intrinsic in the backend.) 499 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 500 break; 501 case LangOptions::FPM_On: 502 case LangOptions::FPM_FastHonorPragmas: 503 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 504 break; 505 case LangOptions::FPM_Fast: 506 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 507 break; 508 } 509 510 Options.BinutilsVersion = 511 llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion); 512 Options.UseInitArray = CodeGenOpts.UseInitArray; 513 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 514 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 515 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 516 517 // Set EABI version. 518 Options.EABIVersion = TargetOpts.EABIVersion; 519 520 if (LangOpts.hasSjLjExceptions()) 521 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 522 if (LangOpts.hasSEHExceptions()) 523 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 524 if (LangOpts.hasDWARFExceptions()) 525 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 526 if (LangOpts.hasWasmExceptions()) 527 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 528 529 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 530 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 531 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 532 Options.UnsafeFPMath = LangOpts.UnsafeFPMath; 533 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 534 535 Options.BBSections = 536 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 537 .Case("all", llvm::BasicBlockSection::All) 538 .Case("labels", llvm::BasicBlockSection::Labels) 539 .StartsWith("list=", llvm::BasicBlockSection::List) 540 .Case("none", llvm::BasicBlockSection::None) 541 .Default(llvm::BasicBlockSection::None); 542 543 if (Options.BBSections == llvm::BasicBlockSection::List) { 544 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 545 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 546 if (!MBOrErr) { 547 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 548 << MBOrErr.getError().message(); 549 return false; 550 } 551 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 552 } 553 554 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions; 555 Options.FunctionSections = CodeGenOpts.FunctionSections; 556 Options.DataSections = CodeGenOpts.DataSections; 557 Options.IgnoreXCOFFVisibility = LangOpts.IgnoreXCOFFVisibility; 558 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 559 Options.UniqueBasicBlockSectionNames = 560 CodeGenOpts.UniqueBasicBlockSectionNames; 561 Options.StackProtectorGuard = 562 llvm::StringSwitch<llvm::StackProtectorGuards>(CodeGenOpts 563 .StackProtectorGuard) 564 .Case("tls", llvm::StackProtectorGuards::TLS) 565 .Case("global", llvm::StackProtectorGuards::Global) 566 .Default(llvm::StackProtectorGuards::None); 567 Options.StackProtectorGuardOffset = CodeGenOpts.StackProtectorGuardOffset; 568 Options.StackProtectorGuardReg = CodeGenOpts.StackProtectorGuardReg; 569 Options.TLSSize = CodeGenOpts.TLSSize; 570 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 571 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 572 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 573 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 574 Options.StackUsageOutput = CodeGenOpts.StackUsageOutput; 575 Options.EmitAddrsig = CodeGenOpts.Addrsig; 576 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 577 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 578 Options.EnableAIXExtendedAltivecABI = CodeGenOpts.EnableAIXExtendedAltivecABI; 579 Options.PseudoProbeForProfiling = CodeGenOpts.PseudoProbeForProfiling; 580 Options.ValueTrackingVariableLocations = 581 CodeGenOpts.ValueTrackingVariableLocations; 582 Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex; 583 584 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 585 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 586 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 587 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 588 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 589 Options.MCOptions.MCIncrementalLinkerCompatible = 590 CodeGenOpts.IncrementalLinkerCompatible; 591 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 592 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 593 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 594 Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64; 595 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 596 Options.MCOptions.ABIName = TargetOpts.ABI; 597 for (const auto &Entry : HSOpts.UserEntries) 598 if (!Entry.IsFramework && 599 (Entry.Group == frontend::IncludeDirGroup::Quoted || 600 Entry.Group == frontend::IncludeDirGroup::Angled || 601 Entry.Group == frontend::IncludeDirGroup::System)) 602 Options.MCOptions.IASSearchPaths.push_back( 603 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 604 Options.MCOptions.Argv0 = CodeGenOpts.Argv0; 605 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; 606 Options.DebugStrictDwarf = CodeGenOpts.DebugStrictDwarf; 607 608 return true; 609 } 610 611 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts, 612 const LangOptions &LangOpts) { 613 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 614 return None; 615 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 616 // LLVM's -default-gcov-version flag is set to something invalid. 