1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Bitcode/BitcodeReader.h" 24 #include "llvm/Bitcode/BitcodeWriter.h" 25 #include "llvm/Bitcode/BitcodeWriterPass.h" 26 #include "llvm/CodeGen/RegAllocRegistry.h" 27 #include "llvm/CodeGen/SchedulerRegistry.h" 28 #include "llvm/CodeGen/TargetSubtargetInfo.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/IRPrintingPasses.h" 31 #include "llvm/IR/LegacyPassManager.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSummaryIndex.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/LTO/LTOBackend.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/SubtargetFeature.h" 38 #include "llvm/Passes/PassBuilder.h" 39 #include "llvm/Passes/PassPlugin.h" 40 #include "llvm/Support/BuryPointer.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/MemoryBuffer.h" 43 #include "llvm/Support/PrettyStackTrace.h" 44 #include "llvm/Support/TargetRegistry.h" 45 #include "llvm/Support/Timer.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include "llvm/Transforms/Coroutines.h" 50 #include "llvm/Transforms/IPO.h" 51 #include "llvm/Transforms/IPO/AlwaysInliner.h" 52 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 53 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 54 #include "llvm/Transforms/InstCombine/InstCombine.h" 55 #include "llvm/Transforms/Instrumentation.h" 56 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 57 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 58 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 59 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 60 #include "llvm/Transforms/ObjCARC.h" 61 #include "llvm/Transforms/Scalar.h" 62 #include "llvm/Transforms/Scalar/GVN.h" 63 #include "llvm/Transforms/Utils.h" 64 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 65 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 66 #include "llvm/Transforms/Utils/SymbolRewriter.h" 67 #include <memory> 68 using namespace clang; 69 using namespace llvm; 70 71 namespace { 72 73 // Default filename used for profile generation. 74 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 75 76 class EmitAssemblyHelper { 77 DiagnosticsEngine &Diags; 78 const HeaderSearchOptions &HSOpts; 79 const CodeGenOptions &CodeGenOpts; 80 const clang::TargetOptions &TargetOpts; 81 const LangOptions &LangOpts; 82 Module *TheModule; 83 84 Timer CodeGenerationTime; 85 86 std::unique_ptr<raw_pwrite_stream> OS; 87 88 TargetIRAnalysis getTargetIRAnalysis() const { 89 if (TM) 90 return TM->getTargetIRAnalysis(); 91 92 return TargetIRAnalysis(); 93 } 94 95 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 96 97 /// Generates the TargetMachine. 98 /// Leaves TM unchanged if it is unable to create the target machine. 99 /// Some of our clang tests specify triples which are not built 100 /// into clang. This is okay because these tests check the generated 101 /// IR, and they require DataLayout which depends on the triple. 102 /// In this case, we allow this method to fail and not report an error. 103 /// When MustCreateTM is used, we print an error if we are unable to load 104 /// the requested target. 105 void CreateTargetMachine(bool MustCreateTM); 106 107 /// Add passes necessary to emit assembly or LLVM IR. 108 /// 109 /// \return True on success. 110 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 111 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 112 113 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 114 std::error_code EC; 115 auto F = llvm::make_unique<llvm::ToolOutputFile>(Path, EC, 116 llvm::sys::fs::F_None); 117 if (EC) { 118 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 119 F.reset(); 120 } 121 return F; 122 } 123 124 public: 125 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 126 const HeaderSearchOptions &HeaderSearchOpts, 127 const CodeGenOptions &CGOpts, 128 const clang::TargetOptions &TOpts, 129 const LangOptions &LOpts, Module *M) 130 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 131 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 132 CodeGenerationTime("codegen", "Code Generation Time") {} 133 134 ~EmitAssemblyHelper() { 135 if (CodeGenOpts.DisableFree) 136 BuryPointer(std::move(TM)); 137 } 138 139 std::unique_ptr<TargetMachine> TM; 140 141 void EmitAssembly(BackendAction Action, 142 std::unique_ptr<raw_pwrite_stream> OS); 143 144 void EmitAssemblyWithNewPassManager(BackendAction Action, 145 std::unique_ptr<raw_pwrite_stream> OS); 146 }; 147 148 // We need this wrapper to access LangOpts and CGOpts from extension functions 149 // that we add to the PassManagerBuilder. 150 class PassManagerBuilderWrapper : public PassManagerBuilder { 151 public: 152 PassManagerBuilderWrapper(const Triple &TargetTriple, 153 const CodeGenOptions &CGOpts, 154 const LangOptions &LangOpts) 155 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 156 LangOpts(LangOpts) {} 157 const Triple &getTargetTriple() const { return TargetTriple; } 158 const CodeGenOptions &getCGOpts() const { return CGOpts; } 159 const LangOptions &getLangOpts() const { return LangOpts; } 160 161 private: 162 const Triple &TargetTriple; 163 const CodeGenOptions &CGOpts; 164 const LangOptions &LangOpts; 165 }; 166 } 167 168 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 169 if (Builder.OptLevel > 0) 170 PM.add(createObjCARCAPElimPass()); 171 } 172 173 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 174 if (Builder.OptLevel > 0) 175 PM.add(createObjCARCExpandPass()); 176 } 177 178 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 179 if (Builder.OptLevel > 0) 180 PM.add(createObjCARCOptPass()); 181 } 182 183 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 184 legacy::PassManagerBase &PM) { 185 PM.add(createAddDiscriminatorsPass()); 186 } 187 188 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 189 legacy::PassManagerBase &PM) { 190 PM.add(createBoundsCheckingLegacyPass()); 191 } 192 193 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 194 legacy::PassManagerBase &PM) { 195 const PassManagerBuilderWrapper &BuilderWrapper = 196 static_cast<const PassManagerBuilderWrapper&>(Builder); 197 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 198 SanitizerCoverageOptions Opts; 199 Opts.CoverageType = 200 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 201 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 202 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 203 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 204 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 205 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 206 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 207 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 208 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 209 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 210 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 211 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 212 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 213 PM.add(createSanitizerCoverageModulePass(Opts)); 214 } 215 216 // Check if ASan should use GC-friendly instrumentation for globals. 