1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/StackSafetyAnalysis.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/Bitcode/BitcodeReader.h" 26 #include "llvm/Bitcode/BitcodeWriter.h" 27 #include "llvm/Bitcode/BitcodeWriterPass.h" 28 #include "llvm/CodeGen/RegAllocRegistry.h" 29 #include "llvm/CodeGen/SchedulerRegistry.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/IRPrintingPasses.h" 33 #include "llvm/IR/LegacyPassManager.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/ModuleSummaryIndex.h" 36 #include "llvm/IR/PassManager.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/LTO/LTOBackend.h" 39 #include "llvm/MC/MCAsmInfo.h" 40 #include "llvm/MC/SubtargetFeature.h" 41 #include "llvm/Passes/PassBuilder.h" 42 #include "llvm/Passes/PassPlugin.h" 43 #include "llvm/Passes/StandardInstrumentations.h" 44 #include "llvm/Support/BuryPointer.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/MemoryBuffer.h" 47 #include "llvm/Support/PrettyStackTrace.h" 48 #include "llvm/Support/TargetRegistry.h" 49 #include "llvm/Support/TimeProfiler.h" 50 #include "llvm/Support/Timer.h" 51 #include "llvm/Support/ToolOutputFile.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include "llvm/Target/TargetOptions.h" 55 #include "llvm/Transforms/Coroutines.h" 56 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 57 #include "llvm/Transforms/Coroutines/CoroEarly.h" 58 #include "llvm/Transforms/Coroutines/CoroElide.h" 59 #include "llvm/Transforms/Coroutines/CoroSplit.h" 60 #include "llvm/Transforms/IPO.h" 61 #include "llvm/Transforms/IPO/AlwaysInliner.h" 62 #include "llvm/Transforms/IPO/LowerTypeTests.h" 63 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 64 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 65 #include "llvm/Transforms/InstCombine/InstCombine.h" 66 #include "llvm/Transforms/Instrumentation.h" 67 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 68 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 69 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 70 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 71 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 72 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 73 #include "llvm/Transforms/Instrumentation/MemProfiler.h" 74 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 75 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 76 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 77 #include "llvm/Transforms/ObjCARC.h" 78 #include "llvm/Transforms/Scalar.h" 79 #include "llvm/Transforms/Scalar/EarlyCSE.h" 80 #include "llvm/Transforms/Scalar/GVN.h" 81 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" 82 #include "llvm/Transforms/Utils.h" 83 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 84 #include "llvm/Transforms/Utils/Debugify.h" 85 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 86 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 87 #include "llvm/Transforms/Utils/SymbolRewriter.h" 88 #include <memory> 89 using namespace clang; 90 using namespace llvm; 91 92 #define HANDLE_EXTENSION(Ext) \ 93 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 94 #include "llvm/Support/Extension.def" 95 96 namespace { 97 98 // Default filename used for profile generation. 99 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 100 101 class EmitAssemblyHelper { 102 DiagnosticsEngine &Diags; 103 const HeaderSearchOptions &HSOpts; 104 const CodeGenOptions &CodeGenOpts; 105 const clang::TargetOptions &TargetOpts; 106 const LangOptions &LangOpts; 107 Module *TheModule; 108 109 Timer CodeGenerationTime; 110 111 std::unique_ptr<raw_pwrite_stream> OS; 112 113 TargetIRAnalysis getTargetIRAnalysis() const { 114 if (TM) 115 return TM->getTargetIRAnalysis(); 116 117 return TargetIRAnalysis(); 118 } 119 120 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 121 122 /// Generates the TargetMachine. 123 /// Leaves TM unchanged if it is unable to create the target machine. 124 /// Some of our clang tests specify triples which are not built 125 /// into clang. This is okay because these tests check the generated 126 /// IR, and they require DataLayout which depends on the triple. 127 /// In this case, we allow this method to fail and not report an error. 128 /// When MustCreateTM is used, we print an error if we are unable to load 129 /// the requested target. 130 void CreateTargetMachine(bool MustCreateTM); 131 132 /// Add passes necessary to emit assembly or LLVM IR. 133 /// 134 /// \return True on success. 135 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 136 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 137 138 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 139 std::error_code EC; 140 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 141 llvm::sys::fs::OF_None); 142 if (EC) { 143 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 144 F.reset(); 145 } 146 return F; 147 } 148 149 public: 150 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 151 const HeaderSearchOptions &HeaderSearchOpts, 152 const CodeGenOptions &CGOpts, 153 const clang::TargetOptions &TOpts, 154 const LangOptions &LOpts, Module *M) 155 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 156 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 157 CodeGenerationTime("codegen", "Code Generation Time") {} 158 159 ~EmitAssemblyHelper() { 160 if (CodeGenOpts.DisableFree) 161 BuryPointer(std::move(TM)); 162 } 163 164 std::unique_ptr<TargetMachine> TM; 165 166 void EmitAssembly(BackendAction Action, 167 std::unique_ptr<raw_pwrite_stream> OS); 168 169 void EmitAssemblyWithNewPassManager(BackendAction Action, 170 std::unique_ptr<raw_pwrite_stream> OS); 171 }; 172 173 // We need this wrapper to access LangOpts and CGOpts from extension functions 174 // that we add to the PassManagerBuilder. 175 class PassManagerBuilderWrapper : public PassManagerBuilder { 176 public: 177 PassManagerBuilderWrapper(const Triple &TargetTriple, 178 const CodeGenOptions &CGOpts, 179 const LangOptions &LangOpts) 180 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 181 LangOpts(LangOpts) {} 182 const Triple &getTargetTriple() const { return TargetTriple; } 183 const CodeGenOptions &getCGOpts() const { return CGOpts; } 184 const LangOptions &getLangOpts() const { return LangOpts; } 185 186 private: 187 const Triple &TargetTriple; 188 const CodeGenOptions &CGOpts; 189 const LangOptions &LangOpts; 190 }; 191 } 192 193 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 194 if (Builder.OptLevel > 0) 195 PM.add(createObjCARCAPElimPass()); 196 } 197 198 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 199 if (Builder.OptLevel > 0) 200 PM.add(createObjCARCExpandPass()); 201 } 202 203 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 204 if (Builder.OptLevel > 0) 205 PM.add(createObjCARCOptPass()); 206 } 207 208 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 209 legacy::PassManagerBase &PM) { 210 PM.add(createAddDiscriminatorsPass()); 211 } 212 213 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 214 legacy::PassManagerBase &PM) { 215 PM.add(createBoundsCheckingLegacyPass()); 216 } 217 218 static SanitizerCoverageOptions 219 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 220 SanitizerCoverageOptions Opts; 221 Opts.CoverageType = 222 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 223 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 224 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 225 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 226 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 227 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 228 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 229 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 230 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 231 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 232 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 233 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 234 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 235 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 236 return Opts; 237 } 238 239 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 240 legacy::PassManagerBase &PM) { 241 const PassManagerBuilderWrapper &BuilderWrapper = 242 static_cast<const PassManagerBuilderWrapper &>(Builder); 243 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 244 auto Opts = getSancovOptsFromCGOpts(CGOpts); 245 PM.add(createModuleSanitizerCoverageLegacyPassPass( 246 Opts, CGOpts.SanitizeCoverageAllowlistFiles, 247 CGOpts.SanitizeCoverageIgnorelistFiles)); 248 } 249 250 // Check if ASan should use GC-friendly instrumentation for globals. 