1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "clang/Lex/HeaderSearchOptions.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/ADT/StringSwitch.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/IRPrintingPasses.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/ModuleSummaryIndex.h" 35 #include "llvm/IR/Verifier.h" 36 #include "llvm/LTO/LTOBackend.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/SubtargetFeature.h" 39 #include "llvm/Passes/PassBuilder.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/MemoryBuffer.h" 42 #include "llvm/Support/PrettyStackTrace.h" 43 #include "llvm/Support/TargetRegistry.h" 44 #include "llvm/Support/Timer.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include "llvm/Transforms/Coroutines.h" 49 #include "llvm/Transforms/IPO.h" 50 #include "llvm/Transforms/IPO/AlwaysInliner.h" 51 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 52 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 53 #include "llvm/Transforms/Instrumentation.h" 54 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 55 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 56 #include "llvm/Transforms/ObjCARC.h" 57 #include "llvm/Transforms/Scalar.h" 58 #include "llvm/Transforms/Scalar/GVN.h" 59 #include "llvm/Transforms/Utils.h" 60 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 61 #include "llvm/Transforms/Utils/SymbolRewriter.h" 62 #include <memory> 63 using namespace clang; 64 using namespace llvm; 65 66 namespace { 67 68 // Default filename used for profile generation. 69 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 70 71 class EmitAssemblyHelper { 72 DiagnosticsEngine &Diags; 73 const HeaderSearchOptions &HSOpts; 74 const CodeGenOptions &CodeGenOpts; 75 const clang::TargetOptions &TargetOpts; 76 const LangOptions &LangOpts; 77 Module *TheModule; 78 79 Timer CodeGenerationTime; 80 81 std::unique_ptr<raw_pwrite_stream> OS; 82 83 TargetIRAnalysis getTargetIRAnalysis() const { 84 if (TM) 85 return TM->getTargetIRAnalysis(); 86 87 return TargetIRAnalysis(); 88 } 89 90 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 91 92 /// Generates the TargetMachine. 93 /// Leaves TM unchanged if it is unable to create the target machine. 94 /// Some of our clang tests specify triples which are not built 95 /// into clang. This is okay because these tests check the generated 96 /// IR, and they require DataLayout which depends on the triple. 97 /// In this case, we allow this method to fail and not report an error. 98 /// When MustCreateTM is used, we print an error if we are unable to load 99 /// the requested target. 100 void CreateTargetMachine(bool MustCreateTM); 101 102 /// Add passes necessary to emit assembly or LLVM IR. 103 /// 104 /// \return True on success. 105 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 106 raw_pwrite_stream &OS); 107 108 public: 109 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 110 const HeaderSearchOptions &HeaderSearchOpts, 111 const CodeGenOptions &CGOpts, 112 const clang::TargetOptions &TOpts, 113 const LangOptions &LOpts, Module *M) 114 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 115 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 116 CodeGenerationTime("codegen", "Code Generation Time") {} 117 118 ~EmitAssemblyHelper() { 119 if (CodeGenOpts.DisableFree) 120 BuryPointer(std::move(TM)); 121 } 122 123 std::unique_ptr<TargetMachine> TM; 124 125 void EmitAssembly(BackendAction Action, 126 std::unique_ptr<raw_pwrite_stream> OS); 127 128 void EmitAssemblyWithNewPassManager(BackendAction Action, 129 std::unique_ptr<raw_pwrite_stream> OS); 130 }; 131 132 // We need this wrapper to access LangOpts and CGOpts from extension functions 133 // that we add to the PassManagerBuilder. 134 class PassManagerBuilderWrapper : public PassManagerBuilder { 135 public: 136 PassManagerBuilderWrapper(const Triple &TargetTriple, 137 const CodeGenOptions &CGOpts, 138 const LangOptions &LangOpts) 139 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 140 LangOpts(LangOpts) {} 141 const Triple &getTargetTriple() const { return TargetTriple; } 142 const CodeGenOptions &getCGOpts() const { return CGOpts; } 143 const LangOptions &getLangOpts() const { return LangOpts; } 144 145 private: 146 const Triple &TargetTriple; 147 const CodeGenOptions &CGOpts; 148 const LangOptions &LangOpts; 149 }; 150 } 151 152 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 153 if (Builder.OptLevel > 0) 154 PM.add(createObjCARCAPElimPass()); 155 } 156 157 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 158 if (Builder.OptLevel > 0) 159 PM.add(createObjCARCExpandPass()); 160 } 161 162 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 163 if (Builder.OptLevel > 0) 164 PM.add(createObjCARCOptPass()); 165 } 166 167 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 168 legacy::PassManagerBase &PM) { 169 PM.add(createAddDiscriminatorsPass()); 170 } 171 172 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 173 legacy::PassManagerBase &PM) { 174 PM.add(createBoundsCheckingLegacyPass()); 175 } 176 177 