1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/StackSafetyAnalysis.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/Bitcode/BitcodeReader.h" 26 #include "llvm/Bitcode/BitcodeWriter.h" 27 #include "llvm/Bitcode/BitcodeWriterPass.h" 28 #include "llvm/CodeGen/RegAllocRegistry.h" 29 #include "llvm/CodeGen/SchedulerRegistry.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/IRPrintingPasses.h" 33 #include "llvm/IR/LegacyPassManager.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/ModuleSummaryIndex.h" 36 #include "llvm/IR/PassManager.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/LTO/LTOBackend.h" 39 #include "llvm/MC/MCAsmInfo.h" 40 #include "llvm/MC/SubtargetFeature.h" 41 #include "llvm/Passes/PassBuilder.h" 42 #include "llvm/Passes/PassPlugin.h" 43 #include "llvm/Passes/StandardInstrumentations.h" 44 #include "llvm/Support/BuryPointer.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/MemoryBuffer.h" 47 #include "llvm/Support/PrettyStackTrace.h" 48 #include "llvm/Support/TargetRegistry.h" 49 #include "llvm/Support/TimeProfiler.h" 50 #include "llvm/Support/Timer.h" 51 #include "llvm/Support/ToolOutputFile.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include "llvm/Target/TargetOptions.h" 55 #include "llvm/Transforms/Coroutines.h" 56 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 57 #include "llvm/Transforms/Coroutines/CoroEarly.h" 58 #include "llvm/Transforms/Coroutines/CoroElide.h" 59 #include "llvm/Transforms/Coroutines/CoroSplit.h" 60 #include "llvm/Transforms/IPO.h" 61 #include "llvm/Transforms/IPO/AlwaysInliner.h" 62 #include "llvm/Transforms/IPO/LowerTypeTests.h" 63 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 64 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 65 #include "llvm/Transforms/InstCombine/InstCombine.h" 66 #include "llvm/Transforms/Instrumentation.h" 67 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 68 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 69 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 70 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 71 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 72 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 73 #include "llvm/Transforms/Instrumentation/MemProfiler.h" 74 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 75 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 76 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 77 #include "llvm/Transforms/ObjCARC.h" 78 #include "llvm/Transforms/Scalar.h" 79 #include "llvm/Transforms/Scalar/EarlyCSE.h" 80 #include "llvm/Transforms/Scalar/GVN.h" 81 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" 82 #include "llvm/Transforms/Utils.h" 83 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 84 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 85 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 86 #include "llvm/Transforms/Utils/SymbolRewriter.h" 87 #include "llvm/Transforms/Utils/UniqueInternalLinkageNames.h" 88 #include <memory> 89 using namespace clang; 90 using namespace llvm; 91 92 #define HANDLE_EXTENSION(Ext) \ 93 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 94 #include "llvm/Support/Extension.def" 95 96 namespace { 97 98 // Default filename used for profile generation. 99 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 100 101 class EmitAssemblyHelper { 102 DiagnosticsEngine &Diags; 103 const HeaderSearchOptions &HSOpts; 104 const CodeGenOptions &CodeGenOpts; 105 const clang::TargetOptions &TargetOpts; 106 const LangOptions &LangOpts; 107 Module *TheModule; 108 109 Timer CodeGenerationTime; 110 111 std::unique_ptr<raw_pwrite_stream> OS; 112 113 TargetIRAnalysis getTargetIRAnalysis() const { 114 if (TM) 115 return TM->getTargetIRAnalysis(); 116 117 return TargetIRAnalysis(); 118 } 119 120 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 121 122 /// Generates the TargetMachine. 123 /// Leaves TM unchanged if it is unable to create the target machine. 124 /// Some of our clang tests specify triples which are not built 125 /// into clang. This is okay because these tests check the generated 126 /// IR, and they require DataLayout which depends on the triple. 127 /// In this case, we allow this method to fail and not report an error. 128 /// When MustCreateTM is used, we print an error if we are unable to load 129 /// the requested target. 130 void CreateTargetMachine(bool MustCreateTM); 131 132 /// Add passes necessary to emit assembly or LLVM IR. 133 /// 134 /// \return True on success. 135 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 136 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 137 138 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 139 std::error_code EC; 140 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 141 llvm::sys::fs::OF_None); 142 if (EC) { 143 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 144 F.reset(); 145 } 146 return F; 147 } 148 149 public: 150 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 151 const HeaderSearchOptions &HeaderSearchOpts, 152 const CodeGenOptions &CGOpts, 153 const clang::TargetOptions &TOpts, 154 const LangOptions &LOpts, Module *M) 155 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 156 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 157 CodeGenerationTime("codegen", "Code Generation Time") {} 158 159 ~EmitAssemblyHelper() { 160 if (CodeGenOpts.DisableFree) 161 BuryPointer(std::move(TM)); 162 } 163 164 std::unique_ptr<TargetMachine> TM; 165 166 void EmitAssembly(BackendAction Action, 167 std::unique_ptr<raw_pwrite_stream> OS); 168 169 void EmitAssemblyWithNewPassManager(BackendAction Action, 170 std::unique_ptr<raw_pwrite_stream> OS); 171 }; 172 173 // We need this wrapper to access LangOpts and CGOpts from extension functions 174 // that we add to the PassManagerBuilder. 175 class PassManagerBuilderWrapper : public PassManagerBuilder { 176 public: 177 PassManagerBuilderWrapper(const Triple &TargetTriple, 178 const CodeGenOptions &CGOpts, 179 const LangOptions &LangOpts) 180 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 181 LangOpts(LangOpts) {} 182 const Triple &getTargetTriple() const { return TargetTriple; } 183 const CodeGenOptions &getCGOpts() const { return CGOpts; } 184 const LangOptions &getLangOpts() const { return LangOpts; } 185 186 private: 187 const Triple &TargetTriple; 188 const CodeGenOptions &CGOpts; 189 const LangOptions &LangOpts; 190 }; 191 } 192 193 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 194 if (Builder.OptLevel > 0) 195 PM.add(createObjCARCAPElimPass()); 196 } 197 198 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 199 if (Builder.OptLevel > 0) 200 PM.add(createObjCARCExpandPass()); 201 } 202 203 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 204 if (Builder.OptLevel > 0) 205 PM.add(createObjCARCOptPass()); 206 } 207 208 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 209 legacy::PassManagerBase &PM) { 210 PM.add(createAddDiscriminatorsPass()); 211 } 212 213 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 214 legacy::PassManagerBase &PM) { 215 PM.add(createBoundsCheckingLegacyPass()); 216 } 217 218 static SanitizerCoverageOptions 219 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 220 SanitizerCoverageOptions Opts; 221 Opts.CoverageType = 222 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 223 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 224 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 225 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 226 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 227 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 228 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 229 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 230 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 231 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 232 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 233 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 234 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 235 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 236 return Opts; 237 } 238 239 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 240 legacy::PassManagerBase &PM) { 241 const PassManagerBuilderWrapper &BuilderWrapper = 242 static_cast<const PassManagerBuilderWrapper &>(Builder); 243 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 244 auto Opts = getSancovOptsFromCGOpts(CGOpts); 245 PM.add(createModuleSanitizerCoverageLegacyPassPass( 246 Opts, CGOpts.SanitizeCoverageAllowlistFiles, 247 CGOpts.SanitizeCoverageBlocklistFiles)); 248 } 249 250 // Check if ASan should use GC-friendly instrumentation for globals. 