217 // First of all, there is no point if -fdata-sections is off (expect for MachO, 218 // where this is not a factor). Also, on ELF this feature requires an assembler 219 // extension that only works with -integrated-as at the moment. 220 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 221 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 222 return false; 223 switch (T.getObjectFormat()) { 224 case Triple::MachO: 225 case Triple::COFF: 226 return true; 227 case Triple::ELF: 228 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 229 default: 230 return false; 231 } 232 } 233 234 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 235 legacy::PassManagerBase &PM) { 236 const PassManagerBuilderWrapper &BuilderWrapper = 237 static_cast<const PassManagerBuilderWrapper&>(Builder); 238 const Triple &T = BuilderWrapper.getTargetTriple(); 239 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 240 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 241 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 242 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 243 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 244 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 245 UseAfterScope)); 246 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/ false, Recover, 247 UseGlobalsGC, UseOdrIndicator)); 248 } 249 250 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 251 legacy::PassManagerBase &PM) { 252 PM.add(createAddressSanitizerFunctionPass( 253 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 254 PM.add(createAddressSanitizerModulePass( 255 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 256 /*UseOdrIndicator*/ false)); 257 } 258 259 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 260 legacy::PassManagerBase &PM) { 261 const PassManagerBuilderWrapper &BuilderWrapper = 262 static_cast<const PassManagerBuilderWrapper &>(Builder); 263 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 264 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 265 PM.add(createHWAddressSanitizerPass(/*CompileKernel*/ false, Recover)); 266 } 267 268 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 269 legacy::PassManagerBase &PM) { 270 PM.add(createHWAddressSanitizerPass( 271 /*CompileKernel*/ true, /*Recover*/ true)); 272 } 273 274 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 275 legacy::PassManagerBase &PM, 276 bool CompileKernel) { 277 const PassManagerBuilderWrapper &BuilderWrapper = 278 static_cast<const PassManagerBuilderWrapper&>(Builder); 279 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 280 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 281 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 282 PM.add(createMemorySanitizerLegacyPassPass( 283 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 284 285 // MemorySanitizer inserts complex instrumentation that mostly follows 286 // the logic of the original code, but operates on "shadow" values. 287 // It can benefit from re-running some general purpose optimization passes. 288 if (Builder.OptLevel > 0) { 289 PM.add(createEarlyCSEPass()); 290 PM.add(createReassociatePass()); 291 PM.add(createLICMPass()); 292 PM.add(createGVNPass()); 293 PM.add(createInstructionCombiningPass()); 294 PM.add(createDeadStoreEliminationPass()); 295 } 296 } 297 298 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 299 legacy::PassManagerBase &PM) { 300 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 301 } 302 303 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 304 legacy::PassManagerBase &PM) { 305 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 306 } 307 308 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 309 legacy::PassManagerBase &PM) { 310 PM.add(createThreadSanitizerLegacyPassPass()); 311 } 312 313 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 314 legacy::PassManagerBase &PM) { 315 const PassManagerBuilderWrapper &BuilderWrapper = 316 static_cast<const PassManagerBuilderWrapper&>(Builder); 317 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 318 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 319 } 320 321 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 322 legacy::PassManagerBase &PM) { 323 const PassManagerBuilderWrapper &BuilderWrapper = 324 static_cast<const PassManagerBuilderWrapper&>(Builder); 325 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 326 EfficiencySanitizerOptions Opts; 327 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 328 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 329 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 330 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 331 PM.add(createEfficiencySanitizerPass(Opts)); 332 } 333 334 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 335 const CodeGenOptions &CodeGenOpts) { 336 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 337 if (!CodeGenOpts.SimplifyLibCalls) 338 TLII->disableAllFunctions(); 339 else { 340 // Disable individual libc/libm calls in TargetLibraryInfo. 341 LibFunc F; 342 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 343 if (TLII->getLibFunc(FuncName, F)) 344 TLII->setUnavailable(F); 345 } 346 347 switch (CodeGenOpts.getVecLib()) { 348 case CodeGenOptions::Accelerate: 349 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 350 break; 351 case CodeGenOptions::SVML: 352 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 353 break; 354 default: 355 break; 356 } 357 return TLII; 358 } 359 360 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 361 legacy::PassManager *MPM) { 362 llvm::SymbolRewriter::RewriteDescriptorList DL; 363 364 llvm::SymbolRewriter::RewriteMapParser MapParser; 365 for (const auto &MapFile : Opts.RewriteMapFiles) 366 MapParser.parse(MapFile, &DL); 367 368 MPM->add(createRewriteSymbolsPass(DL)); 369 } 370 371 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 372 switch (CodeGenOpts.OptimizationLevel) { 373 default: 374 llvm_unreachable("Invalid optimization level!"); 375 case 0: 376 return CodeGenOpt::None; 377 case 1: 378 return CodeGenOpt::Less; 379 case 2: 380 return CodeGenOpt::Default; // O2/Os/Oz 381 case 3: 382 return CodeGenOpt::Aggressive; 