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 178 legacy::PassManagerBase &PM) { 179 const PassManagerBuilderWrapper &BuilderWrapper = 180 static_cast<const PassManagerBuilderWrapper&>(Builder); 181 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 182 SanitizerCoverageOptions Opts; 183 Opts.CoverageType = 184 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 185 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 186 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 187 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 188 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 189 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 190 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 191 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 192 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 193 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 194 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 195 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 196 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 197 PM.add(createSanitizerCoverageModulePass(Opts)); 198 } 199 200 // Check if ASan should use GC-friendly instrumentation for globals. 201 // First of all, there is no point if -fdata-sections is off (expect for MachO, 202 // where this is not a factor). Also, on ELF this feature requires an assembler 203 // extension that only works with -integrated-as at the moment. 204 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 205 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 206 return false; 207 switch (T.getObjectFormat()) { 208 case Triple::MachO: 209 case Triple::COFF: 210 return true; 211 case Triple::ELF: 212 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 213 default: 214 return false; 215 } 216 } 217 218 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 219 legacy::PassManagerBase &PM) { 220 const PassManagerBuilderWrapper &BuilderWrapper = 221 static_cast<const PassManagerBuilderWrapper&>(Builder); 222 const Triple &T = BuilderWrapper.getTargetTriple(); 223 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 224 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 225 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 226 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 227 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 228 UseAfterScope)); 229 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/ false, Recover, 230 UseGlobalsGC)); 231 } 232 233 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 234 legacy::PassManagerBase &PM) { 235 PM.add(createAddressSanitizerFunctionPass( 236 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 237 PM.add(createAddressSanitizerModulePass( 238 /*CompileKernel*/ true, /*Recover*/ true)); 239 } 240 241 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 242 legacy::PassManagerBase &PM) { 243 const PassManagerBuilderWrapper &BuilderWrapper = 244 static_cast<const PassManagerBuilderWrapper &>(Builder); 245 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 246 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 247 PM.add(createHWAddressSanitizerPass(/*CompileKernel*/ false, Recover)); 248 } 249 250 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 251 legacy::PassManagerBase &PM) { 252 PM.add(createHWAddressSanitizerPass( 253 /*CompileKernel*/ true, /*Recover*/ true)); 254 } 255 256 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 257 legacy::PassManagerBase &PM) { 258 const PassManagerBuilderWrapper &BuilderWrapper = 259 static_cast<const PassManagerBuilderWrapper&>(Builder); 260 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 261 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 262 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 263 PM.add(createMemorySanitizerPass(TrackOrigins, Recover)); 264 265 // MemorySanitizer inserts complex instrumentation that mostly follows 266 // the logic of the original code, but operates on "shadow" values. 267 // It can benefit from re-running some general purpose optimization passes. 268 if (Builder.OptLevel > 0) { 269 PM.add(createEarlyCSEPass()); 270 PM.add(createReassociatePass()); 271 PM.add(createLICMPass()); 272 PM.add(createGVNPass()); 273 PM.add(createInstructionCombiningPass()); 274 PM.add(createDeadStoreEliminationPass()); 275 } 276 } 277 278 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 279 legacy::PassManagerBase &PM) { 280 PM.add(createThreadSanitizerPass()); 281 } 282 283 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 284 legacy::PassManagerBase &PM) { 285 const PassManagerBuilderWrapper &BuilderWrapper = 286 static_cast<const PassManagerBuilderWrapper&>(Builder); 287 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 288 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 289 } 290 291 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 292 legacy::PassManagerBase &PM) { 293 const PassManagerBuilderWrapper &BuilderWrapper = 294 static_cast<const PassManagerBuilderWrapper&>(Builder); 295 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 296 EfficiencySanitizerOptions Opts; 297 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 298 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 299 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 300 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 301 PM.add(createEfficiencySanitizerPass(Opts)); 302 } 303 304 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 305 const CodeGenOptions &CodeGenOpts) { 306 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 307 if (!CodeGenOpts.SimplifyLibCalls) 308 TLII->disableAllFunctions(); 309 else { 310 // Disable individual libc/libm calls in TargetLibraryInfo. 