251 // First of all, there is no point if -fdata-sections is off (expect for MachO, 252 // where this is not a factor). Also, on ELF this feature requires an assembler 253 // extension that only works with -integrated-as at the moment. 254 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 255 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 256 return false; 257 switch (T.getObjectFormat()) { 258 case Triple::MachO: 259 case Triple::COFF: 260 return true; 261 case Triple::ELF: 262 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 263 case Triple::GOFF: 264 llvm::report_fatal_error("ASan not implemented for GOFF"); 265 case Triple::XCOFF: 266 llvm::report_fatal_error("ASan not implemented for XCOFF."); 267 case Triple::Wasm: 268 case Triple::UnknownObjectFormat: 269 break; 270 } 271 return false; 272 } 273 274 static void addMemProfilerPasses(const PassManagerBuilder &Builder, 275 legacy::PassManagerBase &PM) { 276 PM.add(createMemProfilerFunctionPass()); 277 PM.add(createModuleMemProfilerLegacyPassPass()); 278 } 279 280 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 281 legacy::PassManagerBase &PM) { 282 const PassManagerBuilderWrapper &BuilderWrapper = 283 static_cast<const PassManagerBuilderWrapper&>(Builder); 284 const Triple &T = BuilderWrapper.getTargetTriple(); 285 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 286 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 287 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 288 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 289 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 290 llvm::AsanDtorKind DestructorKind = CGOpts.getSanitizeAddressDtor(); 291 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 292 UseAfterScope)); 293 PM.add(createModuleAddressSanitizerLegacyPassPass( 294 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator, 295 DestructorKind)); 296 } 297 298 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 299 legacy::PassManagerBase &PM) { 300 PM.add(createAddressSanitizerFunctionPass( 301 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 302 PM.add(createModuleAddressSanitizerLegacyPassPass( 303 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 304 /*UseOdrIndicator*/ false)); 305 } 306 307 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 308 legacy::PassManagerBase &PM) { 309 const PassManagerBuilderWrapper &BuilderWrapper = 310 static_cast<const PassManagerBuilderWrapper &>(Builder); 311 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 312 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 313 PM.add( 314 createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover)); 315 } 316 317 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 318 legacy::PassManagerBase &PM) { 319 PM.add(createHWAddressSanitizerLegacyPassPass( 320 /*CompileKernel*/ true, /*Recover*/ true)); 321 } 322 323 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 324 legacy::PassManagerBase &PM, 325 bool CompileKernel) { 326 const PassManagerBuilderWrapper &BuilderWrapper = 327 static_cast<const PassManagerBuilderWrapper&>(Builder); 328 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 329 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 330 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 331 PM.add(createMemorySanitizerLegacyPassPass( 332 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 333 334 // MemorySanitizer inserts complex instrumentation that mostly follows 335 // the logic of the original code, but operates on "shadow" values. 336 // It can benefit from re-running some general purpose optimization passes. 337 if (Builder.OptLevel > 0) { 338 PM.add(createEarlyCSEPass()); 339 PM.add(createReassociatePass()); 340 PM.add(createLICMPass()); 341 PM.add(createGVNPass()); 342 PM.add(createInstructionCombiningPass()); 343 PM.add(createDeadStoreEliminationPass()); 344 } 345 } 346 347 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 348 legacy::PassManagerBase &PM) { 349 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 350 } 351 352 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 353 legacy::PassManagerBase &PM) { 354 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 355 } 356 357 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 358 legacy::PassManagerBase &PM) { 359 PM.add(createThreadSanitizerLegacyPassPass()); 360 } 361 362 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 363 legacy::PassManagerBase &PM) { 364 const PassManagerBuilderWrapper &BuilderWrapper = 365 static_cast<const PassManagerBuilderWrapper&>(Builder); 366 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 367 PM.add(createDataFlowSanitizerLegacyPassPass(LangOpts.NoSanitizeFiles)); 368 } 369 370 static void addEntryExitInstrumentationPass(const PassManagerBuilder &Builder, 371 legacy::PassManagerBase &PM) { 372 PM.add(createEntryExitInstrumenterPass()); 373 } 374 375 static void 376 addPostInlineEntryExitInstrumentationPass(const PassManagerBuilder &Builder, 377 legacy::PassManagerBase &PM) { 378 PM.add(createPostInlineEntryExitInstrumenterPass()); 379 } 380 381 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 382 const CodeGenOptions &CodeGenOpts) { 383 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 384 385 switch (CodeGenOpts.getVecLib()) { 386 case CodeGenOptions::Accelerate: 387 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 388 break; 389 case CodeGenOptions::LIBMVEC: 390 switch(TargetTriple.getArch()) { 391 default: 392 break; 393 case llvm::Triple::x86_64: 394 TLII->addVectorizableFunctionsFromVecLib 395 (TargetLibraryInfoImpl::LIBMVEC_X86); 396 break; 397 } 398 break; 399 case CodeGenOptions::MASSV: 400 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 401 break; 402 case CodeGenOptions::SVML: 403 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 404 break; 405 default: 406 break; 407 } 408 return TLII; 409 } 410 411 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 412 legacy::PassManager *MPM) { 413 llvm::SymbolRewriter::RewriteDescriptorList DL; 414 415 llvm::SymbolRewriter::RewriteMapParser MapParser; 416 for (const auto &MapFile : Opts.RewriteMapFiles) 417 MapParser.parse(MapFile, &DL); 418 419 MPM->add(createRewriteSymbolsPass(DL)); 420 } 421 422 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 423 switch (CodeGenOpts.OptimizationLevel) { 424 default: 425 llvm_unreachable("Invalid optimization level!"); 426 case 0: 427 return CodeGenOpt::None; 428 case 1: 429 return CodeGenOpt::Less; 430 case 2: 431 return CodeGenOpt::Default; // O2/Os/Oz 432 case 3: 433 return CodeGenOpt::Aggressive; 434 } 435 } 436 437 static Optional<llvm::CodeModel::Model> 438 getCodeModel(const CodeGenOptions &CodeGenOpts) { 439 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 440 .Case("tiny", llvm::CodeModel::Tiny) 441 .Case("small", llvm::CodeModel::Small) 442 .Case("kernel", llvm::CodeModel::Kernel) 443 .Case("medium", llvm::CodeModel::Medium) 444 .Case("large", llvm::CodeModel::Large) 445 .Case("default", ~1u) 446 .Default(~0u); 447 assert(CodeModel != ~0u && "invalid code