251 // First of all, there is no point if -fdata-sections is off (expect for MachO, 252 // where this is not a factor). Also, on ELF this feature requires an assembler 253 // extension that only works with -integrated-as at the moment. 254 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 255 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 256 return false; 257 switch (T.getObjectFormat()) { 258 case Triple::MachO: 259 case Triple::COFF: 260 return true; 261 case Triple::ELF: 262 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 263 case Triple::GOFF: 264 llvm::report_fatal_error("ASan not implemented for GOFF"); 265 case Triple::XCOFF: 266 llvm::report_fatal_error("ASan not implemented for XCOFF."); 267 case Triple::Wasm: 268 case Triple::UnknownObjectFormat: 269 break; 270 } 271 return false; 272 } 273 274 static void addMemProfilerPasses(const PassManagerBuilder &Builder, 275 legacy::PassManagerBase &PM) { 276 PM.add(createMemProfilerFunctionPass()); 277 PM.add(createModuleMemProfilerLegacyPassPass()); 278 } 279 280 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 281 legacy::PassManagerBase &PM) { 282 const PassManagerBuilderWrapper &BuilderWrapper = 283 static_cast<const PassManagerBuilderWrapper&>(Builder); 284 const Triple &T = BuilderWrapper.getTargetTriple(); 285 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 286 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 287 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 288 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 289 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 290 llvm::AsanDtorKind DestructorKind = CGOpts.getSanitizeAddressDtorKind(); 291 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 292 UseAfterScope)); 293 PM.add(createModuleAddressSanitizerLegacyPassPass( 294 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator, 295 DestructorKind)); 296 } 297 298 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 299 legacy::PassManagerBase &PM) { 300 PM.add(createAddressSanitizerFunctionPass( 301 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 302 PM.add(createModuleAddressSanitizerLegacyPassPass( 303 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 304 /*UseOdrIndicator*/ false)); 305 } 306 307 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 308 legacy::PassManagerBase &PM) { 309 const PassManagerBuilderWrapper &BuilderWrapper = 310 static_cast<const PassManagerBuilderWrapper &>(Builder); 311 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 312 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 313 PM.add( 314 createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover)); 315 } 316 317 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 318 legacy::PassManagerBase &PM) { 319 PM.add(createHWAddressSanitizerLegacyPassPass( 320 /*CompileKernel*/ true, /*Recover*/ true)); 321 } 322 323 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 324 legacy::PassManagerBase &PM, 325 bool CompileKernel) { 326 const PassManagerBuilderWrapper &BuilderWrapper = 327 static_cast<const PassManagerBuilderWrapper&>(Builder); 328 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 329 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 330 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 331 PM.add(createMemorySanitizerLegacyPassPass( 332 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 333 334 // MemorySanitizer inserts complex instrumentation that mostly follows 335 // the logic of the original code, but operates on "shadow" values. 336 // It can benefit from re-running some general purpose optimization passes. 337 if (Builder.OptLevel > 0) { 338 PM.add(createEarlyCSEPass()); 339 PM.add(createReassociatePass()); 340 PM.add(createLICMPass()); 341 PM.add(createGVNPass()); 342 PM.add(createInstructionCombiningPass()); 343 PM.add(createDeadStoreEliminationPass()); 344 } 345 } 346 347 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 348 legacy::PassManagerBase &PM) { 349 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 350 } 351 352 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 353 legacy::PassManagerBase &PM) { 354 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 355 } 356 357 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 358 legacy::PassManagerBase &PM) { 359 PM.add(createThreadSanitizerLegacyPassPass()); 360 } 361 362 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 363 legacy::PassManagerBase &PM) { 364 const PassManagerBuilderWrapper &BuilderWrapper = 365 static_cast<const PassManagerBuilderWrapper&>(Builder); 366 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 367 PM.add(createDataFlowSanitizerLegacyPassPass(LangOpts.NoSanitizeFiles)); 368 } 369 370 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 371 const CodeGenOptions &CodeGenOpts) { 372 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 373 374 switch (CodeGenOpts.getVecLib()) { 375 case CodeGenOptions::Accelerate: 376 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 377 break; 378 case CodeGenOptions::LIBMVEC: 379 switch(TargetTriple.getArch()) { 380 default: 381 break; 382 case llvm::Triple::x86_64: 383 TLII->addVectorizableFunctionsFromVecLib 384 (TargetLibraryInfoImpl::LIBMVEC_X86); 385 break; 386 } 387 break; 388 case CodeGenOptions::MASSV: 389 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 390 break; 391 case CodeGenOptions::SVML: 392 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 393 break; 394 default: 395 break; 396 } 397 return TLII; 398 } 399 400 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 401 legacy::PassManager *MPM) { 402 llvm::SymbolRewriter::RewriteDescriptorList DL; 403 404 llvm::SymbolRewriter::RewriteMapParser MapParser; 405 for (const auto &MapFile : Opts.RewriteMapFiles) 406 MapParser.parse(MapFile, &DL); 407 408 MPM->add(createRewriteSymbolsPass(DL)); 409 } 410 411 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 412 switch (CodeGenOpts.OptimizationLevel) { 413 default: 414 llvm_unreachable("Invalid optimization level!"); 415 case 0: 416 return CodeGenOpt::None; 417 case 1: 418 return CodeGenOpt::Less; 419 case 2: 420 return CodeGenOpt::Default; // O2/Os/Oz 421 case 3: 422 return CodeGenOpt::Aggressive; 423 } 424 } 425 426 static Optional<llvm::CodeModel::Model> 427 getCodeModel(const CodeGenOptions &CodeGenOpts) { 428 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 429 .Case("tiny", llvm::CodeModel::Tiny) 430 .Case("small", llvm::CodeModel::Small) 431 .Case("kernel", llvm::CodeModel::Kernel) 432 .Case("medium", llvm::CodeModel::Medium) 433 .Case("large", llvm::CodeModel::Large) 