311 LibFunc F; 312 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 313 if (TLII->getLibFunc(FuncName, F)) 314 TLII->setUnavailable(F); 315 } 316 317 switch (CodeGenOpts.getVecLib()) { 318 case CodeGenOptions::Accelerate: 319 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 320 break; 321 case CodeGenOptions::SVML: 322 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 323 break; 324 default: 325 break; 326 } 327 return TLII; 328 } 329 330 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 331 legacy::PassManager *MPM) { 332 llvm::SymbolRewriter::RewriteDescriptorList DL; 333 334 llvm::SymbolRewriter::RewriteMapParser MapParser; 335 for (const auto &MapFile : Opts.RewriteMapFiles) 336 MapParser.parse(MapFile, &DL); 337 338 MPM->add(createRewriteSymbolsPass(DL)); 339 } 340 341 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 342 switch (CodeGenOpts.OptimizationLevel) { 343 default: 344 llvm_unreachable("Invalid optimization level!"); 345 case 0: 346 return CodeGenOpt::None; 347 case 1: 348 return CodeGenOpt::Less; 349 case 2: 350 return CodeGenOpt::Default; // O2/Os/Oz 351 case 3: 352 return CodeGenOpt::Aggressive; 353 } 354 } 355 356 static Optional<llvm::CodeModel::Model> 357 getCodeModel(const CodeGenOptions &CodeGenOpts) { 358 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 359 .Case("small", llvm::CodeModel::Small) 360 .Case("kernel", llvm::CodeModel::Kernel) 361 .Case("medium", llvm::CodeModel::Medium) 362 .Case("large", llvm::CodeModel::Large) 363 .Case("default", ~1u) 364 .Default(~0u); 365 assert(CodeModel != ~0u && "invalid code model!"); 366 if (CodeModel == ~1u) 367 return None; 368 return static_cast<llvm::CodeModel::Model>(CodeModel); 369 } 370 371 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 372 if (Action == Backend_EmitObj) 373 return TargetMachine::CGFT_ObjectFile; 374 else if (Action == Backend_EmitMCNull) 375 return TargetMachine::CGFT_Null; 376 else { 377 assert(Action == Backend_EmitAssembly && "Invalid action!"); 378 return TargetMachine::CGFT_AssemblyFile; 379 } 380 } 381 382 static void initTargetOptions(llvm::TargetOptions &Options, 383 const CodeGenOptions &CodeGenOpts, 384 const clang::TargetOptions &TargetOpts, 385 const LangOptions &LangOpts, 386 const HeaderSearchOptions &HSOpts) { 387 Options.ThreadModel = 388 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 389 .Case("posix", llvm::ThreadModel::POSIX) 390 .Case("single", llvm::ThreadModel::Single); 391 392 // Set float ABI type. 393 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 394 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 395 "Invalid Floating Point ABI!"); 396 Options.FloatABIType = 397 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 398 .Case("soft", llvm::FloatABI::Soft) 399 .Case("softfp", llvm::FloatABI::Soft) 400 .Case("hard", llvm::FloatABI::Hard) 401 .Default(llvm::FloatABI::Default); 402 403 // Set FP fusion mode. 404 switch (LangOpts.getDefaultFPContractMode()) { 405 case LangOptions::FPC_Off: 406 // Preserve any contraction performed by the front-end. (Strict performs 407 // splitting of the muladd instrinsic in the backend.) 408 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 409 break; 410 case LangOptions::FPC_On: 411 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 412 break; 413 case LangOptions::FPC_Fast: 414 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 415 break; 416 } 417 418 Options.UseInitArray = CodeGenOpts.UseInitArray; 419 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 420 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 421 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 422 423 // Set EABI version. 424 Options.EABIVersion = TargetOpts.EABIVersion; 425 426 if (LangOpts.SjLjExceptions) 427 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 428 if (LangOpts.SEHExceptions) 429 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 430 if (LangOpts.DWARFExceptions) 431 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 432 433 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 434 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 435 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 436 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 437 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 438 Options.FunctionSections = CodeGenOpts.FunctionSections; 439 Options.DataSections = CodeGenOpts.DataSections; 440 