617 GCOVOptions Options; 618 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 619 Options.EmitData = CodeGenOpts.EmitGcovArcs; 620 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 621 Options.NoRedZone = CodeGenOpts.DisableRedZone; 622 Options.Filter = CodeGenOpts.ProfileFilterFiles; 623 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 624 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 625 return Options; 626 } 627 628 static Optional<InstrProfOptions> 629 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 630 const LangOptions &LangOpts) { 631 if (!CodeGenOpts.hasProfileClangInstr()) 632 return None; 633 InstrProfOptions Options; 634 Options.NoRedZone = CodeGenOpts.DisableRedZone; 635 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 636 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 637 return Options; 638 } 639 640 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 641 legacy::FunctionPassManager &FPM) { 642 // Handle disabling of all LLVM passes, where we want to preserve the 643 // internal module before any optimization. 644 if (CodeGenOpts.DisableLLVMPasses) 645 return; 646 647 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 648 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 649 // are inserted before PMBuilder ones - they'd get the default-constructed 650 // TLI with an unknown target otherwise. 651 Triple TargetTriple(TheModule->getTargetTriple()); 652 std::unique_ptr<TargetLibraryInfoImpl> TLII( 653 createTLII(TargetTriple, CodeGenOpts)); 654 655 // If we reached here with a non-empty index file name, then the index file 656 // was empty and we are not performing ThinLTO backend compilation (used in 657 // testing in a distributed build environment). Drop any the type test 658 // assume sequences inserted for whole program vtables so that codegen doesn't 659 // complain. 660 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 661 MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr, 662 /*ImportSummary=*/nullptr, 663 /*DropTypeTests=*/true)); 664 665 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 666 667 // At O0 and O1 we only run the always inliner which is more efficient. At 668 // higher optimization levels we run the normal inliner. 669 if (CodeGenOpts.OptimizationLevel <= 1) { 670 bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 && 671 !CodeGenOpts.DisableLifetimeMarkers) || 672 LangOpts.Coroutines); 673 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 674 } else { 675 // We do not want to inline hot callsites for SamplePGO module-summary build 676 // because profile annotation will happen again in ThinLTO backend, and we 677 // want the IR of the hot path to match the profile. 678 PMBuilder.Inliner = createFunctionInliningPass( 679 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 680 (!CodeGenOpts.SampleProfileFile.empty() && 681 CodeGenOpts.PrepareForThinLTO)); 682 } 683 684 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 685 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 686 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 687 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 688 // Only enable CGProfilePass when using integrated assembler, since 689 // non-integrated assemblers don't recognize .cgprofile section. 690 PMBuilder.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 691 692 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 693 // Loop interleaving in the loop vectorizer has historically been set to be 694 // enabled when loop unrolling is enabled. 695 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 696 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 697 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 698 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 699 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 700 701 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 702 703 if (TM) 704 TM->adjustPassManager(PMBuilder); 705 706 if (CodeGenOpts.DebugInfoForProfiling || 707 !CodeGenOpts.SampleProfileFile.empty()) 708 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 709 addAddDiscriminatorsPass); 710 711 // In ObjC ARC mode, add the main ARC optimization passes. 712 if (LangOpts.ObjCAutoRefCount) { 713 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 714 addObjCARCExpandPass); 715 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 716 addObjCARCAPElimPass); 717 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 718 addObjCARCOptPass); 719 } 720 721 if (LangOpts.Coroutines) 722 addCoroutinePassesToExtensionPoints(PMBuilder); 723 724 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 725 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 726 addMemProfilerPasses); 727 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 728 addMemProfilerPasses); 729 } 730 731 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 732 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 733 addBoundsCheckingPass); 734 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 735 addBoundsCheckingPass); 736 } 737 738 if (CodeGenOpts.SanitizeCoverageType || 739 CodeGenOpts.SanitizeCoverageIndirectCalls || 740 CodeGenOpts.SanitizeCoverageTraceCmp) { 741 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 742 addSanitizerCoveragePass); 743 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 744 addSanitizerCoveragePass); 745 } 746 747 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 748 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 749 addAddressSanitizerPasses); 750 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 751 addAddressSanitizerPasses); 752 } 753 754 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 755 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 756 addKernelAddressSanitizerPasses); 757 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 758 addKernelAddressSanitizerPasses); 759 } 760 761 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 762 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 763 