model!"); 448 if (CodeModel == ~1u) 449 return None; 450 return static_cast<llvm::CodeModel::Model>(CodeModel); 451 } 452 453 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 454 if (Action == Backend_EmitObj) 455 return CGFT_ObjectFile; 456 else if (Action == Backend_EmitMCNull) 457 return CGFT_Null; 458 else { 459 assert(Action == Backend_EmitAssembly && "Invalid action!"); 460 return CGFT_AssemblyFile; 461 } 462 } 463 464 static bool initTargetOptions(DiagnosticsEngine &Diags, 465 llvm::TargetOptions &Options, 466 const CodeGenOptions &CodeGenOpts, 467 const clang::TargetOptions &TargetOpts, 468 const LangOptions &LangOpts, 469 const HeaderSearchOptions &HSOpts) { 470 switch (LangOpts.getThreadModel()) { 471 case LangOptions::ThreadModelKind::POSIX: 472 Options.ThreadModel = llvm::ThreadModel::POSIX; 473 break; 474 case LangOptions::ThreadModelKind::Single: 475 Options.ThreadModel = llvm::ThreadModel::Single; 476 break; 477 } 478 479 // Set float ABI type. 480 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 481 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 482 "Invalid Floating Point ABI!"); 483 Options.FloatABIType = 484 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 485 .Case("soft", llvm::FloatABI::Soft) 486 .Case("softfp", llvm::FloatABI::Soft) 487 .Case("hard", llvm::FloatABI::Hard) 488 .Default(llvm::FloatABI::Default); 489 490 // Set FP fusion mode. 491 switch (LangOpts.getDefaultFPContractMode()) { 492 case LangOptions::FPM_Off: 493 // Preserve any contraction performed by the front-end. (Strict performs 494 // splitting of the muladd intrinsic in the backend.) 495 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 496 break; 497 case LangOptions::FPM_On: 498 case LangOptions::FPM_FastHonorPragmas: 499 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 500 break; 501 case LangOptions::FPM_Fast: 502 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 503 break; 504 } 505 506 Options.BinutilsVersion = 507 llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion); 508 Options.UseInitArray = CodeGenOpts.UseInitArray; 509 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 510 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 511 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 512 513 // Set EABI version. 514 Options.EABIVersion = TargetOpts.EABIVersion; 515 516 if (LangOpts.hasSjLjExceptions()) 517 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 518 if (LangOpts.hasSEHExceptions()) 519 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 520 if (LangOpts.hasDWARFExceptions()) 521 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 522 if (LangOpts.hasWasmExceptions()) 523 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 524 525 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 526 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 527 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 528 Options.UnsafeFPMath = LangOpts.UnsafeFPMath; 529 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 530 531 Options.BBSections = 532 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 533 .Case("all", llvm::BasicBlockSection::All) 534 .Case("labels", llvm::BasicBlockSection::Labels) 535 .StartsWith("list=", llvm::BasicBlockSection::List) 536 .Case("none", llvm::BasicBlockSection::None) 537 .Default(llvm::BasicBlockSection::None); 538 539 if (Options.BBSections == llvm::BasicBlockSection::List) { 540 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 541 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 542 if (!MBOrErr) { 543 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 544 << MBOrErr.getError().message(); 545 return false; 546 } 547 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 548 } 549 550 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions; 551 Options.FunctionSections = CodeGenOpts.FunctionSections; 552 Options.DataSections = CodeGenOpts.DataSections; 553 Options.IgnoreXCOFFVisibility = LangOpts.IgnoreXCOFFVisibility; 554 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 555 Options.UniqueBasicBlockSectionNames = 556 CodeGenOpts.UniqueBasicBlockSectionNames; 557 Options.StackProtectorGuard = 558 llvm::StringSwitch<llvm::StackProtectorGuards>(CodeGenOpts 559 .StackProtectorGuard) 560 .Case("tls", llvm::StackProtectorGuards::TLS) 561 .Case("global", llvm::StackProtectorGuards::Global) 562 .Default(llvm::StackProtectorGuards::None); 563 Options.StackProtectorGuardOffset = CodeGenOpts.StackProtectorGuardOffset; 564 Options.StackProtectorGuardReg = CodeGenOpts.StackProtectorGuardReg; 565 Options.TLSSize = CodeGenOpts.TLSSize; 566 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 567 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 568 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 569 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 570 Options.StackUsageOutput = CodeGenOpts.StackUsageOutput; 571 Options.EmitAddrsig = CodeGenOpts.Addrsig; 572 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 573 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 574 Options.EnableAIXExtendedAltivecABI = CodeGenOpts.EnableAIXExtendedAltivecABI; 575 Options.PseudoProbeForProfiling = CodeGenOpts.PseudoProbeForProfiling; 576 Options.ValueTrackingVariableLocations = 577 CodeGenOpts.ValueTrackingVariableLocations; 578 Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex; 579 580 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 581 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 582 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 583 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 584 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 585 Options.MCOptions.MCIncrementalLinkerCompatible = 586 CodeGenOpts.IncrementalLinkerCompatible; 587 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 588 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 589 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 590 Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64; 591 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 592 Options.MCOptions.ABIName = TargetOpts.ABI; 593 for (const auto &Entry : HSOpts.UserEntries) 594 if (!Entry.IsFramework && 595 (Entry.Group == frontend::IncludeDirGroup::Quoted || 596 Entry.Group == frontend::IncludeDirGroup::Angled || 597 Entry.Group == frontend::IncludeDirGroup::System)) 598 Options.MCOptions.IASSearchPaths.push_back( 599 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 600 Options.MCOptions.Argv0 = CodeGenOpts.Argv0; 601 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; 602 Options.DebugStrictDwarf = CodeGenOpts.DebugStrictDwarf; 603 604 return true; 605 } 606 607 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts, 608 const LangOptions &LangOpts) { 609 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 610 return None; 611 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 612 // LLVM's -default-gcov-version flag is set to something invalid. 613 GCOVOptions Options; 614 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 615 Options.EmitData = CodeGenOpts.EmitGcovArcs; 616 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 617 Options.NoRedZone = CodeGenOpts.DisableRedZone; 618 Options.Filter = CodeGenOpts.ProfileFilterFiles; 619 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 620 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 621 return Options; 622 } 623 624 static Optional<InstrProfOptions> 625 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 626 const LangOptions &LangOpts) { 627 if (!CodeGenOpts.hasProfileClangInstr()) 628 return None; 629 InstrProfOptions Options; 630 Options.NoRedZone = CodeGenOpts.DisableRedZone; 631 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 632 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 633 return Options; 634 } 635 636 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 637 legacy::FunctionPassManager &FPM) { 638 // Handle disabling of all LLVM passes, where we want to preserve the 639 // internal module before any optimization. 