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 441 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 442 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 443 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 444 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 445 446 if (CodeGenOpts.EnableSplitDwarf) 447 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 448 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 449 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 450 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 451 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 452 Options.MCOptions.MCIncrementalLinkerCompatible = 453 CodeGenOpts.IncrementalLinkerCompatible; 454 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 455 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 456 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 457 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 458 Options.MCOptions.ABIName = TargetOpts.ABI; 459 for (const auto &Entry : HSOpts.UserEntries) 460 if (!Entry.IsFramework && 461 (Entry.Group == frontend::IncludeDirGroup::Quoted || 462 Entry.Group == frontend::IncludeDirGroup::Angled || 463 Entry.Group == frontend::IncludeDirGroup::System)) 464 Options.MCOptions.IASSearchPaths.push_back( 465 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 466 } 467 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 468 if (CodeGenOpts.DisableGCov) 469 return None; 470 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 471 return None; 472 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 473 // LLVM's -default-gcov-version flag is set to something invalid. 474 GCOVOptions Options; 475 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 476 Options.EmitData = CodeGenOpts.EmitGcovArcs; 477 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 478 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 479 Options.NoRedZone = CodeGenOpts.DisableRedZone; 480 Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData; 481 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 482 return Options; 483 } 484 485 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 486 legacy::FunctionPassManager &FPM) { 487 // Handle disabling of all LLVM passes, where we want to preserve the 488 // internal module before any optimization. 489 if (CodeGenOpts.DisableLLVMPasses) 490 return; 491 492 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 493 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 494 // are inserted before PMBuilder ones - they'd get the default-constructed 495 // TLI with an unknown target otherwise. 496 Triple TargetTriple(TheModule->getTargetTriple()); 497 std::unique_ptr<TargetLibraryInfoImpl> TLII( 498 createTLII(TargetTriple, CodeGenOpts)); 499 500 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 501 502 // At O0 and O1 we only run the always inliner which is more efficient. At 503 // higher optimization levels we run the normal inliner. 504 if (CodeGenOpts.OptimizationLevel <= 1) { 505 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 506 !CodeGenOpts.DisableLifetimeMarkers); 507 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 508 } else { 509 // We do not want to inline hot callsites for SamplePGO module-summary build 510 // because profile annotation will happen again in ThinLTO backend, and we 511 // want the IR of the hot path to match the profile. 512 PMBuilder.Inliner = createFunctionInliningPass( 513 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 514 (!CodeGenOpts.SampleProfileFile.empty() && 515 CodeGenOpts.EmitSummaryIndex)); 516 } 517 518 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 519 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 520 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 521 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 522 523 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 524 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 525 PMBuilder.PrepareForThinLTO = CodeGenOpts.EmitSummaryIndex; 526 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 527 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 528 529 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 530 531 if (TM) 532 TM->adjustPassManager(PMBuilder); 533 534 if (CodeGenOpts.DebugInfoForProfiling || 535 !CodeGenOpts.SampleProfileFile.empty()) 536 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 537 addAddDiscriminatorsPass); 538 539 // In ObjC ARC mode, add the main ARC optimization passes. 