addHWAddressSanitizerPasses); 764 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 765 addHWAddressSanitizerPasses); 766 } 767 768 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 769 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 770 addKernelHWAddressSanitizerPasses); 771 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 772 addKernelHWAddressSanitizerPasses); 773 } 774 775 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 776 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 777 addMemorySanitizerPass); 778 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 779 addMemorySanitizerPass); 780 } 781 782 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 783 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 784 addKernelMemorySanitizerPass); 785 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 786 addKernelMemorySanitizerPass); 787 } 788 789 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 790 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 791 addThreadSanitizerPass); 792 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 793 addThreadSanitizerPass); 794 } 795 796 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 797 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 798 addDataFlowSanitizerPass); 799 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 800 addDataFlowSanitizerPass); 801 } 802 803 if (CodeGenOpts.InstrumentFunctions || 804 CodeGenOpts.InstrumentFunctionEntryBare || 805 CodeGenOpts.InstrumentFunctionsAfterInlining || 806 CodeGenOpts.InstrumentForProfiling) { 807 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 808 addEntryExitInstrumentationPass); 809 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 810 addEntryExitInstrumentationPass); 811 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 812 addPostInlineEntryExitInstrumentationPass); 813 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 814 addPostInlineEntryExitInstrumentationPass); 815 } 816 817 // Set up the per-function pass manager. 818 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 819 if (CodeGenOpts.VerifyModule) 820 FPM.add(createVerifierPass()); 821 822 // Set up the per-module pass manager. 823 if (!CodeGenOpts.RewriteMapFiles.empty()) 824 addSymbolRewriterPass(CodeGenOpts, &MPM); 825 826 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) { 827 MPM.add(createGCOVProfilerPass(*Options)); 828 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 829 MPM.add(createStripSymbolsPass(true)); 830 } 831 832 if (Optional<InstrProfOptions> Options = 833 getInstrProfOptions(CodeGenOpts, LangOpts)) 834 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 835 836 bool hasIRInstr = false; 837 if (CodeGenOpts.hasProfileIRInstr()) { 838 PMBuilder.EnablePGOInstrGen = true; 839 hasIRInstr = true; 840 } 841 if (CodeGenOpts.hasProfileCSIRInstr()) { 842 assert(!CodeGenOpts.hasProfileCSIRUse() && 843 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 844 "same time"); 845 assert(!hasIRInstr && 846 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 847 "same time"); 848 PMBuilder.EnablePGOCSInstrGen = true; 849 hasIRInstr = true; 850 } 851 if (hasIRInstr) { 852 if (!CodeGenOpts.InstrProfileOutput.empty()) 853 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 854 else 855 PMBuilder.PGOInstrGen = std::string(DefaultProfileGenName); 856 } 857 if (CodeGenOpts.hasProfileIRUse()) { 858 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 859 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 860 } 861 862 if (!CodeGenOpts.SampleProfileFile.empty()) 863 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 864 865 PMBuilder.populateFunctionPassManager(FPM); 866 PMBuilder.populateModulePassManager(MPM); 867 } 868 869 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 870 SmallVector<const char *, 16> BackendArgs; 871 BackendArgs.push_back("clang"); // Fake program name. 872 if (!CodeGenOpts.DebugPass.empty()) { 873 BackendArgs.push_back("-debug-pass"); 874 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 875 // New PM supports structure dumping. Old PM is still used for codegen, 876 // so we need to pass both options. 877 if (!CodeGenOpts.LegacyPassManager && CodeGenOpts.DebugPass == "Structure") 878 BackendArgs.push_back("-debug-pass-structure"); 879 } 880 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 881 BackendArgs.push_back("-limit-float-precision"); 882 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 883 } 884 // Check for the default "clang" invocation that won't set any cl::opt values. 885 // Skip trying to parse the command line invocation to avoid the issues 886 // described below. 887 if (BackendArgs.size() == 1) 888 return; 889 BackendArgs.push_back(nullptr); 890 // FIXME: The command line parser below is not thread-safe and shares a global 891 // state, so this call might crash or overwrite the options of another Clang 892 // instance in the same process. 893 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 894 BackendArgs.data()); 895 } 896 897 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 898 // Create the TargetMachine for generating code. 899 std::string Error; 900 std::string Triple = TheModule->getTargetTriple(); 901 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 902 if (!TheTarget) { 903 if (MustCreateTM) 904 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 905 return; 906 } 907 908 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 909 std::string FeaturesStr = 910 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 911 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 912 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 913 914 llvm::TargetOptions Options; 915 if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, 916 HSOpts)) 917 return; 918 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 919 Options, RM, CM, OptLevel)); 920 } 921 922 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 923 BackendAction Action, 924 raw_pwrite_stream &OS, 925 raw_pwrite_stream *DwoOS) { 926 // Add LibraryInfo. 