640 if (CodeGenOpts.DisableLLVMPasses) 641 return; 642 643 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 644 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 645 // are inserted before PMBuilder ones - they'd get the default-constructed 646 // TLI with an unknown target otherwise. 647 Triple TargetTriple(TheModule->getTargetTriple()); 648 std::unique_ptr<TargetLibraryInfoImpl> TLII( 649 createTLII(TargetTriple, CodeGenOpts)); 650 651 // If we reached here with a non-empty index file name, then the index file 652 // was empty and we are not performing ThinLTO backend compilation (used in 653 // testing in a distributed build environment). Drop any the type test 654 // assume sequences inserted for whole program vtables so that codegen doesn't 655 // complain. 656 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 657 MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr, 658 /*ImportSummary=*/nullptr, 659 /*DropTypeTests=*/true)); 660 661 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 662 663 // At O0 and O1 we only run the always inliner which is more efficient. At 664 // higher optimization levels we run the normal inliner. 665 if (CodeGenOpts.OptimizationLevel <= 1) { 666 bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 && 667 !CodeGenOpts.DisableLifetimeMarkers) || 668 LangOpts.Coroutines); 669 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 670 } else { 671 // We do not want to inline hot callsites for SamplePGO module-summary build 672 // because profile annotation will happen again in ThinLTO backend, and we 673 // want the IR of the hot path to match the profile. 674 PMBuilder.Inliner = createFunctionInliningPass( 675 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 676 (!CodeGenOpts.SampleProfileFile.empty() && 677 CodeGenOpts.PrepareForThinLTO)); 678 } 679 680 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 681 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 682 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 683 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 684 // Only enable CGProfilePass when using integrated assembler, since 685 // non-integrated assemblers don't recognize .cgprofile section. 686 PMBuilder.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 687 688 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 689 // Loop interleaving in the loop vectorizer has historically been set to be 690 // enabled when loop unrolling is enabled. 691 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 692 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 693 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 694 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 695 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 696 697 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 698 699 if (TM) 700 TM->adjustPassManager(PMBuilder); 701 702 if (CodeGenOpts.DebugInfoForProfiling || 703 !CodeGenOpts.SampleProfileFile.empty()) 704 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 705 addAddDiscriminatorsPass); 706 707 // In ObjC ARC mode, add the main ARC optimization passes. 708 if (LangOpts.ObjCAutoRefCount) { 709 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 710 addObjCARCExpandPass); 711 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 712 addObjCARCAPElimPass); 713 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 714 addObjCARCOptPass); 715 } 716 717 if (LangOpts.Coroutines) 718 addCoroutinePassesToExtensionPoints(PMBuilder); 719 720 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 721 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 722 addMemProfilerPasses); 723 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 724 addMemProfilerPasses); 725 } 726 727 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 728 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 729 addBoundsCheckingPass); 730 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 731 addBoundsCheckingPass); 732 } 733 734 if (CodeGenOpts.SanitizeCoverageType || 735 CodeGenOpts.SanitizeCoverageIndirectCalls || 736 CodeGenOpts.SanitizeCoverageTraceCmp) { 737 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 738 addSanitizerCoveragePass); 739 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 740 addSanitizerCoveragePass); 741 } 742 743 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 744 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 745 addAddressSanitizerPasses); 746 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 747 addAddressSanitizerPasses); 748 } 749 750 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 751 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 752 addKernelAddressSanitizerPasses); 753 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 754 addKernelAddressSanitizerPasses); 755 } 756 757 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 758 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 759 addHWAddressSanitizerPasses); 760 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 761 addHWAddressSanitizerPasses); 762 } 763 764 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 765 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 766 addKernelHWAddressSanitizerPasses); 767 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 768 addKernelHWAddressSanitizerPasses); 769 } 770 771 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 772 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 773 addMemorySanitizerPass); 774 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 775 addMemorySanitizerPass); 776 } 777 778 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 779 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 780 addKernelMemorySanitizerPass); 781 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 782 addKernelMemorySanitizerPass); 783 } 784 785 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 786 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 787 addThreadSanitizerPass); 788 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 789 addThreadSanitizerPass); 790 } 791 792 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 793 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 794 addDataFlowSanitizerPass); 795 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 796 addDataFlowSanitizerPass); 797 } 798 799 if (CodeGenOpts.InstrumentFunctions || 800 CodeGenOpts.InstrumentFunctionEntryBare || 801 CodeGenOpts.InstrumentFunctionsAfterInlining || 802 CodeGenOpts.InstrumentForProfiling) { 803 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 804 addEntryExitInstrumentationPass); 805 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 806 addEntryExitInstrumentationPass); 807 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 808 addPostInlineEntryExitInstrumentationPass); 809 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 810 addPostInlineEntryExitInstrumentationPass); 811 } 812 813 // Set up the per-function pass manager. 814 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 815 if (CodeGenOpts.VerifyModule) 816 FPM.add(createVerifierPass()); 817 818 // Set up the per-module pass manager. 