540 if (LangOpts.ObjCAutoRefCount) { 541 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 542 addObjCARCExpandPass); 543 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 544 addObjCARCAPElimPass); 545 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 546 addObjCARCOptPass); 547 } 548 549 if (LangOpts.CoroutinesTS) 550 addCoroutinePassesToExtensionPoints(PMBuilder); 551 552 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 553 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 554 addBoundsCheckingPass); 555 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 556 addBoundsCheckingPass); 557 } 558 559 if (CodeGenOpts.SanitizeCoverageType || 560 CodeGenOpts.SanitizeCoverageIndirectCalls || 561 CodeGenOpts.SanitizeCoverageTraceCmp) { 562 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 563 addSanitizerCoveragePass); 564 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 565 addSanitizerCoveragePass); 566 } 567 568 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 569 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 570 addAddressSanitizerPasses); 571 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 572 addAddressSanitizerPasses); 573 } 574 575 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 576 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 577 addKernelAddressSanitizerPasses); 578 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 579 addKernelAddressSanitizerPasses); 580 } 581 582 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 583 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 584 addHWAddressSanitizerPasses); 585 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 586 addHWAddressSanitizerPasses); 587 } 588 589 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 590 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 591 addKernelHWAddressSanitizerPasses); 592 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 593 addKernelHWAddressSanitizerPasses); 594 } 595 596 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 597 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 598 addMemorySanitizerPass); 599 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 600 addMemorySanitizerPass); 601 } 602 603 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 604 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 605 addThreadSanitizerPass); 606 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 607 addThreadSanitizerPass); 608 } 609 610 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 611 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 612 addDataFlowSanitizerPass); 613 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 614 addDataFlowSanitizerPass); 615 } 616 617 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 618 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 619 addEfficiencySanitizerPass); 620 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 621 addEfficiencySanitizerPass); 622 } 623 624 // Set up the per-function pass manager. 625 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 626 if (CodeGenOpts.VerifyModule) 627 FPM.add(createVerifierPass()); 628 629 // Set up the per-module pass manager. 630 if (!CodeGenOpts.RewriteMapFiles.empty()) 631 addSymbolRewriterPass(CodeGenOpts, &MPM); 632 633 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 634 MPM.add(createGCOVProfilerPass(*Options)); 635 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 636 MPM.add(createStripSymbolsPass(true)); 637 } 638 639 if (CodeGenOpts.hasProfileClangInstr()) { 640 InstrProfOptions Options; 641 Options.NoRedZone = CodeGenOpts.DisableRedZone; 642 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 643 MPM.add(createInstrProfilingLegacyPass(Options)); 644 } 645 if (CodeGenOpts.hasProfileIRInstr()) { 646 PMBuilder.EnablePGOInstrGen = true; 647 if (!CodeGenOpts.InstrProfileOutput.empty()) 648 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 649 else 650 PMBuilder.PGOInstrGen = DefaultProfileGenName; 651 } 652 if (CodeGenOpts.hasProfileIRUse()) 653 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 654 655 if (!CodeGenOpts.SampleProfileFile.empty()) 656 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 657 658 PMBuilder.populateFunctionPassManager(FPM); 659 PMBuilder.populateModulePassManager(MPM); 660 } 661 662 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 663 SmallVector<const char *, 16> BackendArgs; 664 BackendArgs.push_back("clang"); // Fake program name. 665 if (!CodeGenOpts.DebugPass.empty()) { 666 BackendArgs.push_back("-debug-pass"); 667 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 668 } 669 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 670 BackendArgs.push_back("-limit-float-precision"); 671 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 672 } 673 BackendArgs.push_back(nullptr); 674 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 675 BackendArgs.data()); 676 } 677 678 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 679 // Create the TargetMachine for generating code. 680 std::string Error; 681 std::string Triple = TheModule->getTargetTriple(); 682 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 683 if (!TheTarget) { 684 if (MustCreateTM) 685 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 686 return; 687 } 688 689 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 690 std::string FeaturesStr = 691 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 692 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 693 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 694 695 llvm::TargetOptions Options; 696 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 697 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 698 Options, RM, CM, OptLevel)); 699 } 700 701 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 702 BackendAction Action, 703 raw_pwrite_stream &OS) { 704 // Add LibraryInfo. 