927 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 928 std::unique_ptr<TargetLibraryInfoImpl> TLII( 929 createTLII(TargetTriple, CodeGenOpts)); 930 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 931 932 // Normal mode, emit a .s or .o file by running the code generator. Note, 933 // this also adds codegenerator level optimization passes. 934 CodeGenFileType CGFT = getCodeGenFileType(Action); 935 936 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 937 // "codegen" passes so that it isn't run multiple times when there is 938 // inlining happening. 939 if (CodeGenOpts.OptimizationLevel > 0) 940 CodeGenPasses.add(createObjCARCContractPass()); 941 942 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 943 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 944 Diags.Report(diag::err_fe_unable_to_interface_with_target); 945 return false; 946 } 947 948 return true; 949 } 950 951 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 952 std::unique_ptr<raw_pwrite_stream> OS) { 953 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 954 955 setCommandLineOpts(CodeGenOpts); 956 957 bool UsesCodeGen = (Action != Backend_EmitNothing && 958 Action != Backend_EmitBC && 959 Action != Backend_EmitLL); 960 CreateTargetMachine(UsesCodeGen); 961 962 if (UsesCodeGen && !TM) 963 return; 964 if (TM) 965 TheModule->setDataLayout(TM->createDataLayout()); 966 967 DebugifyCustomPassManager PerModulePasses; 968 DebugInfoPerPassMap DIPreservationMap; 969 if (CodeGenOpts.EnableDIPreservationVerify) { 970 PerModulePasses.setDebugifyMode(DebugifyMode::OriginalDebugInfo); 971 PerModulePasses.setDIPreservationMap(DIPreservationMap); 972 973 if (!CodeGenOpts.DIBugsReportFilePath.empty()) 974 PerModulePasses.setOrigDIVerifyBugsReportFilePath( 975 CodeGenOpts.DIBugsReportFilePath); 976 } 977 PerModulePasses.add( 978 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 979 980 legacy::FunctionPassManager PerFunctionPasses(TheModule); 981 PerFunctionPasses.add( 982 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 983 984 CreatePasses(PerModulePasses, PerFunctionPasses); 985 986 legacy::PassManager CodeGenPasses; 987 CodeGenPasses.add( 988 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 989 990 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 991 992 switch (Action) { 993 case Backend_EmitNothing: 994 break; 995 996 case Backend_EmitBC: 997 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 998 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 999 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1000 if (!ThinLinkOS) 1001 return; 1002 } 1003 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1004 CodeGenOpts.EnableSplitLTOUnit); 1005 PerModulePasses.add(createWriteThinLTOBitcodePass( 1006 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 1007 } else { 1008 // Emit a module summary by default for Regular LTO except for ld64 1009 // targets 1010 bool EmitLTOSummary = 1011 (CodeGenOpts.PrepareForLTO && 1012 !CodeGenOpts.DisableLLVMPasses && 1013 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1014 llvm::Triple::Apple); 1015 if (EmitLTOSummary) { 1016 if (!TheModule->getModuleFlag("ThinLTO")) 1017 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1018 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1019 uint32_t(1)); 1020 } 1021 1022 PerModulePasses.add(createBitcodeWriterPass( 1023 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1024 } 1025 break; 1026 1027 case Backend_EmitLL: 1028 PerModulePasses.add( 1029 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1030 break; 1031 1032 default: 1033 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1034 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1035 if (!DwoOS) 1036 return; 1037 } 1038 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1039 DwoOS ? &DwoOS->os() : nullptr)) 1040 return; 1041 } 1042 1043 // Before executing passes, print the final values of the LLVM options. 1044 cl::PrintOptionValues(); 1045 1046 // Run passes. For now we do all passes at once, but eventually we 1047 // would like to have the option of streaming code generation. 1048 1049 { 1050 PrettyStackTraceString CrashInfo("Per-function optimization"); 1051 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 1052 1053 PerFunctionPasses.doInitialization(); 1054 for (Function &F : *TheModule) 1055 if (!F.isDeclaration()) 1056 PerFunctionPasses.run(F); 1057 PerFunctionPasses.doFinalization(); 1058 } 1059 1060 { 1061 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 1062 llvm::TimeTraceScope TimeScope("PerModulePasses"); 1063 PerModulePasses.run(*TheModule); 1064 } 1065 1066 { 1067 PrettyStackTraceString CrashInfo("Code generation"); 1068 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1069 CodeGenPasses.run(*TheModule); 1070 } 1071 1072 if (ThinLinkOS) 1073 ThinLinkOS->keep(); 1074 if (DwoOS) 1075 DwoOS->keep(); 1076 } 1077 1078 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 1079 switch (Opts.OptimizationLevel) { 1080 default: 1081 llvm_unreachable("Invalid optimization level!"); 1082 1083 case 0: 1084 return PassBuilder::OptimizationLevel::O0; 1085 1086 case 1: 1087 return PassBuilder::OptimizationLevel::O1; 1088 1089 case 2: 1090 switch (Opts.OptimizeSize) { 1091 default: 1092 llvm_unreachable("Invalid optimization level for size!"); 1093 1094 case 0: 1095 return