819 if (!CodeGenOpts.RewriteMapFiles.empty()) 820 addSymbolRewriterPass(CodeGenOpts, &MPM); 821 822 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) { 823 MPM.add(createGCOVProfilerPass(*Options)); 824 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 825 MPM.add(createStripSymbolsPass(true)); 826 } 827 828 if (Optional<InstrProfOptions> Options = 829 getInstrProfOptions(CodeGenOpts, LangOpts)) 830 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 831 832 bool hasIRInstr = false; 833 if (CodeGenOpts.hasProfileIRInstr()) { 834 PMBuilder.EnablePGOInstrGen = true; 835 hasIRInstr = true; 836 } 837 if (CodeGenOpts.hasProfileCSIRInstr()) { 838 assert(!CodeGenOpts.hasProfileCSIRUse() && 839 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 840 "same time"); 841 assert(!hasIRInstr && 842 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 843 "same time"); 844 PMBuilder.EnablePGOCSInstrGen = true; 845 hasIRInstr = true; 846 } 847 if (hasIRInstr) { 848 if (!CodeGenOpts.InstrProfileOutput.empty()) 849 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 850 else 851 PMBuilder.PGOInstrGen = std::string(DefaultProfileGenName); 852 } 853 if (CodeGenOpts.hasProfileIRUse()) { 854 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 855 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 856 } 857 858 if (!CodeGenOpts.SampleProfileFile.empty()) 859 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 860 861 PMBuilder.populateFunctionPassManager(FPM); 862 PMBuilder.populateModulePassManager(MPM); 863 } 864 865 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 866 SmallVector<const char *, 16> BackendArgs; 867 BackendArgs.push_back("clang"); // Fake program name. 868 if (!CodeGenOpts.DebugPass.empty()) { 869 BackendArgs.push_back("-debug-pass"); 870 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 871 // New PM supports structure dumping. Old PM is still used for codegen, 872 // so we need to pass both options. 873 if (!CodeGenOpts.LegacyPassManager && CodeGenOpts.DebugPass == "Structure") 874 BackendArgs.push_back("-debug-pass-structure"); 875 } 876 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 877 BackendArgs.push_back("-limit-float-precision"); 878 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 879 } 880 // Check for the default "clang" invocation that won't set any cl::opt values. 881 // Skip trying to parse the command line invocation to avoid the issues 882 // described below. 883 if (BackendArgs.size() == 1) 884 return; 885 BackendArgs.push_back(nullptr); 886 // FIXME: The command line parser below is not thread-safe and shares a global 887 // state, so this call might crash or overwrite the options of another Clang 888 // instance in the same process. 889 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 890 BackendArgs.data()); 891 } 892 893 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 894 // Create the TargetMachine for generating code. 895 std::string Error; 896 std::string Triple = TheModule->getTargetTriple(); 897 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 898 if (!TheTarget) { 899 if (MustCreateTM) 900 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 901 return; 902 } 903 904 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 905 std::string FeaturesStr = 906 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 907 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 908 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 909 910 llvm::TargetOptions Options; 911 if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, 912 HSOpts)) 913 return; 914 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 915 Options, RM, CM, OptLevel)); 916 } 917 918 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 919 BackendAction Action, 920 raw_pwrite_stream &OS, 921 raw_pwrite_stream *DwoOS) { 922 // Add LibraryInfo. 923 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 924 std::unique_ptr<TargetLibraryInfoImpl> TLII( 925 createTLII(TargetTriple, CodeGenOpts)); 926 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 927 928 // Normal mode, emit a .s or .o file by running the code generator. Note, 929 // this also adds codegenerator level optimization passes. 930 CodeGenFileType CGFT = getCodeGenFileType(Action); 931 932 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 933 // "codegen" passes so that it isn't run multiple times when there is 934 // inlining happening. 935 if (CodeGenOpts.OptimizationLevel > 0) 936 CodeGenPasses.add(createObjCARCContractPass()); 937 938 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 939 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 940 Diags.Report(diag::err_fe_unable_to_interface_with_target); 941 return false; 942 } 943 944 return true; 945 } 946 947 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 948 std::unique_ptr<raw_pwrite_stream> OS) { 949 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 950 951 setCommandLineOpts(CodeGenOpts); 952 953 bool UsesCodeGen = (Action != Backend_EmitNothing && 954 Action != Backend_EmitBC && 955 Action != Backend_EmitLL); 956 CreateTargetMachine(UsesCodeGen); 957 958 if (UsesCodeGen && !TM) 959 return; 960 if (TM) 961 TheModule->setDataLayout(TM->createDataLayout()); 962 963 DebugifyCustomPassManager PerModulePasses; 964 DebugInfoPerPassMap DIPreservationMap; 965 if (CodeGenOpts.EnableDIPreservationVerify) { 966 PerModulePasses.setDebugifyMode(DebugifyMode::OriginalDebugInfo); 967 PerModulePasses.setDIPreservationMap(DIPreservationMap); 968 969 if (!CodeGenOpts.DIBugsReportFilePath.empty()) 970 PerModulePasses.setOrigDIVerifyBugsReportFilePath( 971 CodeGenOpts.DIBugsReportFilePath); 972 } 973 PerModulePasses.add( 974 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 975 976 legacy::FunctionPassManager PerFunctionPasses(TheModule); 977 PerFunctionPasses.add( 978 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 979 980 CreatePasses(PerModulePasses, PerFunctionPasses); 981 982 legacy::PassManager CodeGenPasses; 983 CodeGenPasses.add( 984 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 985 986 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 987 988 switch (Action) { 989 case Backend_EmitNothing: 990 break; 991 992 case Backend_EmitBC: 993 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 994 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 995 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 996 if (!ThinLinkOS) 997 return; 998 } 999 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1000 CodeGenOpts.EnableSplitLTOUnit); 1001 PerModulePasses.add(createWriteThinLTOBitcodePass( 1002 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 1003 } else { 1004 // Emit a module summary by default for Regular LTO except for ld64 1005 // targets 1006 bool EmitLTOSummary = 1007 (CodeGenOpts.PrepareForLTO && 1008 !CodeGenOpts.DisableLLVMPasses && 1009 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1010 llvm::Triple::Apple); 1011 if (EmitLTOSummary) { 1012 if (!TheModule->getModuleFlag("ThinLTO")) 1013 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1014 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1015 uint32_t(1)); 1016 } 1017 1018 PerModulePasses.add(createBitcodeWriterPass( 1019 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1020 } 1021 break; 1022 1023 case Backend_EmitLL: 1024 PerModulePasses.add( 1025 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1026 break; 1027 1028 default: 1029 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1030 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1031 if (!DwoOS) 1032 return; 1033 } 1034 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1035 DwoOS ? &DwoOS->os() : nullptr)) 1036 return; 1037 } 1038 1039 // Before executing passes, print the final values of the LLVM options. 1040 cl::PrintOptionValues(); 1041 1042 // Run passes. For now we do all passes at once, but eventually we 1043 // would like to have the option of streaming code generation. 