434 .Case("default", ~1u) 435 .Default(~0u); 436 assert(CodeModel != ~0u && "invalid code model!"); 437 if (CodeModel == ~1u) 438 return None; 439 return static_cast<llvm::CodeModel::Model>(CodeModel); 440 } 441 442 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 443 if (Action == Backend_EmitObj) 444 return CGFT_ObjectFile; 445 else if (Action == Backend_EmitMCNull) 446 return CGFT_Null; 447 else { 448 assert(Action == Backend_EmitAssembly && "Invalid action!"); 449 return CGFT_AssemblyFile; 450 } 451 } 452 453 static bool initTargetOptions(DiagnosticsEngine &Diags, 454 llvm::TargetOptions &Options, 455 const CodeGenOptions &CodeGenOpts, 456 const clang::TargetOptions &TargetOpts, 457 const LangOptions &LangOpts, 458 const HeaderSearchOptions &HSOpts) { 459 switch (LangOpts.getThreadModel()) { 460 case LangOptions::ThreadModelKind::POSIX: 461 Options.ThreadModel = llvm::ThreadModel::POSIX; 462 break; 463 case LangOptions::ThreadModelKind::Single: 464 Options.ThreadModel = llvm::ThreadModel::Single; 465 break; 466 } 467 468 // Set float ABI type. 469 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 470 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 471 "Invalid Floating Point ABI!"); 472 Options.FloatABIType = 473 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 474 .Case("soft", llvm::FloatABI::Soft) 475 .Case("softfp", llvm::FloatABI::Soft) 476 .Case("hard", llvm::FloatABI::Hard) 477 .Default(llvm::FloatABI::Default); 478 479 // Set FP fusion mode. 480 switch (LangOpts.getDefaultFPContractMode()) { 481 case LangOptions::FPM_Off: 482 // Preserve any contraction performed by the front-end. (Strict performs 483 // splitting of the muladd intrinsic in the backend.) 484 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 485 break; 486 case LangOptions::FPM_On: 487 case LangOptions::FPM_FastHonorPragmas: 488 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 489 break; 490 case LangOptions::FPM_Fast: 491 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 492 break; 493 } 494 495 Options.BinutilsVersion = 496 llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion); 497 Options.UseInitArray = CodeGenOpts.UseInitArray; 498 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 499 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 500 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 501 502 // Set EABI version. 503 Options.EABIVersion = TargetOpts.EABIVersion; 504 505 if (LangOpts.hasSjLjExceptions()) 506 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 507 if (LangOpts.hasSEHExceptions()) 508 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 509 if (LangOpts.hasDWARFExceptions()) 510 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 511 if (LangOpts.hasWasmExceptions()) 512 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 513 514 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 515 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 516 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 517 Options.UnsafeFPMath = LangOpts.UnsafeFPMath; 518 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 519 520 Options.BBSections = 521 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 522 .Case("all", llvm::BasicBlockSection::All) 523 .Case("labels", llvm::BasicBlockSection::Labels) 524 .StartsWith("list=", llvm::BasicBlockSection::List) 525 .Case("none", llvm::BasicBlockSection::None) 526 .Default(llvm::BasicBlockSection::None); 527 528 if (Options.BBSections == llvm::BasicBlockSection::List) { 529 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 530 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 531 if (!MBOrErr) { 532 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 533 << MBOrErr.getError().message(); 534 return false; 535 } 536 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 537 } 538 539 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions; 540 Options.FunctionSections = CodeGenOpts.FunctionSections; 541 Options.DataSections = CodeGenOpts.DataSections; 542 Options.IgnoreXCOFFVisibility = CodeGenOpts.IgnoreXCOFFVisibility; 543 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 544 Options.UniqueBasicBlockSectionNames = 545 CodeGenOpts.UniqueBasicBlockSectionNames; 546 Options.StackProtectorGuard = 547 llvm::StringSwitch<llvm::StackProtectorGuards>(CodeGenOpts 548 .StackProtectorGuard) 549 .Case("tls", llvm::StackProtectorGuards::TLS) 550 .Case("global", llvm::StackProtectorGuards::Global) 551 .Default(llvm::StackProtectorGuards::None); 552 Options.StackProtectorGuardOffset = CodeGenOpts.StackProtectorGuardOffset; 553 Options.StackProtectorGuardReg = CodeGenOpts.StackProtectorGuardReg; 554 Options.TLSSize = CodeGenOpts.TLSSize; 555 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 556 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 557 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 558 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 559 Options.EmitAddrsig = CodeGenOpts.Addrsig; 560 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 561 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 562 Options.EnableAIXExtendedAltivecABI = CodeGenOpts.EnableAIXExtendedAltivecABI; 563 Options.PseudoProbeForProfiling = CodeGenOpts.PseudoProbeForProfiling; 564 Options.ValueTrackingVariableLocations = 565 CodeGenOpts.ValueTrackingVariableLocations; 566 Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex; 567 568 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 569 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 570 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 571 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 572 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 573 Options.MCOptions.MCIncrementalLinkerCompatible = 574 CodeGenOpts.IncrementalLinkerCompatible; 575 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 576 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 577 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 578 Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64; 579 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 580 Options.MCOptions.ABIName = TargetOpts.ABI; 581 for (const auto &Entry : HSOpts.UserEntries) 582 if (!Entry.IsFramework && 583 (Entry.Group == frontend::IncludeDirGroup::Quoted || 584 Entry.Group == frontend::IncludeDirGroup::Angled || 585 Entry.Group == frontend::IncludeDirGroup::System)) 586 Options.MCOptions.IASSearchPaths.push_back( 587 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 588 Options.MCOptions.Argv0 = CodeGenOpts.Argv0; 589 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; 590 591 return true; 592 } 593 594 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts, 595 const LangOptions &LangOpts) { 596 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 597 return None; 598 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 599 // LLVM's -default-gcov-version flag is set to something invalid. 600 GCOVOptions Options; 601 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 602 Options.EmitData = CodeGenOpts.EmitGcovArcs; 603 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 604 Options.NoRedZone = CodeGenOpts.DisableRedZone; 605 Options.Filter = CodeGenOpts.ProfileFilterFiles; 606 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 607 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 608 return Options; 609 } 610 611 static Optional<InstrProfOptions> 612 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 613 const LangOptions &LangOpts) { 614 if (!CodeGenOpts.hasProfileClangInstr()) 615 return None; 616 InstrProfOptions Options; 617 Options.NoRedZone = CodeGenOpts.DisableRedZone; 618 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 619 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 620 return Options; 621 } 622 623 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 624 legacy::FunctionPassManager &FPM) { 625 // Handle disabling of all LLVM passes, where we want to preserve the 626 // internal module before any optimization. 