PassBuilder::OptimizationLevel::O2; 1096 1097 case 1: 1098 return PassBuilder::OptimizationLevel::Os; 1099 1100 case 2: 1101 return PassBuilder::OptimizationLevel::Oz; 1102 } 1103 1104 case 3: 1105 return PassBuilder::OptimizationLevel::O3; 1106 } 1107 } 1108 1109 static void addSanitizers(const Triple &TargetTriple, 1110 const CodeGenOptions &CodeGenOpts, 1111 const LangOptions &LangOpts, PassBuilder &PB) { 1112 PB.registerOptimizerLastEPCallback([&](ModulePassManager &MPM, 1113 PassBuilder::OptimizationLevel Level) { 1114 if (CodeGenOpts.SanitizeCoverageType || 1115 CodeGenOpts.SanitizeCoverageIndirectCalls || 1116 CodeGenOpts.SanitizeCoverageTraceCmp) { 1117 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1118 MPM.addPass(ModuleSanitizerCoveragePass( 1119 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1120 CodeGenOpts.SanitizeCoverageIgnorelistFiles)); 1121 } 1122 1123 auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1124 if (LangOpts.Sanitize.has(Mask)) { 1125 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1126 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1127 1128 MPM.addPass( 1129 MemorySanitizerPass({TrackOrigins, Recover, CompileKernel})); 1130 FunctionPassManager FPM; 1131 FPM.addPass( 1132 MemorySanitizerPass({TrackOrigins, Recover, CompileKernel})); 1133 if (Level != PassBuilder::OptimizationLevel::O0) { 1134 // MemorySanitizer inserts complex instrumentation that mostly 1135 // follows the logic of the original code, but operates on 1136 // "shadow" values. It can benefit from re-running some 1137 // general purpose optimization passes. 1138 FPM.addPass(EarlyCSEPass()); 1139 // TODO: Consider add more passes like in 1140 // addGeneralOptsForMemorySanitizer. EarlyCSEPass makes visible 1141 // difference on size. It's not clear if the rest is still 1142 // usefull. InstCombinePass breakes 1143 // compiler-rt/test/msan/select_origin.cpp. 1144 } 1145 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 1146 } 1147 }; 1148 MSanPass(SanitizerKind::Memory, false); 1149 MSanPass(SanitizerKind::KernelMemory, true); 1150 1151 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1152 MPM.addPass(ThreadSanitizerPass()); 1153 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1154 } 1155 1156 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1157 if (LangOpts.Sanitize.has(Mask)) { 1158 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1159 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1160 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1161 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1162 llvm::AsanDtorKind DestructorKind = 1163 CodeGenOpts.getSanitizeAddressDtor(); 1164 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1165 MPM.addPass(ModuleAddressSanitizerPass( 1166 CompileKernel, Recover, ModuleUseAfterScope, UseOdrIndicator, 1167 DestructorKind)); 1168 MPM.addPass(createModuleToFunctionPassAdaptor( 1169 AddressSanitizerPass(CompileKernel, Recover, UseAfterScope))); 1170 } 1171 }; 1172 ASanPass(SanitizerKind::Address, false); 1173 ASanPass(SanitizerKind::KernelAddress, true); 1174 1175 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1176 if (LangOpts.Sanitize.has(Mask)) { 1177 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1178 MPM.addPass(HWAddressSanitizerPass(CompileKernel, Recover)); 1179 } 1180 }; 1181 HWASanPass(SanitizerKind::HWAddress, false); 1182 HWASanPass(SanitizerKind::KernelHWAddress, true); 1183 1184 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 1185 MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles)); 1186 } 1187 }); 1188 } 1189 1190 /// A clean version of `EmitAssembly` that uses the new pass manager. 1191 /// 1192 /// Not all features are currently supported in this system, but where 1193 /// necessary it falls back to the legacy pass manager to at least provide 1194 /// basic functionality. 1195 /// 1196 /// This API is planned to have its functionality finished and then to replace 1197 /// `EmitAssembly` at some point in the future when the default switches. 1198 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 1199 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 1200 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 1201 setCommandLineOpts(CodeGenOpts); 1202 1203 bool RequiresCodeGen = (Action != Backend_EmitNothing && 1204 Action != Backend_EmitBC && 1205 Action != Backend_EmitLL); 1206 CreateTargetMachine(RequiresCodeGen); 1207 1208 if (RequiresCodeGen && !TM) 1209 return; 1210 if (TM) 1211 TheModule->setDataLayout(TM->createDataLayout()); 1212 1213 Optional<PGOOptions> PGOOpt; 1214 1215 if (CodeGenOpts.hasProfileIRInstr()) 1216 // -fprofile-generate. 1217 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1218 ? std::string(DefaultProfileGenName) 1219 : CodeGenOpts.InstrProfileOutput, 1220 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1221 CodeGenOpts.DebugInfoForProfiling); 1222 else if (CodeGenOpts.hasProfileIRUse()) { 1223 // -fprofile-use. 1224 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1225 : PGOOptions::NoCSAction; 1226 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1227 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1228 CSAction, CodeGenOpts.DebugInfoForProfiling); 1229 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1230 // -fprofile-sample-use 1231 PGOOpt = PGOOptions( 1232 CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile, 1233 PGOOptions::SampleUse, PGOOptions::NoCSAction, 1234 CodeGenOpts.DebugInfoForProfiling, CodeGenOpts.PseudoProbeForProfiling); 1235 else if (CodeGenOpts.PseudoProbeForProfiling) 1236 // -fpseudo-probe-for-profiling 1237 PGOOpt = 1238 PGOOptions("", "", "", PGOOptions::NoAction, PGOOptions::NoCSAction, 1239 CodeGenOpts.DebugInfoForProfiling, true); 1240 else if (CodeGenOpts.DebugInfoForProfiling) 1241 // -fdebug-info-for-profiling 1242 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1243 PGOOptions::NoCSAction, true); 1244 1245 // Check to see if we want to generate a CS profile. 