1044 1045 { 1046 PrettyStackTraceString CrashInfo("Per-function optimization"); 1047 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 1048 1049 PerFunctionPasses.doInitialization(); 1050 for (Function &F : *TheModule) 1051 if (!F.isDeclaration()) 1052 PerFunctionPasses.run(F); 1053 PerFunctionPasses.doFinalization(); 1054 } 1055 1056 { 1057 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 1058 llvm::TimeTraceScope TimeScope("PerModulePasses"); 1059 PerModulePasses.run(*TheModule); 1060 } 1061 1062 { 1063 PrettyStackTraceString CrashInfo("Code generation"); 1064 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1065 CodeGenPasses.run(*TheModule); 1066 } 1067 1068 if (ThinLinkOS) 1069 ThinLinkOS->keep(); 1070 if (DwoOS) 1071 DwoOS->keep(); 1072 } 1073 1074 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 1075 switch (Opts.OptimizationLevel) { 1076 default: 1077 llvm_unreachable("Invalid optimization level!"); 1078 1079 case 0: 1080 return PassBuilder::OptimizationLevel::O0; 1081 1082 case 1: 1083 return PassBuilder::OptimizationLevel::O1; 1084 1085 case 2: 1086 switch (Opts.OptimizeSize) { 1087 default: 1088 llvm_unreachable("Invalid optimization level for size!"); 1089 1090 case 0: 1091 return PassBuilder::OptimizationLevel::O2; 1092 1093 case 1: 1094 return PassBuilder::OptimizationLevel::Os; 1095 1096 case 2: 1097 return PassBuilder::OptimizationLevel::Oz; 1098 } 1099 1100 case 3: 1101 return PassBuilder::OptimizationLevel::O3; 1102 } 1103 } 1104 1105 static void addSanitizers(const Triple &TargetTriple, 1106 const CodeGenOptions &CodeGenOpts, 1107 const LangOptions &LangOpts, PassBuilder &PB) { 1108 PB.registerOptimizerLastEPCallback([&](ModulePassManager &MPM, 1109 PassBuilder::OptimizationLevel Level) { 1110 if (CodeGenOpts.SanitizeCoverageType || 1111 CodeGenOpts.SanitizeCoverageIndirectCalls || 1112 CodeGenOpts.SanitizeCoverageTraceCmp) { 1113 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1114 MPM.addPass(ModuleSanitizerCoveragePass( 1115 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1116 CodeGenOpts.SanitizeCoverageIgnorelistFiles)); 1117 } 1118 1119 auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1120 if (LangOpts.Sanitize.has(Mask)) { 1121 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1122 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1123 1124 MPM.addPass( 1125 MemorySanitizerPass({TrackOrigins, Recover, CompileKernel})); 1126 FunctionPassManager FPM; 1127 FPM.addPass( 1128 MemorySanitizerPass({TrackOrigins, Recover, CompileKernel})); 1129 if (Level != PassBuilder::OptimizationLevel::O0) { 1130 // MemorySanitizer inserts complex instrumentation that mostly 1131 // follows the logic of the original code, but operates on 1132 // "shadow" values. It can benefit from re-running some 1133 // general purpose optimization passes. 1134 FPM.addPass(EarlyCSEPass()); 1135 // TODO: Consider add more passes like in 1136 // addGeneralOptsForMemorySanitizer. EarlyCSEPass makes visible 1137 // difference on size. It's not clear if the rest is still 1138 // usefull. InstCombinePass breakes 1139 // compiler-rt/test/msan/select_origin.cpp. 1140 } 1141 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 1142 } 1143 }; 1144 MSanPass(SanitizerKind::Memory, false); 1145 MSanPass(SanitizerKind::KernelMemory, true); 1146 1147 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1148 MPM.addPass(ThreadSanitizerPass()); 1149 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1150 } 1151 1152 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1153 if (LangOpts.Sanitize.has(Mask)) { 1154 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1155 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1156 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1157 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1158 llvm::AsanDtorKind DestructorKind = 1159 CodeGenOpts.getSanitizeAddressDtor(); 1160 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1161 MPM.addPass(ModuleAddressSanitizerPass( 1162 CompileKernel, Recover, ModuleUseAfterScope, UseOdrIndicator, 1163 DestructorKind)); 1164 MPM.addPass(createModuleToFunctionPassAdaptor( 1165 AddressSanitizerPass(CompileKernel, Recover, UseAfterScope))); 1166 } 1167 }; 1168 ASanPass(SanitizerKind::Address, false); 1169 ASanPass(SanitizerKind::KernelAddress, true); 1170 1171 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1172 if (LangOpts.Sanitize.has(Mask)) { 1173 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1174 MPM.addPass(HWAddressSanitizerPass(CompileKernel, Recover)); 1175 } 1176 }; 1177 HWASanPass(SanitizerKind::HWAddress, false); 1178 HWASanPass(SanitizerKind::KernelHWAddress, true); 1179 1180 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 1181 MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles)); 1182 } 1183 }); 1184 } 1185 1186 /// A clean version of `EmitAssembly` that uses the new pass manager. 1187 /// 1188 /// Not all features are currently supported in this system, but where 1189 /// necessary it falls back to the legacy pass manager to at least provide 1190 /// basic functionality. 1191 /// 1192 /// This API is planned to have its functionality finished and then to replace 1193 /// `EmitAssembly` at some point in the future when the default switches. 1194 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 1195 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 1196 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 1197 setCommandLineOpts(CodeGenOpts); 1198 1199 bool RequiresCodeGen = (Action != Backend_EmitNothing && 1200 Action != Backend_EmitBC && 1201 Action != Backend_EmitLL); 1202 CreateTargetMachine(RequiresCodeGen); 1203 1204 if (RequiresCodeGen && !TM) 1205 return; 1206 if (TM) 1207 TheModule->setDataLayout(TM->createDataLayout()); 1208 1209 Optional<PGOOptions> PGOOpt; 1210 1211 if (CodeGenOpts.hasProfileIRInstr()) 1212 // -fprofile-generate. 1213 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1214 ? std::string(DefaultProfileGenName) 1215 : CodeGenOpts.InstrProfileOutput, 1216 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1217 CodeGenOpts.DebugInfoForProfiling); 1218 else if (CodeGenOpts.hasProfileIRUse()) { 1219 // -fprofile-use. 1220 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1221 : PGOOptions::NoCSAction; 1222 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1223 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1224 CSAction, CodeGenOpts.DebugInfoForProfiling); 1225 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1226 // -fprofile-sample-use 1227 PGOOpt = PGOOptions( 1228 CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile, 1229 PGOOptions::SampleUse, PGOOptions::NoCSAction, 1230 CodeGenOpts.DebugInfoForProfiling, CodeGenOpts.PseudoProbeForProfiling); 1231 else if (CodeGenOpts.PseudoProbeForProfiling) 1232 // -fpseudo-probe-for-profiling 1233 PGOOpt = 1234 PGOOptions("", "", "", PGOOptions::NoAction, PGOOptions::NoCSAction, 1235 CodeGenOpts.DebugInfoForProfiling, true); 1236 else if (CodeGenOpts.DebugInfoForProfiling) 1237 // -fdebug-info-for-profiling 1238 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1239 PGOOptions::NoCSAction, true); 1240 1241 // Check to see if we want to generate a CS profile. 1242 if (CodeGenOpts.hasProfileCSIRInstr()) { 1243 assert(!CodeGenOpts.hasProfileCSIRUse() && 1244 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1245 "the same time"); 1246 if (PGOOpt.hasValue()) { 1247 assert(PGOOpt->Action != PGOOptions::IRInstr && 1248 PGOOpt->Action != PGOOptions::SampleUse && 1249 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1250 " pass"); 1251 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1252 ? std::string(DefaultProfileGenName) 1253 : CodeGenOpts.InstrProfileOutput; 1254 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1255 } else 1256 PGOOpt = PGOOptions("", 1257 CodeGenOpts.InstrProfileOutput.empty() 1258 ? std::string(DefaultProfileGenName) 1259 : CodeGenOpts.InstrProfileOutput, 1260 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1261 CodeGenOpts.DebugInfoForProfiling); 1262 } 1263 1264 PipelineTuningOptions PTO; 1265 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1266 // For historical reasons, loop interleaving is set to mirror setting for loop 1267 // unrolling. 