627 if (CodeGenOpts.DisableLLVMPasses) 628 return; 629 630 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 631 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 632 // are inserted before PMBuilder ones - they'd get the default-constructed 633 // TLI with an unknown target otherwise. 634 Triple TargetTriple(TheModule->getTargetTriple()); 635 std::unique_ptr<TargetLibraryInfoImpl> TLII( 636 createTLII(TargetTriple, CodeGenOpts)); 637 638 // If we reached here with a non-empty index file name, then the index file 639 // was empty and we are not performing ThinLTO backend compilation (used in 640 // testing in a distributed build environment). Drop any the type test 641 // assume sequences inserted for whole program vtables so that codegen doesn't 642 // complain. 643 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 644 MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr, 645 /*ImportSummary=*/nullptr, 646 /*DropTypeTests=*/true)); 647 648 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 649 650 // At O0 and O1 we only run the always inliner which is more efficient. At 651 // higher optimization levels we run the normal inliner. 652 if (CodeGenOpts.OptimizationLevel <= 1) { 653 bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 && 654 !CodeGenOpts.DisableLifetimeMarkers) || 655 LangOpts.Coroutines); 656 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 657 } else { 658 // We do not want to inline hot callsites for SamplePGO module-summary build 659 // because profile annotation will happen again in ThinLTO backend, and we 660 // want the IR of the hot path to match the profile. 661 PMBuilder.Inliner = createFunctionInliningPass( 662 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 663 (!CodeGenOpts.SampleProfileFile.empty() && 664 CodeGenOpts.PrepareForThinLTO)); 665 } 666 667 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 668 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 669 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 670 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 671 // Only enable CGProfilePass when using integrated assembler, since 672 // non-integrated assemblers don't recognize .cgprofile section. 673 PMBuilder.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 674 675 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 676 // Loop interleaving in the loop vectorizer has historically been set to be 677 // enabled when loop unrolling is enabled. 678 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 679 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 680 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 681 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 682 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 683 684 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 685 686 if (TM) 687 TM->adjustPassManager(PMBuilder); 688 689 if (CodeGenOpts.DebugInfoForProfiling || 690 !CodeGenOpts.SampleProfileFile.empty()) 691 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 692 addAddDiscriminatorsPass); 693 694 // In ObjC ARC mode, add the main ARC optimization passes. 695 if (LangOpts.ObjCAutoRefCount) { 696 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 697 addObjCARCExpandPass); 698 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 699 addObjCARCAPElimPass); 700 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 701 addObjCARCOptPass); 702 } 703 704 if (LangOpts.Coroutines) 705 addCoroutinePassesToExtensionPoints(PMBuilder); 706 707 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 708 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 709 addMemProfilerPasses); 710 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 711 addMemProfilerPasses); 712 } 713 714 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 715 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 716 addBoundsCheckingPass); 717 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 718 addBoundsCheckingPass); 719 } 720 721 if (CodeGenOpts.SanitizeCoverageType || 722 CodeGenOpts.SanitizeCoverageIndirectCalls || 723 CodeGenOpts.SanitizeCoverageTraceCmp) { 724 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 725 addSanitizerCoveragePass); 726 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 727 addSanitizerCoveragePass); 728 } 729 730 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 731 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 732 addAddressSanitizerPasses); 733 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 734 addAddressSanitizerPasses); 735 } 736 737 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 738 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 739 addKernelAddressSanitizerPasses); 740 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 741 addKernelAddressSanitizerPasses); 742 } 743 744 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 745 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 746 addHWAddressSanitizerPasses); 747 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 748 addHWAddressSanitizerPasses); 749 } 750 751 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 752 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 753 addKernelHWAddressSanitizerPasses); 754 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 755 addKernelHWAddressSanitizerPasses); 756 } 757 758 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 759 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 760 addMemorySanitizerPass); 761 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 762 addMemorySanitizerPass); 763 } 764 765 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 766 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 767 addKernelMemorySanitizerPass); 768 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 769 addKernelMemorySanitizerPass); 770 } 771 772 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 773 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 774 addThreadSanitizerPass); 775 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 776 addThreadSanitizerPass); 777 } 778 779 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 780 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 781 addDataFlowSanitizerPass); 782 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 783 addDataFlowSanitizerPass); 784 } 785 786 // Set up the per-function pass manager. 787 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 788 if (CodeGenOpts.VerifyModule) 789 FPM.add(createVerifierPass()); 790 791 // Set up the per-module pass manager. 792 if (!CodeGenOpts.RewriteMapFiles.empty()) 793 addSymbolRewriterPass(CodeGenOpts, &MPM); 794 795 // Add UniqueInternalLinkageNames Pass which renames internal linkage symbols 796 // with unique names. 