383 } 384 } 385 386 static Optional<llvm::CodeModel::Model> 387 getCodeModel(const CodeGenOptions &CodeGenOpts) { 388 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 389 .Case("tiny", llvm::CodeModel::Tiny) 390 .Case("small", llvm::CodeModel::Small) 391 .Case("kernel", llvm::CodeModel::Kernel) 392 .Case("medium", llvm::CodeModel::Medium) 393 .Case("large", llvm::CodeModel::Large) 394 .Case("default", ~1u) 395 .Default(~0u); 396 assert(CodeModel != ~0u && "invalid code model!"); 397 if (CodeModel == ~1u) 398 return None; 399 return static_cast<llvm::CodeModel::Model>(CodeModel); 400 } 401 402 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 403 if (Action == Backend_EmitObj) 404 return TargetMachine::CGFT_ObjectFile; 405 else if (Action == Backend_EmitMCNull) 406 return TargetMachine::CGFT_Null; 407 else { 408 assert(Action == Backend_EmitAssembly && "Invalid action!"); 409 return TargetMachine::CGFT_AssemblyFile; 410 } 411 } 412 413 static void initTargetOptions(llvm::TargetOptions &Options, 414 const CodeGenOptions &CodeGenOpts, 415 const clang::TargetOptions &TargetOpts, 416 const LangOptions &LangOpts, 417 const HeaderSearchOptions &HSOpts) { 418 Options.ThreadModel = 419 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 420 .Case("posix", llvm::ThreadModel::POSIX) 421 .Case("single", llvm::ThreadModel::Single); 422 423 // Set float ABI type. 424 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 425 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 426 "Invalid Floating Point ABI!"); 427 Options.FloatABIType = 428 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 429 .Case("soft", llvm::FloatABI::Soft) 430 .Case("softfp", llvm::FloatABI::Soft) 431 .Case("hard", llvm::FloatABI::Hard) 432 .Default(llvm::FloatABI::Default); 433 434 // Set FP fusion mode. 435 switch (LangOpts.getDefaultFPContractMode()) { 436 case LangOptions::FPC_Off: 437 // Preserve any contraction performed by the front-end. (Strict performs 438 // splitting of the muladd intrinsic in the backend.) 439 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 440 break; 441 case LangOptions::FPC_On: 442 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 443 break; 444 case LangOptions::FPC_Fast: 445 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 446 break; 447 } 448 449 Options.UseInitArray = CodeGenOpts.UseInitArray; 450 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 451 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 452 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 453 454 // Set EABI version. 455 Options.EABIVersion = TargetOpts.EABIVersion; 456 457 if (LangOpts.SjLjExceptions) 458 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 459 if (LangOpts.SEHExceptions) 460 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 461 if (LangOpts.DWARFExceptions) 462 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 463 464 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 465 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 466 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 467 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 468 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 469 Options.FunctionSections = CodeGenOpts.FunctionSections; 470 Options.DataSections = CodeGenOpts.DataSections; 471 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 472 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 473 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 474 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 475 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 476 Options.EmitAddrsig = CodeGenOpts.Addrsig; 477 478 if (CodeGenOpts.getSplitDwarfMode() != CodeGenOptions::NoFission) 479 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 480 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 481 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 482 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 483 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 484 Options.MCOptions.MCIncrementalLinkerCompatible = 485 CodeGenOpts.IncrementalLinkerCompatible; 486 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 487 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 488 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 489 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 490 Options.MCOptions.ABIName = TargetOpts.ABI; 491 for (const auto &Entry : HSOpts.UserEntries) 492 if (!Entry.IsFramework && 493 (Entry.Group == frontend::IncludeDirGroup::Quoted || 494 Entry.Group == frontend::IncludeDirGroup::Angled || 495 Entry.Group == frontend::IncludeDirGroup::System)) 496 Options.MCOptions.IASSearchPaths.push_back( 497 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 498 } 499 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 500 if (CodeGenOpts.DisableGCov) 501 return None; 502 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 503 return None; 504 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 505 // LLVM's -default-gcov-version flag is set to something invalid. 506 GCOVOptions Options; 507 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 508 Options.EmitData = CodeGenOpts.EmitGcovArcs; 509 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 510 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 511 Options.NoRedZone = CodeGenOpts.DisableRedZone; 512 Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData; 513 Options.Filter = CodeGenOpts.ProfileFilterFiles; 514 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 515 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 516 return Options; 517 } 518 519 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 520 legacy::FunctionPassManager &FPM) { 521 // Handle disabling of all LLVM passes, where we want to preserve the 522 // internal module before any optimization. 523 if (CodeGenOpts.DisableLLVMPasses) 524 return; 525 526 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 527 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 528 // are inserted before PMBuilder ones - they'd get the default-constructed 529 // TLI with an unknown target otherwise. 530 Triple TargetTriple(TheModule->getTargetTriple()); 531 std::unique_ptr<TargetLibraryInfoImpl> TLII( 532 createTLII(TargetTriple, CodeGenOpts)); 533 534 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 535 536 // At O0 and O1 we only run the always inliner which is more efficient. At 537 // higher optimization levels we run the normal inliner. 