1268 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1269 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1270 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1271 PTO.MergeFunctions = CodeGenOpts.MergeFunctions; 1272 // Only enable CGProfilePass when using integrated assembler, since 1273 // non-integrated assemblers don't recognize .cgprofile section. 1274 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 1275 PTO.Coroutines = LangOpts.Coroutines; 1276 1277 LoopAnalysisManager LAM; 1278 FunctionAnalysisManager FAM; 1279 CGSCCAnalysisManager CGAM; 1280 ModuleAnalysisManager MAM; 1281 1282 PassInstrumentationCallbacks PIC; 1283 StandardInstrumentations SI(CodeGenOpts.DebugPassManager); 1284 SI.registerCallbacks(PIC, &FAM); 1285 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 1286 1287 // Attempt to load pass plugins and register their callbacks with PB. 1288 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1289 auto PassPlugin = PassPlugin::Load(PluginFN); 1290 if (PassPlugin) { 1291 PassPlugin->registerPassBuilderCallbacks(PB); 1292 } else { 1293 Diags.Report(diag::err_fe_unable_to_load_plugin) 1294 << PluginFN << toString(PassPlugin.takeError()); 1295 } 1296 } 1297 #define HANDLE_EXTENSION(Ext) \ 1298 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 1299 #include "llvm/Support/Extension.def" 1300 1301 // Register the AA manager first so that our version is the one used. 1302 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1303 1304 // Register the target library analysis directly and give it a customized 1305 // preset TLI. 1306 Triple TargetTriple(TheModule->getTargetTriple()); 1307 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1308 createTLII(TargetTriple, CodeGenOpts)); 1309 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1310 1311 // Register all the basic analyses with the managers. 1312 PB.registerModuleAnalyses(MAM); 1313 PB.registerCGSCCAnalyses(CGAM); 1314 PB.registerFunctionAnalyses(FAM); 1315 PB.registerLoopAnalyses(LAM); 1316 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1317 1318 ModulePassManager MPM; 1319 1320 if (!CodeGenOpts.DisableLLVMPasses) { 1321 // Map our optimization levels into one of the distinct levels used to 1322 // configure the pipeline. 1323 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1324 1325 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1326 bool IsLTO = CodeGenOpts.PrepareForLTO; 1327 1328 if (LangOpts.ObjCAutoRefCount) { 1329 PB.registerPipelineStartEPCallback( 1330 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1331 if (Level != PassBuilder::OptimizationLevel::O0) 1332 MPM.addPass( 1333 createModuleToFunctionPassAdaptor(ObjCARCExpandPass())); 1334 }); 1335 PB.registerPipelineEarlySimplificationEPCallback( 1336 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1337 if (Level != PassBuilder::OptimizationLevel::O0) 1338 MPM.addPass(ObjCARCAPElimPass()); 1339 }); 1340 PB.registerScalarOptimizerLateEPCallback( 1341 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1342 if (Level != PassBuilder::OptimizationLevel::O0) 1343 FPM.addPass(ObjCARCOptPass()); 1344 }); 1345 } 1346 1347 // If we reached here with a non-empty index file name, then the index 1348 // file was empty and we are not performing ThinLTO backend compilation 1349 // (used in testing in a distributed build environment). 1350 bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty(); 1351 // If so drop any the type test assume sequences inserted for whole program 1352 // vtables so that codegen doesn't complain. 1353 if (IsThinLTOPostLink) 1354 PB.registerPipelineStartEPCallback( 1355 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1356 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1357 /*ImportSummary=*/nullptr, 1358 /*DropTypeTests=*/true)); 1359 }); 1360 1361 if (CodeGenOpts.InstrumentFunctions || 1362 CodeGenOpts.InstrumentFunctionEntryBare || 1363 CodeGenOpts.InstrumentFunctionsAfterInlining || 1364 CodeGenOpts.InstrumentForProfiling) { 1365 PB.registerPipelineStartEPCallback( 1366 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1367 MPM.addPass(createModuleToFunctionPassAdaptor( 1368 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1369 }); 1370 PB.registerOptimizerLastEPCallback( 1371 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1372 MPM.addPass(createModuleToFunctionPassAdaptor( 1373 EntryExitInstrumenterPass(/*PostInlining=*/true))); 1374 }); 1375 } 1376 1377 // Register callbacks to schedule sanitizer passes at the appropriate part 1378 // of the pipeline. 1379 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1380 PB.registerScalarOptimizerLateEPCallback( 1381 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1382 FPM.addPass(BoundsCheckingPass()); 1383 }); 1384 1385 // Don't add sanitizers if we are here from ThinLTO PostLink. That already 1386 // done on PreLink stage. 1387 if (!IsThinLTOPostLink) 1388 addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB); 1389 1390 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) 1391 PB.registerPipelineStartEPCallback( 1392 [Options](ModulePassManager &MPM, 1393 PassBuilder::OptimizationLevel Level) { 1394 MPM.addPass(GCOVProfilerPass(*Options)); 1395 }); 1396 if (Optional<InstrProfOptions> Options = 1397 getInstrProfOptions(CodeGenOpts, LangOpts)) 1398 PB.registerPipelineStartEPCallback( 1399 [Options](ModulePassManager &MPM, 1400 PassBuilder::OptimizationLevel Level) { 1401 MPM.addPass(InstrProfiling(*Options, false)); 1402 }); 1403 1404 if (CodeGenOpts.OptimizationLevel == 0) { 1405 MPM = PB.buildO0DefaultPipeline(Level, IsLTO || IsThinLTO); 1406 } else if (IsThinLTO) { 1407 MPM = PB.buildThinLTOPreLinkDefaultPipeline(Level); 1408 } else if (IsLTO) { 1409 MPM = PB.buildLTOPreLinkDefaultPipeline(Level); 1410 } else { 1411 MPM = PB.buildPerModuleDefaultPipeline(Level); 1412 } 1413 1414 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1415 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass())); 1416 MPM.addPass(ModuleMemProfilerPass()); 1417 } 1418 } 1419 1420 // FIXME: We still use the legacy pass manager to do code generation. We 1421 // create that pass manager here and use it as needed below. 1422 legacy::PassManager CodeGenPasses; 1423 bool NeedCodeGen = false; 1424 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1425 1426 // Append any output we need to the pass manager. 1427 switch (Action) { 1428 case Backend_EmitNothing: 1429 break; 1430 1431 case Backend_EmitBC: 1432 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1433 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1434 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1435 if (!ThinLinkOS) 1436 return; 1437 } 1438 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1439 CodeGenOpts.EnableSplitLTOUnit); 1440 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1441 : nullptr)); 1442 } else { 1443 // Emit a module summary by default for Regular LTO except for ld64 1444 // targets 1445 bool EmitLTOSummary = 1446 (CodeGenOpts.PrepareForLTO && 1447 !CodeGenOpts.DisableLLVMPasses && 1448 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1449 llvm::Triple::Apple); 1450 if (EmitLTOSummary) { 1451 if (!TheModule->getModuleFlag("ThinLTO")) 1452 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1453 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1454 uint32_t(1)); 1455 } 1456 MPM.addPass( 1457 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1458 } 1459 break; 1460 1461 case Backend_EmitLL: 1462 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1463 break; 1464 1465 case Backend_EmitAssembly: 1466 case Backend_EmitMCNull: 1467 case Backend_EmitObj: 1468 NeedCodeGen = true; 1469 CodeGenPasses.add( 1470 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1471 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1472 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1473 if (!DwoOS) 1474 return; 1475 } 1476 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1477 DwoOS ? &DwoOS->os() : nullptr)) 1478 // FIXME: Should we handle this error differently? 