1246 if (CodeGenOpts.hasProfileCSIRInstr()) { 1247 assert(!CodeGenOpts.hasProfileCSIRUse() && 1248 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1249 "the same time"); 1250 if (PGOOpt.hasValue()) { 1251 assert(PGOOpt->Action != PGOOptions::IRInstr && 1252 PGOOpt->Action != PGOOptions::SampleUse && 1253 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1254 " pass"); 1255 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1256 ? std::string(DefaultProfileGenName) 1257 : CodeGenOpts.InstrProfileOutput; 1258 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1259 } else 1260 PGOOpt = PGOOptions("", 1261 CodeGenOpts.InstrProfileOutput.empty() 1262 ? std::string(DefaultProfileGenName) 1263 : CodeGenOpts.InstrProfileOutput, 1264 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1265 CodeGenOpts.DebugInfoForProfiling); 1266 } 1267 1268 PipelineTuningOptions PTO; 1269 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1270 // For historical reasons, loop interleaving is set to mirror setting for loop 1271 // unrolling. 1272 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1273 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1274 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1275 PTO.MergeFunctions = CodeGenOpts.MergeFunctions; 1276 // Only enable CGProfilePass when using integrated assembler, since 1277 // non-integrated assemblers don't recognize .cgprofile section. 1278 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 1279 PTO.Coroutines = LangOpts.Coroutines; 1280 1281 LoopAnalysisManager LAM; 1282 FunctionAnalysisManager FAM; 1283 CGSCCAnalysisManager CGAM; 1284 ModuleAnalysisManager MAM; 1285 1286 PassInstrumentationCallbacks PIC; 1287 StandardInstrumentations SI(CodeGenOpts.DebugPassManager); 1288 SI.registerCallbacks(PIC, &FAM); 1289 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 1290 1291 // Attempt to load pass plugins and register their callbacks with PB. 1292 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1293 auto PassPlugin = PassPlugin::Load(PluginFN); 1294 if (PassPlugin) { 1295 PassPlugin->registerPassBuilderCallbacks(PB); 1296 } else { 1297 Diags.Report(diag::err_fe_unable_to_load_plugin) 1298 << PluginFN << toString(PassPlugin.takeError()); 1299 } 1300 } 1301 #define HANDLE_EXTENSION(Ext) \ 1302 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 1303 #include "llvm/Support/Extension.def" 1304 1305 // Register the AA manager first so that our version is the one used. 1306 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1307 1308 // Register the target library analysis directly and give it a customized 1309 // preset TLI. 1310 Triple TargetTriple(TheModule->getTargetTriple()); 1311 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1312 createTLII(TargetTriple, CodeGenOpts)); 1313 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1314 1315 // Register all the basic analyses with the managers. 1316 PB.registerModuleAnalyses(MAM); 1317 PB.registerCGSCCAnalyses(CGAM); 1318 PB.registerFunctionAnalyses(FAM); 1319 PB.registerLoopAnalyses(LAM); 1320 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1321 1322 ModulePassManager MPM; 1323 1324 if (!CodeGenOpts.DisableLLVMPasses) { 1325 // Map our optimization levels into one of the distinct levels used to 1326 // configure the pipeline. 1327 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1328 1329 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1330 bool IsLTO = CodeGenOpts.PrepareForLTO; 1331 1332 if (LangOpts.ObjCAutoRefCount) { 1333 PB.registerPipelineStartEPCallback( 1334 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1335 if (Level != PassBuilder::OptimizationLevel::O0) 1336 MPM.addPass( 1337 createModuleToFunctionPassAdaptor(ObjCARCExpandPass())); 1338 }); 1339 PB.registerPipelineEarlySimplificationEPCallback( 1340 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1341 if (Level != PassBuilder::OptimizationLevel::O0) 1342 MPM.addPass(ObjCARCAPElimPass()); 1343 }); 1344 PB.registerScalarOptimizerLateEPCallback( 1345 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1346 if (Level != PassBuilder::OptimizationLevel::O0) 1347 FPM.addPass(ObjCARCOptPass()); 1348 }); 1349 } 1350 1351 // If we reached here with a non-empty index file name, then the index 1352 // file was empty and we are not performing ThinLTO backend compilation 1353 // (used in testing in a distributed build environment). 1354 bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty(); 1355 // If so drop any the type test assume sequences inserted for whole program 1356 // vtables so that codegen doesn't complain. 1357 if (IsThinLTOPostLink) 1358 PB.registerPipelineStartEPCallback( 1359 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1360 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1361 /*ImportSummary=*/nullptr, 1362 /*DropTypeTests=*/true)); 1363 }); 1364 1365 if (CodeGenOpts.InstrumentFunctions || 1366 CodeGenOpts.InstrumentFunctionEntryBare || 1367 CodeGenOpts.InstrumentFunctionsAfterInlining || 1368 CodeGenOpts.InstrumentForProfiling) { 1369 PB.registerPipelineStartEPCallback( 1370 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1371 MPM.addPass(createModuleToFunctionPassAdaptor( 1372 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1373 }); 1374 PB.registerOptimizerLastEPCallback( 1375 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1376 MPM.addPass(createModuleToFunctionPassAdaptor( 1377 EntryExitInstrumenterPass(/*PostInlining=*/true))); 1378 }); 1379 } 1380 1381 // Register callbacks to schedule sanitizer passes at the appropriate part 1382 // of the pipeline. 