797 if (CodeGenOpts.UniqueInternalLinkageNames) { 798 MPM.add(createUniqueInternalLinkageNamesPass()); 799 } 800 801 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) { 802 MPM.add(createGCOVProfilerPass(*Options)); 803 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 804 MPM.add(createStripSymbolsPass(true)); 805 } 806 807 if (Optional<InstrProfOptions> Options = 808 getInstrProfOptions(CodeGenOpts, LangOpts)) 809 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 810 811 bool hasIRInstr = false; 812 if (CodeGenOpts.hasProfileIRInstr()) { 813 PMBuilder.EnablePGOInstrGen = true; 814 hasIRInstr = true; 815 } 816 if (CodeGenOpts.hasProfileCSIRInstr()) { 817 assert(!CodeGenOpts.hasProfileCSIRUse() && 818 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 819 "same time"); 820 assert(!hasIRInstr && 821 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 822 "same time"); 823 PMBuilder.EnablePGOCSInstrGen = true; 824 hasIRInstr = true; 825 } 826 if (hasIRInstr) { 827 if (!CodeGenOpts.InstrProfileOutput.empty()) 828 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 829 else 830 PMBuilder.PGOInstrGen = std::string(DefaultProfileGenName); 831 } 832 if (CodeGenOpts.hasProfileIRUse()) { 833 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 834 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 835 } 836 837 if (!CodeGenOpts.SampleProfileFile.empty()) 838 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 839 840 PMBuilder.populateFunctionPassManager(FPM); 841 PMBuilder.populateModulePassManager(MPM); 842 } 843 844 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 845 SmallVector<const char *, 16> BackendArgs; 846 BackendArgs.push_back("clang"); // Fake program name. 847 if (!CodeGenOpts.DebugPass.empty()) { 848 BackendArgs.push_back("-debug-pass"); 849 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 850 } 851 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 852 BackendArgs.push_back("-limit-float-precision"); 853 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 854 } 855 BackendArgs.push_back(nullptr); 856 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 857 BackendArgs.data()); 858 } 859 860 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 861 // Create the TargetMachine for generating code. 862 std::string Error; 863 std::string Triple = TheModule->getTargetTriple(); 864 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 865 if (!TheTarget) { 866 if (MustCreateTM) 867 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 868 return; 869 } 870 871 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 872 std::string FeaturesStr = 873 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 874 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 875 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 876 877 llvm::TargetOptions Options; 878 if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, 879 HSOpts)) 880 return; 881 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 882 Options, RM, CM, OptLevel)); 883 } 884 885 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 886 BackendAction Action, 887 raw_pwrite_stream &OS, 888 raw_pwrite_stream *DwoOS) { 889 // Add LibraryInfo. 890 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 891 std::unique_ptr<TargetLibraryInfoImpl> TLII( 892 createTLII(TargetTriple, CodeGenOpts)); 893 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 894 895 // Normal mode, emit a .s or .o file by running the code generator. Note, 896 // this also adds codegenerator level optimization passes. 897 CodeGenFileType CGFT = getCodeGenFileType(Action); 898 899 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 900 // "codegen" passes so that it isn't run multiple times when there is 901 // inlining happening. 902 if (CodeGenOpts.OptimizationLevel > 0) 903 CodeGenPasses.add(createObjCARCContractPass()); 904 905 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 906 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 907 Diags.Report(diag::err_fe_unable_to_interface_with_target); 908 return false; 909 } 910 911 return true; 912 } 913 914 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 915 std::unique_ptr<raw_pwrite_stream> OS) { 916 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 917 918 setCommandLineOpts(CodeGenOpts); 919 920 bool UsesCodeGen = (Action != Backend_EmitNothing && 921 Action != Backend_EmitBC && 922 Action != Backend_EmitLL); 923 CreateTargetMachine(UsesCodeGen); 924 925 if (UsesCodeGen && !TM) 926 return; 927 if (TM) 928 TheModule->setDataLayout(TM->createDataLayout()); 929 930 legacy::PassManager PerModulePasses; 931 PerModulePasses.add( 932 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 933 934 legacy::FunctionPassManager PerFunctionPasses(TheModule); 935 PerFunctionPasses.add( 936 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 937 938 CreatePasses(PerModulePasses, PerFunctionPasses); 939 940 legacy::PassManager CodeGenPasses; 941 CodeGenPasses.add( 942 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 943 944 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 945 946 switch (Action) { 947 case Backend_EmitNothing: 948 break; 949 950 case Backend_EmitBC: 951 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 952 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 953 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 954 if (!ThinLinkOS) 955 return; 956 } 957 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 958 CodeGenOpts.EnableSplitLTOUnit); 959 PerModulePasses.add(createWriteThinLTOBitcodePass( 960 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 961 } else { 962 // Emit a module summary by default for Regular LTO except for ld64 963 // targets 964 bool EmitLTOSummary = 965 (CodeGenOpts.PrepareForLTO && 966 !CodeGenOpts.DisableLLVMPasses && 967 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 968 llvm::Triple::Apple); 969 if (EmitLTOSummary) { 970 if (!TheModule->getModuleFlag("ThinLTO")) 971 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 972 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 973 uint32_t(1)); 974 } 975 976 PerModulePasses.add(createBitcodeWriterPass( 977 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 978 } 979 break; 980 981 case Backend_EmitLL: 982 PerModulePasses.add( 983 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 984 break; 985 986 default: 987 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 988 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 989 if (!DwoOS) 990 return; 991 } 992 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 993 DwoOS ? &DwoOS->os() : nullptr)) 994 return; 995 } 996 997 // Before executing passes, print the final values of the LLVM options. 998 cl::PrintOptionValues(); 999 1000 // Run passes. For now we do all passes at once, but eventually we 1001 // would like to have the option of streaming code generation. 1002 1003 { 1004 PrettyStackTraceString CrashInfo("Per-function optimization"); 1005 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 1006 1007 PerFunctionPasses.doInitialization(); 1008 for (Function &F : *TheModule) 1009 if (!F.isDeclaration()) 1010 PerFunctionPasses.run(F); 1011 PerFunctionPasses.doFinalization(); 1012 } 1013 1014 { 1015 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 1016 llvm::TimeTraceScope TimeScope("PerModulePasses"); 1017 PerModulePasses.run(*TheModule); 1018 } 1019 1020 { 1021 PrettyStackTraceString CrashInfo("Code generation"); 1022 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1023 CodeGenPasses.run(*TheModule); 1024 } 1025 1026 if (ThinLinkOS) 1027 ThinLinkOS->keep(); 1028 if (DwoOS) 1029 DwoOS->keep(); 1030 } 1031 1032 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 1033 switch (Opts.OptimizationLevel) { 1034 default: 1035 llvm_unreachable("Invalid optimization level!"); 1036 1037 case 0: 1038 return PassBuilder::OptimizationLevel::O0; 1039 1040 case 1: 1041 return PassBuilder::OptimizationLevel::O1; 1042 1043 case 2: 1044 switch (Opts.OptimizeSize) { 1045 default: 1046 llvm_unreachable("Invalid optimization level for size!"); 1047 1048 case 0: 1049 return