1479 return; 1480 break; 1481 } 1482 1483 // Before executing passes, print the final values of the LLVM options. 1484 cl::PrintOptionValues(); 1485 1486 // Now that we have all of the passes ready, run them. 1487 { 1488 PrettyStackTraceString CrashInfo("Optimizer"); 1489 MPM.run(*TheModule, MAM); 1490 } 1491 1492 // Now if needed, run the legacy PM for codegen. 1493 if (NeedCodeGen) { 1494 PrettyStackTraceString CrashInfo("Code generation"); 1495 CodeGenPasses.run(*TheModule); 1496 } 1497 1498 if (ThinLinkOS) 1499 ThinLinkOS->keep(); 1500 if (DwoOS) 1501 DwoOS->keep(); 1502 } 1503 1504 static void runThinLTOBackend( 1505 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M, 1506 const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, 1507 const clang::TargetOptions &TOpts, const LangOptions &LOpts, 1508 std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile, 1509 std::string ProfileRemapping, BackendAction Action) { 1510 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1511 ModuleToDefinedGVSummaries; 1512 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1513 1514 setCommandLineOpts(CGOpts); 1515 1516 // We can simply import the values mentioned in the combined index, since 1517 // we should only invoke this using the individual indexes written out 1518 // via a WriteIndexesThinBackend. 1519 FunctionImporter::ImportMapTy ImportList; 1520 if (!lto::initImportList(*M, *CombinedIndex, ImportList)) 1521 return; 1522 1523 auto AddStream = [&](size_t Task) { 1524 return std::make_unique<lto::NativeObjectStream>(std::move(OS)); 1525 }; 1526 lto::Config Conf; 1527 if (CGOpts.SaveTempsFilePrefix != "") { 1528 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1529 /* UseInputModulePath */ false)) { 1530 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1531 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1532 << '\n'; 1533 }); 1534 } 1535 } 1536 Conf.CPU = TOpts.CPU; 1537 Conf.CodeModel = getCodeModel(CGOpts); 1538 Conf.MAttrs = TOpts.Features; 1539 Conf.RelocModel = CGOpts.RelocationModel; 1540 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1541 Conf.OptLevel = CGOpts.OptimizationLevel; 1542 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1543 Conf.SampleProfile = std::move(SampleProfile); 1544 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1545 // For historical reasons, loop interleaving is set to mirror setting for loop 1546 // unrolling. 1547 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1548 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1549 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1550 // Only enable CGProfilePass when using integrated assembler, since 1551 // non-integrated assemblers don't recognize .cgprofile section. 1552 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1553 1554 // Context sensitive profile. 1555 if (CGOpts.hasProfileCSIRInstr()) { 1556 Conf.RunCSIRInstr = true; 1557 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1558 } else if (CGOpts.hasProfileCSIRUse()) { 1559 Conf.RunCSIRInstr = false; 1560 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1561 } 1562 1563 Conf.ProfileRemapping = std::move(ProfileRemapping); 1564 Conf.UseNewPM = !CGOpts.LegacyPassManager; 1565 Conf.DebugPassManager = CGOpts.DebugPassManager; 1566 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1567 Conf.RemarksFilename = CGOpts.OptRecordFile; 1568 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1569 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1570 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1571 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1572 switch (Action) { 1573 case Backend_EmitNothing: 1574 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1575 return false; 1576 }; 1577 break; 1578 case Backend_EmitLL: 1579 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1580 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1581 return false; 1582 }; 1583 break; 1584 case Backend_EmitBC: 1585 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1586 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1587 return false; 1588 }; 1589 break; 1590 default: 1591 Conf.CGFileType = getCodeGenFileType(Action); 1592 break; 1593 } 1594 if (Error E = 1595 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1596 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], 1597 /* ModuleMap */ nullptr, CGOpts.CmdArgs)) { 1598 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1599 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1600 }); 1601 } 1602 } 1603 1604 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1605 const HeaderSearchOptions &HeaderOpts, 1606 const CodeGenOptions &CGOpts, 1607 const clang::TargetOptions &TOpts, 1608 const LangOptions &LOpts, 1609 StringRef TDesc, Module *M, 1610 BackendAction Action, 1611 std::unique_ptr<raw_pwrite_stream> OS) { 1612 1613 llvm::TimeTraceScope TimeScope("Backend"); 1614 1615 std::unique_ptr<llvm::Module> EmptyModule; 1616 if (!CGOpts.ThinLTOIndexFile.empty()) { 1617 // If we are performing a ThinLTO importing compile, load the function index 1618 // into memory and pass it into runThinLTOBackend, which will run the 1619 // function importer and invoke LTO passes. 1620 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1621 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1622 /*IgnoreEmptyThinLTOIndexFile*/true); 1623 if (!IndexOrErr) { 1624 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1625 "Error loading index file '" + 1626 CGOpts.ThinLTOIndexFile + "': "); 1627 return; 1628 } 1629 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1630 // A null CombinedIndex means we should skip ThinLTO compilation 1631 // (LLVM will optionally ignore empty index files, returning null instead 1632 // of an error). 1633 if (CombinedIndex) { 1634 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1635 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, 1636 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, 1637 CGOpts.ProfileRemappingFile, Action); 1638 return; 1639 } 1640 // Distributed indexing detected that nothing from the module is needed 1641 // for the final linking. So we can skip the compilation. We sill need to 1642 // output an empty object file to make sure that a linker does not fail 1643 // trying to read it. Also for some features, like CFI, we must skip 1644 // the compilation as CombinedIndex does not contain all required 1645 // information. 1646 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1647 EmptyModule->setTargetTriple(M->getTargetTriple()); 1648 M = EmptyModule.get(); 1649 } 1650 } 1651 1652 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1653 1654 if (!CGOpts.LegacyPassManager) 1655 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1656 else 1657 AsmHelper.EmitAssembly(Action, std::move(OS)); 1658 1659 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1660 // DataLayout. 1661 if (AsmHelper.TM) { 1662 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1663 if (DLDesc != TDesc) { 1664 unsigned DiagID = Diags.getCustomDiagID( 1665 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1666 "expected target description '%1'"); 1667 Diags.Report(DiagID) << DLDesc << TDesc; 1668 } 1669 } 1670 } 1671 1672 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1673 // __LLVM,__bitcode section. 1674 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1675 llvm::MemoryBufferRef Buf) { 1676 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1677 return; 1678 llvm::EmbedBitcodeInModule( 1679 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1680 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1681 CGOpts.CmdArgs); 1682 } 1683