1383 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1384 PB.registerScalarOptimizerLateEPCallback( 1385 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1386 FPM.addPass(BoundsCheckingPass()); 1387 }); 1388 1389 // Don't add sanitizers if we are here from ThinLTO PostLink. That already 1390 // done on PreLink stage. 1391 if (!IsThinLTOPostLink) 1392 addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB); 1393 1394 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) 1395 PB.registerPipelineStartEPCallback( 1396 [Options](ModulePassManager &MPM, 1397 PassBuilder::OptimizationLevel Level) { 1398 MPM.addPass(GCOVProfilerPass(*Options)); 1399 }); 1400 if (Optional<InstrProfOptions> Options = 1401 getInstrProfOptions(CodeGenOpts, LangOpts)) 1402 PB.registerPipelineStartEPCallback( 1403 [Options](ModulePassManager &MPM, 1404 PassBuilder::OptimizationLevel Level) { 1405 MPM.addPass(InstrProfiling(*Options, false)); 1406 }); 1407 1408 if (CodeGenOpts.OptimizationLevel == 0) { 1409 MPM = PB.buildO0DefaultPipeline(Level, IsLTO || IsThinLTO); 1410 } else if (IsThinLTO) { 1411 MPM = PB.buildThinLTOPreLinkDefaultPipeline(Level); 1412 } else if (IsLTO) { 1413 MPM = PB.buildLTOPreLinkDefaultPipeline(Level); 1414 } else { 1415 MPM = PB.buildPerModuleDefaultPipeline(Level); 1416 } 1417 1418 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1419 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass())); 1420 MPM.addPass(ModuleMemProfilerPass()); 1421 } 1422 } 1423 1424 // FIXME: We still use the legacy pass manager to do code generation. We 1425 // create that pass manager here and use it as needed below. 1426 legacy::PassManager CodeGenPasses; 1427 bool NeedCodeGen = false; 1428 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1429 1430 // Append any output we need to the pass manager. 1431 switch (Action) { 1432 case Backend_EmitNothing: 1433 break; 1434 1435 case Backend_EmitBC: 1436 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1437 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1438 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1439 if (!ThinLinkOS) 1440 return; 1441 } 1442 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1443 CodeGenOpts.EnableSplitLTOUnit); 1444 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1445 : nullptr)); 1446 } else { 1447 // Emit a module summary by default for Regular LTO except for ld64 1448 // targets 1449 bool EmitLTOSummary = 1450 (CodeGenOpts.PrepareForLTO && 1451 !CodeGenOpts.DisableLLVMPasses && 1452 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1453 llvm::Triple::Apple); 1454 if (EmitLTOSummary) { 1455 if (!TheModule->getModuleFlag("ThinLTO")) 1456 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1457 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1458 uint32_t(1)); 1459 } 1460 MPM.addPass( 1461 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1462 } 1463 break; 1464 1465 case Backend_EmitLL: 1466 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1467 break; 1468 1469 case Backend_EmitAssembly: 1470 case Backend_EmitMCNull: 1471 case Backend_EmitObj: 1472 NeedCodeGen = true; 1473 CodeGenPasses.add( 1474 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1475 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1476 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1477 if (!DwoOS) 1478 return; 1479 } 1480 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1481 DwoOS ? &DwoOS->os() : nullptr)) 1482 // FIXME: Should we handle this error differently? 1483 return; 1484 break; 1485 } 1486 1487 // Before executing passes, print the final values of the LLVM options. 1488 cl::PrintOptionValues(); 1489 1490 // Now that we have all of the passes ready, run them. 1491 { 1492 PrettyStackTraceString CrashInfo("Optimizer"); 1493 MPM.run(*TheModule, MAM); 1494 } 1495 1496 // Now if needed, run the legacy PM for codegen. 1497 if (NeedCodeGen) { 1498 PrettyStackTraceString CrashInfo("Code generation"); 1499 CodeGenPasses.run(*TheModule); 1500 } 1501 1502 if (ThinLinkOS) 1503 ThinLinkOS->keep(); 1504 if (DwoOS) 1505 DwoOS->keep(); 1506 } 1507 1508 static void runThinLTOBackend( 1509 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M, 1510 const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, 1511 const clang::TargetOptions &TOpts, const LangOptions &LOpts, 1512 std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile, 1513 std::string ProfileRemapping, BackendAction Action) { 1514 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1515 ModuleToDefinedGVSummaries; 1516 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1517 1518 setCommandLineOpts(CGOpts); 1519 1520 // We can simply import the values mentioned in the combined index, since 1521 // we should only invoke this using the individual indexes written out 1522 // via a WriteIndexesThinBackend. 1523 FunctionImporter::ImportMapTy ImportList; 1524 if (!lto::initImportList(*M, *CombinedIndex, ImportList)) 1525 return; 1526 1527 auto AddStream = [&](size_t Task) { 1528 return std::make_unique<lto::NativeObjectStream>(std::move(OS)); 1529 }; 1530 lto::Config Conf; 1531 if (CGOpts.SaveTempsFilePrefix != "") { 1532 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1533 /* UseInputModulePath */ false)) { 1534 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1535 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1536 << '\n'; 1537 }); 1538 } 1539 } 1540 Conf.CPU = TOpts.CPU; 1541 Conf.CodeModel = getCodeModel(CGOpts); 1542 Conf.MAttrs = TOpts.Features; 1543 Conf.RelocModel = CGOpts.RelocationModel; 1544 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1545 Conf.OptLevel = CGOpts.OptimizationLevel; 1546 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1547 Conf.SampleProfile = std::move(SampleProfile); 1548 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1549 // For historical reasons, loop interleaving is set to mirror setting for loop 1550 // unrolling. 