538 if (CodeGenOpts.OptimizationLevel <= 1) { 539 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 540 !CodeGenOpts.DisableLifetimeMarkers); 541 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 542 } else { 543 // We do not want to inline hot callsites for SamplePGO module-summary build 544 // because profile annotation will happen again in ThinLTO backend, and we 545 // want the IR of the hot path to match the profile. 546 PMBuilder.Inliner = createFunctionInliningPass( 547 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 548 (!CodeGenOpts.SampleProfileFile.empty() && 549 CodeGenOpts.PrepareForThinLTO)); 550 } 551 552 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 553 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 554 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 555 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 556 557 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 558 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 559 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 560 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 561 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 562 563 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 564 565 if (TM) 566 TM->adjustPassManager(PMBuilder); 567 568 if (CodeGenOpts.DebugInfoForProfiling || 569 !CodeGenOpts.SampleProfileFile.empty()) 570 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 571 addAddDiscriminatorsPass); 572 573 // In ObjC ARC mode, add the main ARC optimization passes. 574 if (LangOpts.ObjCAutoRefCount) { 575 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 576 addObjCARCExpandPass); 577 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 578 addObjCARCAPElimPass); 579 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 580 addObjCARCOptPass); 581 } 582 583 if (LangOpts.CoroutinesTS) 584 addCoroutinePassesToExtensionPoints(PMBuilder); 585 586 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 587 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 588 addBoundsCheckingPass); 589 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 590 addBoundsCheckingPass); 591 } 592 593 if (CodeGenOpts.SanitizeCoverageType || 594 CodeGenOpts.SanitizeCoverageIndirectCalls || 595 CodeGenOpts.SanitizeCoverageTraceCmp) { 596 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 597 addSanitizerCoveragePass); 598 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 599 addSanitizerCoveragePass); 600 } 601 602 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 603 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 604 addAddressSanitizerPasses); 605 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 606 addAddressSanitizerPasses); 607 } 608 609 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 610 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 611 addKernelAddressSanitizerPasses); 612 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 613 addKernelAddressSanitizerPasses); 614 } 615 616 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 617 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 618 addHWAddressSanitizerPasses); 619 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 620 addHWAddressSanitizerPasses); 621 } 622 623 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 624 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 625 addKernelHWAddressSanitizerPasses); 626 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 627 addKernelHWAddressSanitizerPasses); 628 } 629 630 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 631 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 632 addMemorySanitizerPass); 633 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 634 addMemorySanitizerPass); 635 } 636 637 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 638 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 639 addKernelMemorySanitizerPass); 640 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 641 addKernelMemorySanitizerPass); 642 } 643 644 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 645 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 646 addThreadSanitizerPass); 647 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 648 addThreadSanitizerPass); 649 } 650 651 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 652 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 653 addDataFlowSanitizerPass); 654 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 655 addDataFlowSanitizerPass); 656 } 657 658 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 659 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 660 addEfficiencySanitizerPass); 661 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 662 addEfficiencySanitizerPass); 663 } 664 665 // Set up the per-function pass manager. 666 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 667 if (CodeGenOpts.VerifyModule) 668 FPM.add(createVerifierPass()); 669 670 // Set up the per-module pass manager. 671 if (!CodeGenOpts.RewriteMapFiles.empty()) 672 addSymbolRewriterPass(CodeGenOpts, &MPM); 673 674 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 675 MPM.add(createGCOVProfilerPass(*Options)); 676 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 677 MPM.add(createStripSymbolsPass(true)); 678 } 679 680 if (CodeGenOpts.hasProfileClangInstr()) { 681 InstrProfOptions Options; 682 Options.NoRedZone = CodeGenOpts.DisableRedZone; 683 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 684 685 // TODO: Surface the option to emit atomic profile counter increments at 686 // the driver level. 687 Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread); 688 689 MPM.add(createInstrProfilingLegacyPass(Options)); 690 } 691 if (CodeGenOpts.hasProfileIRInstr()) { 692 PMBuilder.EnablePGOInstrGen = true; 693 if (!CodeGenOpts.InstrProfileOutput.empty()) 694 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 695 else 696 PMBuilder.PGOInstrGen = DefaultProfileGenName; 697 } 698 if (CodeGenOpts.hasProfileIRUse()) 699 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 700 701 if (!CodeGenOpts.SampleProfileFile.empty()) 702 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 703 704 PMBuilder.populateFunctionPassManager(FPM); 705 PMBuilder.populateModulePassManager(MPM); 706 } 707 708 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 709 SmallVector<const char *, 16> BackendArgs; 710 BackendArgs.push_back("clang"); // Fake program name. 711 if (!CodeGenOpts.DebugPass.empty()) { 712 BackendArgs.push_back("-debug-pass"); 713 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 714 } 715 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 716 BackendArgs.push_back("-limit-float-precision"); 717 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 718 } 719 