PassBuilder::OptimizationLevel::O2; 1050 1051 case 1: 1052 return PassBuilder::OptimizationLevel::Os; 1053 1054 case 2: 1055 return PassBuilder::OptimizationLevel::Oz; 1056 } 1057 1058 case 3: 1059 return PassBuilder::OptimizationLevel::O3; 1060 } 1061 } 1062 1063 static void addSanitizers(const Triple &TargetTriple, 1064 const CodeGenOptions &CodeGenOpts, 1065 const LangOptions &LangOpts, PassBuilder &PB) { 1066 PB.registerOptimizerLastEPCallback([&](ModulePassManager &MPM, 1067 PassBuilder::OptimizationLevel Level) { 1068 if (CodeGenOpts.SanitizeCoverageType || 1069 CodeGenOpts.SanitizeCoverageIndirectCalls || 1070 CodeGenOpts.SanitizeCoverageTraceCmp) { 1071 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1072 MPM.addPass(ModuleSanitizerCoveragePass( 1073 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1074 CodeGenOpts.SanitizeCoverageBlocklistFiles)); 1075 } 1076 1077 auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1078 if (LangOpts.Sanitize.has(Mask)) { 1079 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1080 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1081 1082 MPM.addPass( 1083 MemorySanitizerPass({TrackOrigins, Recover, CompileKernel})); 1084 FunctionPassManager FPM(CodeGenOpts.DebugPassManager); 1085 FPM.addPass( 1086 MemorySanitizerPass({TrackOrigins, Recover, CompileKernel})); 1087 if (Level != PassBuilder::OptimizationLevel::O0) { 1088 // MemorySanitizer inserts complex instrumentation that mostly 1089 // follows the logic of the original code, but operates on 1090 // "shadow" values. It can benefit from re-running some 1091 // general purpose optimization passes. 1092 FPM.addPass(EarlyCSEPass()); 1093 // TODO: Consider add more passes like in 1094 // addGeneralOptsForMemorySanitizer. EarlyCSEPass makes visible 1095 // difference on size. It's not clear if the rest is still 1096 // usefull. InstCombinePass breakes 1097 // compiler-rt/test/msan/select_origin.cpp. 1098 } 1099 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 1100 } 1101 }; 1102 MSanPass(SanitizerKind::Memory, false); 1103 MSanPass(SanitizerKind::KernelMemory, true); 1104 1105 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1106 MPM.addPass(ThreadSanitizerPass()); 1107 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1108 } 1109 1110 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1111 if (LangOpts.Sanitize.has(Mask)) { 1112 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1113 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1114 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1115 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1116 llvm::AsanDtorKind DestructorKind = 1117 CodeGenOpts.getSanitizeAddressDtorKind(); 1118 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1119 MPM.addPass(ModuleAddressSanitizerPass( 1120 CompileKernel, Recover, ModuleUseAfterScope, UseOdrIndicator, 1121 DestructorKind)); 1122 MPM.addPass(createModuleToFunctionPassAdaptor( 1123 AddressSanitizerPass(CompileKernel, Recover, UseAfterScope))); 1124 } 1125 }; 1126 ASanPass(SanitizerKind::Address, false); 1127 ASanPass(SanitizerKind::KernelAddress, true); 1128 1129 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1130 if (LangOpts.Sanitize.has(Mask)) { 1131 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1132 MPM.addPass(HWAddressSanitizerPass(CompileKernel, Recover)); 1133 } 1134 }; 1135 HWASanPass(SanitizerKind::HWAddress, false); 1136 HWASanPass(SanitizerKind::KernelHWAddress, true); 1137 1138 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 1139 MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles)); 1140 } 1141 }); 1142 } 1143 1144 /// A clean version of `EmitAssembly` that uses the new pass manager. 1145 /// 1146 /// Not all features are currently supported in this system, but where 1147 /// necessary it falls back to the legacy pass manager to at least provide 1148 /// basic functionality. 1149 /// 1150 /// This API is planned to have its functionality finished and then to replace 1151 /// `EmitAssembly` at some point in the future when the default switches. 1152 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 1153 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 1154 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 1155 setCommandLineOpts(CodeGenOpts); 1156 1157 bool RequiresCodeGen = (Action != Backend_EmitNothing && 1158 Action != Backend_EmitBC && 1159 Action != Backend_EmitLL); 1160 CreateTargetMachine(RequiresCodeGen); 1161 1162 if (RequiresCodeGen && !TM) 1163 return; 1164 if (TM) 1165 TheModule->setDataLayout(TM->createDataLayout()); 1166 1167 Optional<PGOOptions> PGOOpt; 1168 1169 if (CodeGenOpts.hasProfileIRInstr()) 1170 // -fprofile-generate. 1171 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1172 ? std::string(DefaultProfileGenName) 1173 : CodeGenOpts.InstrProfileOutput, 1174 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1175 CodeGenOpts.DebugInfoForProfiling); 1176 else if (CodeGenOpts.hasProfileIRUse()) { 1177 // -fprofile-use. 1178 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1179 : PGOOptions::NoCSAction; 1180 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1181 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1182 CSAction, CodeGenOpts.DebugInfoForProfiling); 1183 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1184 // -fprofile-sample-use 1185 PGOOpt = PGOOptions( 1186 CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile, 1187 PGOOptions::SampleUse, PGOOptions::NoCSAction, 1188 CodeGenOpts.DebugInfoForProfiling, CodeGenOpts.PseudoProbeForProfiling); 1189 else if (CodeGenOpts.PseudoProbeForProfiling) 1190 // -fpseudo-probe-for-profiling 1191 PGOOpt = 1192 PGOOptions("", "", "", PGOOptions::NoAction, PGOOptions::NoCSAction, 1193 CodeGenOpts.DebugInfoForProfiling, true); 1194 else if (CodeGenOpts.DebugInfoForProfiling) 1195 // -fdebug-info-for-profiling 1196 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1197 PGOOptions::NoCSAction, true); 1198 1199 // Check to see if we want to generate a CS profile. 1200 if (CodeGenOpts.hasProfileCSIRInstr()) { 1201 assert(!CodeGenOpts.hasProfileCSIRUse() && 1202 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1203 "the same time"); 1204 if (PGOOpt.hasValue()) { 1205 assert(PGOOpt->Action != PGOOptions::IRInstr && 1206 PGOOpt->Action != PGOOptions::SampleUse && 1207 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1208 " pass"); 1209 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1210 ? std::string(DefaultProfileGenName) 1211 : CodeGenOpts.InstrProfileOutput; 1212 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1213 } else 1214 PGOOpt = PGOOptions("", 1215 CodeGenOpts.InstrProfileOutput.empty() 1216 ? std::string(DefaultProfileGenName) 1217 : CodeGenOpts.InstrProfileOutput, 1218 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1219 CodeGenOpts.DebugInfoForProfiling); 1220 } 1221 1222 PipelineTuningOptions PTO; 1223 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1224 // For historical reasons, loop interleaving is set to mirror setting for loop 1225 // unrolling. 1226 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1227 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1228 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1229 PTO.MergeFunctions = CodeGenOpts.MergeFunctions; 1230 // Only enable CGProfilePass when using integrated assembler, since 1231 // non-integrated assemblers don't recognize .cgprofile section. 