705 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 706 std::unique_ptr<TargetLibraryInfoImpl> TLII( 707 createTLII(TargetTriple, CodeGenOpts)); 708 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 709 710 // Normal mode, emit a .s or .o file by running the code generator. Note, 711 // this also adds codegenerator level optimization passes. 712 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 713 714 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 715 // "codegen" passes so that it isn't run multiple times when there is 716 // inlining happening. 717 if (CodeGenOpts.OptimizationLevel > 0) 718 CodeGenPasses.add(createObjCARCContractPass()); 719 720 if (TM->addPassesToEmitFile(CodeGenPasses, OS, CGFT, 721 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 722 Diags.Report(diag::err_fe_unable_to_interface_with_target); 723 return false; 724 } 725 726 return true; 727 } 728 729 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 730 std::unique_ptr<raw_pwrite_stream> OS) { 731 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 732 733 setCommandLineOpts(CodeGenOpts); 734 735 bool UsesCodeGen = (Action != Backend_EmitNothing && 736 Action != Backend_EmitBC && 737 Action != Backend_EmitLL); 738 CreateTargetMachine(UsesCodeGen); 739 740 if (UsesCodeGen && !TM) 741 return; 742 if (TM) 743 TheModule->setDataLayout(TM->createDataLayout()); 744 745 legacy::PassManager PerModulePasses; 746 PerModulePasses.add( 747 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 748 749 legacy::FunctionPassManager PerFunctionPasses(TheModule); 750 PerFunctionPasses.add( 751 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 752 753 CreatePasses(PerModulePasses, PerFunctionPasses); 754 755 legacy::PassManager CodeGenPasses; 756 CodeGenPasses.add( 757 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 758 759 std::unique_ptr<raw_fd_ostream> ThinLinkOS; 760 761 switch (Action) { 762 case Backend_EmitNothing: 763 break; 764 765 case Backend_EmitBC: 766 if (CodeGenOpts.EmitSummaryIndex) { 767 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 768 std::error_code EC; 769 ThinLinkOS.reset(new llvm::raw_fd_ostream( 770 CodeGenOpts.ThinLinkBitcodeFile, EC, 771 llvm::sys::fs::F_None)); 772 if (EC) { 773 Diags.Report(diag::err_fe_unable_to_open_output) << CodeGenOpts.ThinLinkBitcodeFile 774 << EC.message(); 775 return; 776 } 777 } 778 PerModulePasses.add( 779 createWriteThinLTOBitcodePass(*OS, ThinLinkOS.get())); 780 } 781 else 782 PerModulePasses.add( 783 createBitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists)); 784 break; 785 786 case Backend_EmitLL: 787 PerModulePasses.add( 788 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 789 break; 790 791 default: 792 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 793 return; 794 } 795 796 // Before executing passes, print the final values of the LLVM options. 797 cl::PrintOptionValues(); 798 799 // Run passes. For now we do all passes at once, but eventually we 800 // would like to have the option of streaming code generation. 801 802 { 803 PrettyStackTraceString CrashInfo("Per-function optimization"); 804 805 PerFunctionPasses.doInitialization(); 806 for (Function &F : *TheModule) 807 if (!F.isDeclaration()) 808 PerFunctionPasses.run(F); 809 PerFunctionPasses.doFinalization(); 810 } 811 812 { 813 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 814 PerModulePasses.run(*TheModule); 815 } 816 817 { 818 PrettyStackTraceString CrashInfo("Code generation"); 819 CodeGenPasses.run(*TheModule); 820 } 821 } 822 823 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 824 switch (Opts.OptimizationLevel) { 825 default: 826 llvm_unreachable("Invalid optimization level!"); 827 828 case 1: 829 return PassBuilder::O1; 830 831 case 2: 832 switch (Opts.OptimizeSize) { 833 default: 834 llvm_unreachable("Invalid optimization level for size!"); 835 836 case 0: 837 return PassBuilder::O2; 838 839 case 1: 840 return PassBuilder::Os; 841 842 case 2: 843 return PassBuilder::Oz; 844 } 845 846 case 3: 847 return PassBuilder::O3; 848 } 849 } 850 851 /// A clean version of `EmitAssembly` that uses the new pass manager. 852 /// 853 /// Not all features are currently supported in this system, but where 854 /// necessary it falls back to the legacy pass manager to at least provide 855 /// basic functionality. 856 /// 857 /// This API is planned to have its functionality finished and then to replace 858 /// `EmitAssembly` at some point in the future when the default switches. 859 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 860 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 861 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 862 setCommandLineOpts(CodeGenOpts); 863 864 // The new pass manager always makes a target machine available to passes 865 // during construction. 