BackendArgs.push_back(nullptr); 720 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 721 BackendArgs.data()); 722 } 723 724 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 725 // Create the TargetMachine for generating code. 726 std::string Error; 727 std::string Triple = TheModule->getTargetTriple(); 728 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 729 if (!TheTarget) { 730 if (MustCreateTM) 731 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 732 return; 733 } 734 735 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 736 std::string FeaturesStr = 737 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 738 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 739 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 740 741 llvm::TargetOptions Options; 742 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 743 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 744 Options, RM, CM, OptLevel)); 745 } 746 747 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 748 BackendAction Action, 749 raw_pwrite_stream &OS, 750 raw_pwrite_stream *DwoOS) { 751 // Add LibraryInfo. 752 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 753 std::unique_ptr<TargetLibraryInfoImpl> TLII( 754 createTLII(TargetTriple, CodeGenOpts)); 755 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 756 757 // Normal mode, emit a .s or .o file by running the code generator. Note, 758 // this also adds codegenerator level optimization passes. 759 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 760 761 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 762 // "codegen" passes so that it isn't run multiple times when there is 763 // inlining happening. 764 if (CodeGenOpts.OptimizationLevel > 0) 765 CodeGenPasses.add(createObjCARCContractPass()); 766 767 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 768 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 769 Diags.Report(diag::err_fe_unable_to_interface_with_target); 770 return false; 771 } 772 773 return true; 774 } 775 776 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 777 std::unique_ptr<raw_pwrite_stream> OS) { 778 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 779 780 setCommandLineOpts(CodeGenOpts); 781 782 bool UsesCodeGen = (Action != Backend_EmitNothing && 783 Action != Backend_EmitBC && 784 Action != Backend_EmitLL); 785 CreateTargetMachine(UsesCodeGen); 786 787 if (UsesCodeGen && !TM) 788 return; 789 if (TM) 790 TheModule->setDataLayout(TM->createDataLayout()); 791 792 legacy::PassManager PerModulePasses; 793 PerModulePasses.add( 794 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 795 796 legacy::FunctionPassManager PerFunctionPasses(TheModule); 797 PerFunctionPasses.add( 798 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 799 800 CreatePasses(PerModulePasses, PerFunctionPasses); 801 802 legacy::PassManager CodeGenPasses; 803 CodeGenPasses.add( 804 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 805 806 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 807 808 switch (Action) { 809 case Backend_EmitNothing: 810 break; 811 812 case Backend_EmitBC: 813 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 814 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 815 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 816 if (!ThinLinkOS) 817 return; 818 } 819 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 820 CodeGenOpts.EnableSplitLTOUnit); 821 PerModulePasses.add(createWriteThinLTOBitcodePass( 822 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 823 } else { 824 // Emit a module summary by default for Regular LTO except for ld64 825 // targets 826 bool EmitLTOSummary = 827 (CodeGenOpts.PrepareForLTO && 828 !CodeGenOpts.DisableLLVMPasses && 829 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 830 llvm::Triple::Apple); 831 if (EmitLTOSummary) { 832 if (!TheModule->getModuleFlag("ThinLTO")) 833 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 834 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 835 CodeGenOpts.EnableSplitLTOUnit); 836 } 837 838 PerModulePasses.add(createBitcodeWriterPass( 839 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 840 } 841 break; 842 843 case Backend_EmitLL: 844 PerModulePasses.add( 845 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 846 break; 847 848 default: 849 if (!CodeGenOpts.SplitDwarfFile.empty() && 850 (CodeGenOpts.getSplitDwarfMode() == CodeGenOptions::SplitFileFission)) { 851 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfFile); 852 if (!DwoOS) 853 return; 854 } 855 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 856 DwoOS ? &DwoOS->os() : nullptr)) 857 return; 858 } 859 860 // Before executing passes, print the final values of the LLVM options. 861 cl::PrintOptionValues(); 862 863 // Run passes. For now we do all passes at once, but eventually we 864 // would like to have the option of streaming code generation. 865 866 { 867 PrettyStackTraceString CrashInfo("Per-function optimization"); 868 869 PerFunctionPasses.doInitialization(); 870 for (Function &F : *TheModule) 871 if (!F.isDeclaration()) 872 PerFunctionPasses.run(F); 873 PerFunctionPasses.doFinalization(); 874 } 875 876 { 877 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 878 PerModulePasses.run(*TheModule); 879 } 880 881 { 882 PrettyStackTraceString CrashInfo("Code generation"); 883 CodeGenPasses.run(*TheModule); 884 } 885 886 if (ThinLinkOS) 887 ThinLinkOS->keep(); 888 if (DwoOS) 889 DwoOS->keep(); 890 } 891 892 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 893 switch (Opts.OptimizationLevel) { 894 default: 895 llvm_unreachable("Invalid optimization level!"); 896 897 case 1: 898 return PassBuilder::O1; 899 900 case 2: 901 switch (Opts.OptimizeSize) { 902 default: 903 llvm_unreachable("Invalid optimization level for size!"); 904 905 case 0: 906 return PassBuilder::O2; 907 908 case 1: 909 return PassBuilder::Os; 910 911 case 2: 912 return PassBuilder::Oz; 913 } 914 915 case 3: 916 return PassBuilder::O3; 917 } 918 } 919 920 /// A clean version of `EmitAssembly` that uses the new pass manager. 921 /// 922 /// Not all features are currently supported in this system, but where 923 /// necessary it falls back to the legacy pass manager to at least provide 924 /// basic functionality. 925 /// 926 /// This API is planned to have its functionality finished and then to replace 927 /// `EmitAssembly` at some point in the future when the default switches. 928 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 929 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 930 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 931 setCommandLineOpts(CodeGenOpts); 932 933 // The new pass manager always makes a target machine available to passes 934 // during construction. 