1232 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 1233 PTO.Coroutines = LangOpts.Coroutines; 1234 PTO.UniqueLinkageNames = CodeGenOpts.UniqueInternalLinkageNames; 1235 1236 PassInstrumentationCallbacks PIC; 1237 StandardInstrumentations SI(CodeGenOpts.DebugPassManager); 1238 SI.registerCallbacks(PIC); 1239 PassBuilder PB(CodeGenOpts.DebugPassManager, TM.get(), PTO, PGOOpt, &PIC); 1240 1241 // Attempt to load pass plugins and register their callbacks with PB. 1242 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1243 auto PassPlugin = PassPlugin::Load(PluginFN); 1244 if (PassPlugin) { 1245 PassPlugin->registerPassBuilderCallbacks(PB); 1246 } else { 1247 Diags.Report(diag::err_fe_unable_to_load_plugin) 1248 << PluginFN << toString(PassPlugin.takeError()); 1249 } 1250 } 1251 #define HANDLE_EXTENSION(Ext) \ 1252 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 1253 #include "llvm/Support/Extension.def" 1254 1255 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 1256 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 1257 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 1258 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 1259 1260 // Register the AA manager first so that our version is the one used. 1261 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1262 1263 // Register the target library analysis directly and give it a customized 1264 // preset TLI. 1265 Triple TargetTriple(TheModule->getTargetTriple()); 1266 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1267 createTLII(TargetTriple, CodeGenOpts)); 1268 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1269 1270 // Register all the basic analyses with the managers. 1271 PB.registerModuleAnalyses(MAM); 1272 PB.registerCGSCCAnalyses(CGAM); 1273 PB.registerFunctionAnalyses(FAM); 1274 PB.registerLoopAnalyses(LAM); 1275 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1276 1277 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 1278 1279 if (!CodeGenOpts.DisableLLVMPasses) { 1280 // Map our optimization levels into one of the distinct levels used to 1281 // configure the pipeline. 1282 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1283 1284 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1285 bool IsLTO = CodeGenOpts.PrepareForLTO; 1286 1287 if (LangOpts.ObjCAutoRefCount) { 1288 PB.registerPipelineStartEPCallback( 1289 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1290 if (Level != PassBuilder::OptimizationLevel::O0) 1291 MPM.addPass( 1292 createModuleToFunctionPassAdaptor(ObjCARCExpandPass())); 1293 }); 1294 PB.registerPipelineEarlySimplificationEPCallback( 1295 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1296 if (Level != PassBuilder::OptimizationLevel::O0) 1297 MPM.addPass(ObjCARCAPElimPass()); 1298 }); 1299 PB.registerScalarOptimizerLateEPCallback( 1300 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1301 if (Level != PassBuilder::OptimizationLevel::O0) 1302 FPM.addPass(ObjCARCOptPass()); 1303 }); 1304 } 1305 1306 // If we reached here with a non-empty index file name, then the index 1307 // file was empty and we are not performing ThinLTO backend compilation 1308 // (used in testing in a distributed build environment). 1309 bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty(); 1310 // If so drop any the type test assume sequences inserted for whole program 1311 // vtables so that codegen doesn't complain. 1312 if (IsThinLTOPostLink) 1313 PB.registerPipelineStartEPCallback( 1314 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1315 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1316 /*ImportSummary=*/nullptr, 1317 /*DropTypeTests=*/true)); 1318 }); 1319 1320 if (Level != PassBuilder::OptimizationLevel::O0) { 1321 PB.registerPipelineStartEPCallback( 1322 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1323 MPM.addPass(createModuleToFunctionPassAdaptor( 1324 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1325 }); 1326 } 1327 1328 // Register callbacks to schedule sanitizer passes at the appropriate part 1329 // of the pipeline. 1330 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1331 PB.registerScalarOptimizerLateEPCallback( 1332 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1333 FPM.addPass(BoundsCheckingPass()); 1334 }); 1335 1336 // Don't add sanitizers if we are here from ThinLTO PostLink. That already 1337 // done on PreLink stage. 1338 if (!IsThinLTOPostLink) 1339 addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB); 1340 1341 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) 1342 PB.registerPipelineStartEPCallback( 1343 [Options](ModulePassManager &MPM, 1344 PassBuilder::OptimizationLevel Level) { 1345 MPM.addPass(GCOVProfilerPass(*Options)); 1346 }); 1347 if (Optional<InstrProfOptions> Options = 1348 getInstrProfOptions(CodeGenOpts, LangOpts)) 1349 PB.registerPipelineStartEPCallback( 1350 [Options](ModulePassManager &MPM, 1351 PassBuilder::OptimizationLevel Level) { 1352 MPM.addPass(InstrProfiling(*Options, false)); 1353 }); 1354 1355 if (CodeGenOpts.OptimizationLevel == 0) { 1356 MPM = PB.buildO0DefaultPipeline(Level, IsLTO || IsThinLTO); 1357 } else if (IsThinLTO) { 1358 MPM = PB.buildThinLTOPreLinkDefaultPipeline(Level); 1359 } else if (IsLTO) { 1360 MPM = PB.buildLTOPreLinkDefaultPipeline(Level); 1361 } else { 1362 MPM = PB.buildPerModuleDefaultPipeline(Level); 1363 } 1364 1365 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1366 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass())); 1367 MPM.addPass(ModuleMemProfilerPass()); 1368 } 1369 } 1370 1371 // FIXME: We still use the legacy pass manager to do code generation. We 1372 // create that pass manager here and use it as needed below. 1373 legacy::PassManager CodeGenPasses; 1374 bool NeedCodeGen = false; 1375 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1376 1377 // Append any output we need to the pass manager. 1378 switch (Action) { 1379 case Backend_EmitNothing: 1380 break; 1381 1382 case Backend_EmitBC: 1383 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1384 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1385 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1386 if (!ThinLinkOS) 1387 return; 1388 } 1389 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1390 CodeGenOpts.EnableSplitLTOUnit); 1391 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1392 : nullptr)); 1393 } else { 1394 // Emit a module summary by default for Regular LTO except for ld64 1395 // targets 1396 bool EmitLTOSummary = 1397 (CodeGenOpts.PrepareForLTO && 1398 !CodeGenOpts.DisableLLVMPasses && 1399 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1400 llvm::Triple::Apple); 1401 if (EmitLTOSummary) { 1402 if (!TheModule->getModuleFlag("ThinLTO")) 1403 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1404 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1405 uint32_t(1)); 1406 } 1407 MPM.addPass( 1408 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1409 } 1410 break; 1411 1412 case Backend_EmitLL: 1413 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1414 break; 1415 1416 case Backend_EmitAssembly: 1417 case Backend_EmitMCNull: 1418 case Backend_EmitObj: 1419 NeedCodeGen = true; 1420 CodeGenPasses.add( 1421 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1422 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1423 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1424 if (!DwoOS) 1425 return; 1426 } 1427 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1428 DwoOS ? &DwoOS->os() : nullptr)) 1429 // FIXME: Should we handle this error differently? 1430 return; 1431 break; 1432 } 1433 1434 // Before executing passes, print the final values of the LLVM options. 