1551 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1552 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1553 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1554 // Only enable CGProfilePass when using integrated assembler, since 1555 // non-integrated assemblers don't recognize .cgprofile section. 1556 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1557 1558 // Context sensitive profile. 1559 if (CGOpts.hasProfileCSIRInstr()) { 1560 Conf.RunCSIRInstr = true; 1561 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1562 } else if (CGOpts.hasProfileCSIRUse()) { 1563 Conf.RunCSIRInstr = false; 1564 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1565 } 1566 1567 Conf.ProfileRemapping = std::move(ProfileRemapping); 1568 Conf.UseNewPM = !CGOpts.LegacyPassManager; 1569 Conf.DebugPassManager = CGOpts.DebugPassManager; 1570 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1571 Conf.RemarksFilename = CGOpts.OptRecordFile; 1572 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1573 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1574 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1575 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1576 switch (Action) { 1577 case Backend_EmitNothing: 1578 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1579 return false; 1580 }; 1581 break; 1582 case Backend_EmitLL: 1583 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1584 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1585 return false; 1586 }; 1587 break; 1588 case Backend_EmitBC: 1589 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1590 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1591 return false; 1592 }; 1593 break; 1594 default: 1595 Conf.CGFileType = getCodeGenFileType(Action); 1596 break; 1597 } 1598 if (Error E = 1599 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1600 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], 1601 /* ModuleMap */ nullptr, CGOpts.CmdArgs)) { 1602 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1603 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1604 }); 1605 } 1606 } 1607 1608 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1609 const HeaderSearchOptions &HeaderOpts, 1610 const CodeGenOptions &CGOpts, 1611 const clang::TargetOptions &TOpts, 1612 const LangOptions &LOpts, 1613 StringRef TDesc, Module *M, 1614 BackendAction Action, 1615 std::unique_ptr<raw_pwrite_stream> OS) { 1616 1617 llvm::TimeTraceScope TimeScope("Backend"); 1618 1619 std::unique_ptr<llvm::Module> EmptyModule; 1620 if (!CGOpts.ThinLTOIndexFile.empty()) { 1621 // If we are performing a ThinLTO importing compile, load the function index 1622 // into memory and pass it into runThinLTOBackend, which will run the 1623 // function importer and invoke LTO passes. 1624 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1625 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1626 /*IgnoreEmptyThinLTOIndexFile*/true); 1627 if (!IndexOrErr) { 1628 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1629 "Error loading index file '" + 1630 CGOpts.ThinLTOIndexFile + "': "); 1631 return; 1632 } 1633 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1634 // A null CombinedIndex means we should skip ThinLTO compilation 1635 // (LLVM will optionally ignore empty index files, returning null instead 1636 // of an error). 1637 if (CombinedIndex) { 1638 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1639 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, 1640 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, 1641 CGOpts.ProfileRemappingFile, Action); 1642 return; 1643 } 1644 // Distributed indexing detected that nothing from the module is needed 1645 // for the final linking. So we can skip the compilation. We sill need to 1646 // output an empty object file to make sure that a linker does not fail 1647 // trying to read it. Also for some features, like CFI, we must skip 1648 // the compilation as CombinedIndex does not contain all required 1649 // information. 1650 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1651 EmptyModule->setTargetTriple(M->getTargetTriple()); 1652 M = EmptyModule.get(); 1653 } 1654 } 1655 1656 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1657 1658 if (!CGOpts.LegacyPassManager) 1659 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1660 else 1661 AsmHelper.EmitAssembly(Action, std::move(OS)); 1662 1663 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1664 // DataLayout. 1665 if (AsmHelper.TM) { 1666 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1667 if (DLDesc != TDesc) { 1668 unsigned DiagID = Diags.getCustomDiagID( 1669 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1670 "expected target description '%1'"); 1671 Diags.Report(DiagID) << DLDesc << TDesc; 1672 } 1673 } 1674 } 1675 1676 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1677 // __LLVM,__bitcode section. 1678 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1679 llvm::MemoryBufferRef Buf) { 1680 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1681 return; 1682 llvm::EmbedBitcodeInModule( 1683 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1684 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1685 CGOpts.CmdArgs); 1686 } 1687