935 CreateTargetMachine(/*MustCreateTM*/ true); 936 if (!TM) 937 // This will already be diagnosed, just bail. 938 return; 939 TheModule->setDataLayout(TM->createDataLayout()); 940 941 Optional<PGOOptions> PGOOpt; 942 943 if (CodeGenOpts.hasProfileIRInstr()) 944 // -fprofile-generate. 945 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 946 ? DefaultProfileGenName 947 : CodeGenOpts.InstrProfileOutput, 948 "", "", "", true, 949 CodeGenOpts.DebugInfoForProfiling); 950 else if (CodeGenOpts.hasProfileIRUse()) 951 // -fprofile-use. 952 PGOOpt = PGOOptions("", CodeGenOpts.ProfileInstrumentUsePath, "", 953 CodeGenOpts.ProfileRemappingFile, false, 954 CodeGenOpts.DebugInfoForProfiling); 955 else if (!CodeGenOpts.SampleProfileFile.empty()) 956 // -fprofile-sample-use 957 PGOOpt = PGOOptions("", "", CodeGenOpts.SampleProfileFile, 958 CodeGenOpts.ProfileRemappingFile, false, 959 CodeGenOpts.DebugInfoForProfiling); 960 else if (CodeGenOpts.DebugInfoForProfiling) 961 // -fdebug-info-for-profiling 962 PGOOpt = PGOOptions("", "", "", "", false, true); 963 964 PassBuilder PB(TM.get(), PGOOpt); 965 966 // Attempt to load pass plugins and register their callbacks with PB. 967 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 968 auto PassPlugin = PassPlugin::Load(PluginFN); 969 if (PassPlugin) { 970 PassPlugin->registerPassBuilderCallbacks(PB); 971 } else { 972 Diags.Report(diag::err_fe_unable_to_load_plugin) 973 << PluginFN << toString(PassPlugin.takeError()); 974 } 975 } 976 977 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 978 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 979 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 980 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 981 982 // Register the AA manager first so that our version is the one used. 983 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 984 985 // Register the target library analysis directly and give it a customized 986 // preset TLI. 987 Triple TargetTriple(TheModule->getTargetTriple()); 988 std::unique_ptr<TargetLibraryInfoImpl> TLII( 989 createTLII(TargetTriple, CodeGenOpts)); 990 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 991 MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 992 993 // Register all the basic analyses with the managers. 994 PB.registerModuleAnalyses(MAM); 995 PB.registerCGSCCAnalyses(CGAM); 996 PB.registerFunctionAnalyses(FAM); 997 PB.registerLoopAnalyses(LAM); 998 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 999 1000 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 1001 1002 if (!CodeGenOpts.DisableLLVMPasses) { 1003 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1004 bool IsLTO = CodeGenOpts.PrepareForLTO; 1005 1006 if (CodeGenOpts.OptimizationLevel == 0) { 1007 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1008 MPM.addPass(GCOVProfilerPass(*Options)); 1009 1010 // Build a minimal pipeline based on the semantics required by Clang, 1011 // which is just that always inlining occurs. 1012 MPM.addPass(AlwaysInlinerPass()); 1013 1014 // At -O0 we directly run necessary sanitizer passes. 1015 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1016 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 1017 1018 // Lastly, add semantically necessary passes for LTO. 1019 if (IsLTO || IsThinLTO) { 1020 MPM.addPass(CanonicalizeAliasesPass()); 1021 MPM.addPass(NameAnonGlobalPass()); 1022 } 1023 } else { 1024 // Map our optimization levels into one of the distinct levels used to 1025 // configure the pipeline. 1026 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1027 1028 // Register callbacks to schedule sanitizer passes at the appropriate part of 1029 // the pipeline. 1030 // FIXME: either handle asan/the remaining sanitizers or error out 1031 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1032 PB.registerScalarOptimizerLateEPCallback( 1033 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1034 FPM.addPass(BoundsCheckingPass()); 1035 }); 1036 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 1037 PB.registerOptimizerLastEPCallback( 1038 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1039 FPM.addPass(MemorySanitizerPass({})); 1040 }); 1041 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) 1042 PB.registerOptimizerLastEPCallback( 1043 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1044 FPM.addPass(ThreadSanitizerPass()); 1045 }); 1046 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1047 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1048 MPM.addPass(GCOVProfilerPass(*Options)); 1049 }); 1050 1051 if (IsThinLTO) { 1052 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 1053 Level, CodeGenOpts.DebugPassManager); 1054 MPM.addPass(CanonicalizeAliasesPass()); 1055 MPM.addPass(NameAnonGlobalPass()); 1056 } else if (IsLTO) { 1057 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 1058 CodeGenOpts.DebugPassManager); 1059 MPM.addPass(CanonicalizeAliasesPass()); 1060 MPM.addPass(NameAnonGlobalPass()); 1061 } else { 1062 MPM = PB.buildPerModuleDefaultPipeline(Level, 1063 CodeGenOpts.DebugPassManager); 1064 } 1065 } 1066 } 1067 1068 // FIXME: We still use the legacy pass manager to do code generation. We 1069 // create that pass manager here and use it as needed below. 1070 legacy::PassManager CodeGenPasses; 1071 bool NeedCodeGen = false; 1072 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1073 1074 // Append any output we need to the pass manager. 1075 switch (Action) { 1076 case Backend_EmitNothing: 1077 break; 1078 1079 case Backend_EmitBC: 1080 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1081 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1082 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1083 if (!ThinLinkOS) 1084 return; 1085 } 1086 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1087 CodeGenOpts.EnableSplitLTOUnit); 1088 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1089 : nullptr)); 1090 } else { 1091 // Emit a module summary by default for Regular LTO except for ld64 1092 // targets 1093 bool EmitLTOSummary = 1094 (CodeGenOpts.PrepareForLTO && 1095 !CodeGenOpts.DisableLLVMPasses && 1096 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1097 llvm::Triple::Apple); 1098 if (EmitLTOSummary) { 1099 if (!TheModule->getModuleFlag("ThinLTO")) 1100 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1101 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1102 CodeGenOpts.EnableSplitLTOUnit); 1103 } 1104 MPM.addPass( 1105 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1106 } 1107 break; 1108 1109 case Backend_EmitLL: 1110 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1111 break; 1112 1113 case Backend_EmitAssembly: 1114 case Backend_EmitMCNull: 1115 case Backend_EmitObj: 1116 NeedCodeGen = true; 1117 CodeGenPasses.add( 1118 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1119 if (!CodeGenOpts.SplitDwarfFile.empty()) { 1120 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfFile); 1121 if (!DwoOS) 1122 return; 1123 } 1124 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1125 DwoOS ? &DwoOS->os() : nullptr)) 1126 // FIXME: Should we handle this error differently? 