1435 cl::PrintOptionValues(); 1436 1437 // Now that we have all of the passes ready, run them. 1438 { 1439 PrettyStackTraceString CrashInfo("Optimizer"); 1440 MPM.run(*TheModule, MAM); 1441 } 1442 1443 // Now if needed, run the legacy PM for codegen. 1444 if (NeedCodeGen) { 1445 PrettyStackTraceString CrashInfo("Code generation"); 1446 CodeGenPasses.run(*TheModule); 1447 } 1448 1449 if (ThinLinkOS) 1450 ThinLinkOS->keep(); 1451 if (DwoOS) 1452 DwoOS->keep(); 1453 } 1454 1455 static void runThinLTOBackend( 1456 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M, 1457 const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, 1458 const clang::TargetOptions &TOpts, const LangOptions &LOpts, 1459 std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile, 1460 std::string ProfileRemapping, BackendAction Action) { 1461 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1462 ModuleToDefinedGVSummaries; 1463 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1464 1465 setCommandLineOpts(CGOpts); 1466 1467 // We can simply import the values mentioned in the combined index, since 1468 // we should only invoke this using the individual indexes written out 1469 // via a WriteIndexesThinBackend. 1470 FunctionImporter::ImportMapTy ImportList; 1471 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1472 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1473 if (!lto::loadReferencedModules(*M, *CombinedIndex, ImportList, ModuleMap, 1474 OwnedImports)) 1475 return; 1476 1477 auto AddStream = [&](size_t Task) { 1478 return std::make_unique<lto::NativeObjectStream>(std::move(OS)); 1479 }; 1480 lto::Config Conf; 1481 if (CGOpts.SaveTempsFilePrefix != "") { 1482 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1483 /* UseInputModulePath */ false)) { 1484 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1485 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1486 << '\n'; 1487 }); 1488 } 1489 } 1490 Conf.CPU = TOpts.CPU; 1491 Conf.CodeModel = getCodeModel(CGOpts); 1492 Conf.MAttrs = TOpts.Features; 1493 Conf.RelocModel = CGOpts.RelocationModel; 1494 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1495 Conf.OptLevel = CGOpts.OptimizationLevel; 1496 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1497 Conf.SampleProfile = std::move(SampleProfile); 1498 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1499 // For historical reasons, loop interleaving is set to mirror setting for loop 1500 // unrolling. 1501 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1502 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1503 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1504 // Only enable CGProfilePass when using integrated assembler, since 1505 // non-integrated assemblers don't recognize .cgprofile section. 1506 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1507 1508 // Context sensitive profile. 1509 if (CGOpts.hasProfileCSIRInstr()) { 1510 Conf.RunCSIRInstr = true; 1511 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1512 } else if (CGOpts.hasProfileCSIRUse()) { 1513 Conf.RunCSIRInstr = false; 1514 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1515 } 1516 1517 Conf.ProfileRemapping = std::move(ProfileRemapping); 1518 Conf.UseNewPM = !CGOpts.LegacyPassManager; 1519 Conf.DebugPassManager = CGOpts.DebugPassManager; 1520 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1521 Conf.RemarksFilename = CGOpts.OptRecordFile; 1522 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1523 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1524 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1525 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1526 switch (Action) { 1527 case Backend_EmitNothing: 1528 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1529 return false; 1530 }; 1531 break; 1532 case Backend_EmitLL: 1533 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1534 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1535 return false; 1536 }; 1537 break; 1538 case Backend_EmitBC: 1539 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1540 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1541 return false; 1542 }; 1543 break; 1544 default: 1545 Conf.CGFileType = getCodeGenFileType(Action); 1546 break; 1547 } 1548 if (Error E = 1549 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1550 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], 1551 ModuleMap, CGOpts.CmdArgs)) { 1552 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1553 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1554 }); 1555 } 1556 } 1557 1558 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1559 const HeaderSearchOptions &HeaderOpts, 1560 const CodeGenOptions &CGOpts, 1561 const clang::TargetOptions &TOpts, 1562 const LangOptions &LOpts, 1563 const llvm::DataLayout &TDesc, Module *M, 1564 BackendAction Action, 1565 std::unique_ptr<raw_pwrite_stream> OS) { 1566 1567 llvm::TimeTraceScope TimeScope("Backend"); 1568 1569 std::unique_ptr<llvm::Module> EmptyModule; 1570 if (!CGOpts.ThinLTOIndexFile.empty()) { 1571 // If we are performing a ThinLTO importing compile, load the function index 1572 // into memory and pass it into runThinLTOBackend, which will run the 1573 // function importer and invoke LTO passes. 1574 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1575 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1576 /*IgnoreEmptyThinLTOIndexFile*/true); 1577 if (!IndexOrErr) { 1578 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1579 "Error loading index file '" + 1580 CGOpts.ThinLTOIndexFile + "': "); 1581 return; 1582 } 1583 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1584 // A null CombinedIndex means we should skip ThinLTO compilation 1585 // (LLVM will optionally ignore empty index files, returning null instead 1586 // of an error). 1587 if (CombinedIndex) { 1588 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1589 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, 1590 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, 1591 CGOpts.ProfileRemappingFile, Action); 1592 return; 1593 } 1594 // Distributed indexing detected that nothing from the module is needed 1595 // for the final linking. So we can skip the compilation. We sill need to 1596 // output an empty object file to make sure that a linker does not fail 1597 // trying to read it. Also for some features, like CFI, we must skip 1598 // the compilation as CombinedIndex does not contain all required 1599 // information. 1600 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1601 EmptyModule->setTargetTriple(M->getTargetTriple()); 1602 M = EmptyModule.get(); 1603 } 1604 } 1605 1606 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1607 1608 if (!CGOpts.LegacyPassManager) 1609 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1610 else 1611 AsmHelper.EmitAssembly(Action, std::move(OS)); 1612 1613 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1614 // DataLayout. 1615 if (AsmHelper.TM) { 1616 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1617 if (DLDesc != TDesc.getStringRepresentation()) { 1618 unsigned DiagID = Diags.getCustomDiagID( 1619 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1620 "expected target description '%1'"); 1621 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1622 } 1623 } 1624 } 1625 1626 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1627 // __LLVM,__bitcode section. 1628 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1629 llvm::MemoryBufferRef Buf) { 1630 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1631 return; 1632 llvm::EmbedBitcodeInModule( 1633 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1634 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1635 CGOpts.CmdArgs); 1636 } 1637