1127 return; 1128 break; 1129 } 1130 1131 // Before executing passes, print the final values of the LLVM options. 1132 cl::PrintOptionValues(); 1133 1134 // Now that we have all of the passes ready, run them. 1135 { 1136 PrettyStackTraceString CrashInfo("Optimizer"); 1137 MPM.run(*TheModule, MAM); 1138 } 1139 1140 // Now if needed, run the legacy PM for codegen. 1141 if (NeedCodeGen) { 1142 PrettyStackTraceString CrashInfo("Code generation"); 1143 CodeGenPasses.run(*TheModule); 1144 } 1145 1146 if (ThinLinkOS) 1147 ThinLinkOS->keep(); 1148 if (DwoOS) 1149 DwoOS->keep(); 1150 } 1151 1152 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1153 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1154 if (!BMsOrErr) 1155 return BMsOrErr.takeError(); 1156 1157 // The bitcode file may contain multiple modules, we want the one that is 1158 // marked as being the ThinLTO module. 1159 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1160 return *Bm; 1161 1162 return make_error<StringError>("Could not find module summary", 1163 inconvertibleErrorCode()); 1164 } 1165 1166 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1167 for (BitcodeModule &BM : BMs) { 1168 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1169 if (LTOInfo && LTOInfo->IsThinLTO) 1170 return &BM; 1171 } 1172 return nullptr; 1173 } 1174 1175 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1176 const HeaderSearchOptions &HeaderOpts, 1177 const CodeGenOptions &CGOpts, 1178 const clang::TargetOptions &TOpts, 1179 const LangOptions &LOpts, 1180 std::unique_ptr<raw_pwrite_stream> OS, 1181 std::string SampleProfile, 1182 std::string ProfileRemapping, 1183 BackendAction Action) { 1184 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1185 ModuleToDefinedGVSummaries; 1186 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1187 1188 setCommandLineOpts(CGOpts); 1189 1190 // We can simply import the values mentioned in the combined index, since 1191 // we should only invoke this using the individual indexes written out 1192 // via a WriteIndexesThinBackend. 1193 FunctionImporter::ImportMapTy ImportList; 1194 for (auto &GlobalList : *CombinedIndex) { 1195 // Ignore entries for undefined references. 1196 if (GlobalList.second.SummaryList.empty()) 1197 continue; 1198 1199 auto GUID = GlobalList.first; 1200 for (auto &Summary : GlobalList.second.SummaryList) { 1201 // Skip the summaries for the importing module. These are included to 1202 // e.g. record required linkage changes. 1203 if (Summary->modulePath() == M->getModuleIdentifier()) 1204 continue; 1205 // Add an entry to provoke importing by thinBackend. 1206 ImportList[Summary->modulePath()].insert(GUID); 1207 } 1208 } 1209 1210 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1211 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1212 1213 for (auto &I : ImportList) { 1214 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1215 llvm::MemoryBuffer::getFile(I.first()); 1216 if (!MBOrErr) { 1217 errs() << "Error loading imported file '" << I.first() 1218 << "': " << MBOrErr.getError().message() << "\n"; 1219 return; 1220 } 1221 1222 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1223 if (!BMOrErr) { 1224 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1225 errs() << "Error loading imported file '" << I.first() 1226 << "': " << EIB.message() << '\n'; 1227 }); 1228 return; 1229 } 1230 ModuleMap.insert({I.first(), *BMOrErr}); 1231 1232 OwnedImports.push_back(std::move(*MBOrErr)); 1233 } 1234 auto AddStream = [&](size_t Task) { 1235 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 1236 }; 1237 lto::Config Conf; 1238 if (CGOpts.SaveTempsFilePrefix != "") { 1239 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1240 /* UseInputModulePath */ false)) { 1241 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1242 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1243 << '\n'; 1244 }); 1245 } 1246 } 1247 Conf.CPU = TOpts.CPU; 1248 Conf.CodeModel = getCodeModel(CGOpts); 1249 Conf.MAttrs = TOpts.Features; 1250 Conf.RelocModel = CGOpts.RelocationModel; 1251 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1252 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1253 Conf.SampleProfile = std::move(SampleProfile); 1254 Conf.ProfileRemapping = std::move(ProfileRemapping); 1255 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1256 Conf.DebugPassManager = CGOpts.DebugPassManager; 1257 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1258 Conf.RemarksFilename = CGOpts.OptRecordFile; 1259 Conf.DwoPath = CGOpts.SplitDwarfFile; 1260 switch (Action) { 1261 case Backend_EmitNothing: 1262 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1263 return false; 1264 }; 1265 break; 1266 case Backend_EmitLL: 1267 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1268 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1269 return false; 1270 }; 1271 break; 1272 case Backend_EmitBC: 1273 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1274 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1275 return false; 1276 }; 1277 break; 1278 default: 1279 Conf.CGFileType = getCodeGenFileType(Action); 1280 break; 1281 } 1282 if (Error E = thinBackend( 1283 Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1284 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1285 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1286 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1287 }); 1288 } 1289 } 1290 1291 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1292 const HeaderSearchOptions &HeaderOpts, 1293 const CodeGenOptions &CGOpts, 1294 const clang::TargetOptions &TOpts, 1295 const LangOptions &LOpts, 1296 const llvm::DataLayout &TDesc, Module *M, 1297 BackendAction Action, 1298 std::unique_ptr<raw_pwrite_stream> OS) { 1299 std::unique_ptr<llvm::Module> EmptyModule; 1300 if (!CGOpts.ThinLTOIndexFile.empty()) { 1301 // If we are performing a ThinLTO importing compile, load the function index 1302 // into memory and pass it into runThinLTOBackend, which will run the 1303 // function importer and invoke LTO passes. 1304 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1305 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1306 /*IgnoreEmptyThinLTOIndexFile*/true); 1307 if (!IndexOrErr) { 1308 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1309 "Error loading index file '" + 1310 CGOpts.ThinLTOIndexFile + "': "); 1311 return; 1312 } 1313 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1314 // A null CombinedIndex means we should skip ThinLTO compilation 1315 // (LLVM will optionally ignore empty index files, returning null instead 1316 // of an error). 1317 if (CombinedIndex) { 1318 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1319 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1320 LOpts, std::move(OS), CGOpts.SampleProfileFile, 1321 CGOpts.ProfileRemappingFile, Action); 1322 return; 1323 } 1324 // Distributed indexing detected that nothing from the module is needed 1325 // for the final linking. So we can skip the compilation. We sill need to 1326 // output an empty object file to make sure that a linker does not fail 1327 // trying to read it. Also for some features, like CFI, we must skip 1328 // the compilation as CombinedIndex does not contain all required 1329 // information. 1330 EmptyModule = llvm::make_unique<llvm::Module>("empty", M->getContext()); 1331 EmptyModule->setTargetTriple(M->getTargetTriple()); 1332 M = EmptyModule.get(); 1333 } 1334 } 1335 1336 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1337 1338 if (CGOpts.ExperimentalNewPassManager) 1339 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1340 else 1341 AsmHelper.EmitAssembly(Action, std::move(OS)); 1342 1343 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1344 // DataLayout. 1345 if (AsmHelper.TM) { 1346 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1347 if (DLDesc != TDesc.getStringRepresentation()) { 1348 unsigned DiagID = Diags.getCustomDiagID( 1349 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1350 "expected target description '%1'"); 1351 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1352 } 1353 } 1354 } 1355 1356 static const char* getSectionNameForBitcode(const Triple &T) { 1357 switch (T.getObjectFormat()) { 1358 case Triple::MachO: 1359 return "__LLVM,__bitcode"; 1360 case Triple::COFF: 1361 case Triple::ELF: 1362 case Triple::Wasm: 1363 case Triple::UnknownObjectFormat: 1364 return ".llvmbc"; 1365 } 1366 llvm_unreachable("Unimplemented ObjectFormatType"); 1367 } 1368 1369 static const char* getSectionNameForCommandline(const Triple &T) { 1370 switch (T.getObjectFormat()) { 1371 case Triple::MachO: 1372 return "__LLVM,__cmdline"; 1373 case Triple::COFF: 1374 case Triple::ELF: 1375 case Triple::Wasm: 1376 case Triple::UnknownObjectFormat: 1377 return ".llvmcmd"; 1378 } 1379 llvm_unreachable("Unimplemented ObjectFormatType"); 1380 } 1381 1382 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1383 // __LLVM,__bitcode section. 1384 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1385 llvm::MemoryBufferRef Buf) { 1386 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1387 return; 1388 1389 // Save llvm.compiler.used and remote it. 1390 SmallVector<Constant*, 2> UsedArray; 1391 SmallPtrSet<GlobalValue*, 4> UsedGlobals; 1392 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1393 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1394 for (auto *GV : UsedGlobals) { 1395 if (GV->getName() != "llvm.embedded.module" && 1396 GV->getName() != "llvm.cmdline") 1397 UsedArray.push_back( 1398 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1399 } 1400 if (Used) 1401 Used->eraseFromParent(); 1402 1403 // Embed the bitcode for the llvm module. 1404 std::string Data; 1405 ArrayRef<uint8_t> ModuleData; 1406 Triple T(M->getTargetTriple()); 1407 // Create a constant that contains the bitcode. 1408 // In case of embedding a marker, ignore the input Buf and use the empty 1409 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1410 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1411 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1412 (const unsigned char *)Buf.getBufferEnd())) { 1413 // If the input is LLVM Assembly, bitcode is produced by serializing 1414 // the module. Use-lists order need to be perserved in this case. 1415 llvm::raw_string_ostream OS(Data); 1416 llvm::WriteBitcodeToFile(*M, OS, /* ShouldPreserveUseListOrder */ true); 1417 ModuleData = 1418 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1419 } else 1420 // If the input is LLVM bitcode, write the input byte stream directly. 1421 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1422 Buf.getBufferSize()); 1423 } 1424 llvm::Constant *ModuleConstant = 1425 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1426 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1427 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1428 ModuleConstant); 1429 GV->setSection(getSectionNameForBitcode(T)); 1430 UsedArray.push_back( 1431 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1432 if (llvm::GlobalVariable *Old = 1433 M->getGlobalVariable("llvm.embedded.module", true)) { 1434 assert(Old->hasOneUse() && 1435 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1436 GV->takeName(Old); 1437 Old->eraseFromParent(); 1438 } else { 1439 GV->setName("llvm.embedded.module"); 1440 } 1441 1442 // Skip if only bitcode needs to be embedded. 1443 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1444 // Embed command-line options. 1445 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1446 CGOpts.CmdArgs.size()); 1447 llvm::Constant *CmdConstant = 1448 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1449 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1450 llvm::GlobalValue::PrivateLinkage, 1451 CmdConstant); 1452 GV->setSection(getSectionNameForCommandline(T)); 1453 UsedArray.push_back( 1454 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1455 if (llvm::GlobalVariable *Old = 1456 M->getGlobalVariable("llvm.cmdline", true)) { 1457 assert(Old->hasOneUse() && 1458 "llvm.cmdline can only be used once in llvm.compiler.used"); 1459 GV->takeName(Old); 1460 Old->eraseFromParent(); 1461 } else { 1462 GV->setName("llvm.cmdline"); 1463 } 1464 } 1465 1466 if (UsedArray.empty()) 1467 return; 1468 1469 // Recreate llvm.compiler.used. 1470 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1471 auto *NewUsed = new GlobalVariable( 1472 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1473 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1474 NewUsed->setSection("llvm.metadata"); 1475 } 1476