866 CreateTargetMachine(/*MustCreateTM*/ true); 867 if (!TM) 868 // This will already be diagnosed, just bail. 869 return; 870 TheModule->setDataLayout(TM->createDataLayout()); 871 872 Optional<PGOOptions> PGOOpt; 873 874 if (CodeGenOpts.hasProfileIRInstr()) 875 // -fprofile-generate. 876 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 877 ? DefaultProfileGenName 878 : CodeGenOpts.InstrProfileOutput, 879 "", "", true, CodeGenOpts.DebugInfoForProfiling); 880 else if (CodeGenOpts.hasProfileIRUse()) 881 // -fprofile-use. 882 PGOOpt = PGOOptions("", CodeGenOpts.ProfileInstrumentUsePath, "", false, 883 CodeGenOpts.DebugInfoForProfiling); 884 else if (!CodeGenOpts.SampleProfileFile.empty()) 885 // -fprofile-sample-use 886 PGOOpt = PGOOptions("", "", CodeGenOpts.SampleProfileFile, false, 887 CodeGenOpts.DebugInfoForProfiling); 888 else if (CodeGenOpts.DebugInfoForProfiling) 889 // -fdebug-info-for-profiling 890 PGOOpt = PGOOptions("", "", "", false, true); 891 892 PassBuilder PB(TM.get(), PGOOpt); 893 894 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 895 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 896 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 897 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 898 899 // Register the AA manager first so that our version is the one used. 900 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 901 902 // Register the target library analysis directly and give it a customized 903 // preset TLI. 904 Triple TargetTriple(TheModule->getTargetTriple()); 905 std::unique_ptr<TargetLibraryInfoImpl> TLII( 906 createTLII(TargetTriple, CodeGenOpts)); 907 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 908 MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 909 910 // Register all the basic analyses with the managers. 911 PB.registerModuleAnalyses(MAM); 912 PB.registerCGSCCAnalyses(CGAM); 913 PB.registerFunctionAnalyses(FAM); 914 PB.registerLoopAnalyses(LAM); 915 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 916 917 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 918 919 if (!CodeGenOpts.DisableLLVMPasses) { 920 bool IsThinLTO = CodeGenOpts.EmitSummaryIndex; 921 bool IsLTO = CodeGenOpts.PrepareForLTO; 922 923 if (CodeGenOpts.OptimizationLevel == 0) { 924 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 925 MPM.addPass(GCOVProfilerPass(*Options)); 926 927 // Build a minimal pipeline based on the semantics required by Clang, 928 // which is just that always inlining occurs. 929 MPM.addPass(AlwaysInlinerPass()); 930 931 // At -O0 we directly run necessary sanitizer passes. 932 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 933 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 934 935 // Lastly, add a semantically necessary pass for ThinLTO. 936 if (IsThinLTO) 937 MPM.addPass(NameAnonGlobalPass()); 938 } else { 939 // Map our optimization levels into one of the distinct levels used to 940 // configure the pipeline. 941 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 942 943 // Register callbacks to schedule sanitizer passes at the appropriate part of 944 // the pipeline. 945 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 946 PB.registerScalarOptimizerLateEPCallback( 947 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 948 FPM.addPass(BoundsCheckingPass()); 949 }); 950 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 951 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 952 MPM.addPass(GCOVProfilerPass(*Options)); 953 }); 954 955 if (IsThinLTO) { 956 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 957 Level, CodeGenOpts.DebugPassManager); 958 MPM.addPass(NameAnonGlobalPass()); 959 } else if (IsLTO) { 960 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 961 CodeGenOpts.DebugPassManager); 962 } else { 963 MPM = PB.buildPerModuleDefaultPipeline(Level, 964 CodeGenOpts.DebugPassManager); 965 } 966 } 967 } 968 969 // FIXME: We still use the legacy pass manager to do code generation. We 970 // create that pass manager here and use it as needed below. 971 legacy::PassManager CodeGenPasses; 972 bool NeedCodeGen = false; 973 Optional<raw_fd_ostream> ThinLinkOS; 974 975 // Append any output we need to the pass manager. 976 switch (Action) { 977 case Backend_EmitNothing: 978 break; 979 980 case Backend_EmitBC: 981 if (CodeGenOpts.EmitSummaryIndex) { 982 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 983 std::error_code EC; 984 ThinLinkOS.emplace(CodeGenOpts.ThinLinkBitcodeFile, EC, 985 llvm::sys::fs::F_None); 986 if (EC) { 987 Diags.Report(diag::err_fe_unable_to_open_output) 988 << CodeGenOpts.ThinLinkBitcodeFile << EC.message(); 989 return; 990 } 991 } 992 MPM.addPass( 993 ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &*ThinLinkOS : nullptr)); 994 } else { 995 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 996 CodeGenOpts.EmitSummaryIndex, 997 CodeGenOpts.EmitSummaryIndex)); 998 } 999 break; 1000 1001 case Backend_EmitLL: 1002 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1003 break; 1004 1005 case Backend_EmitAssembly: 1006 case Backend_EmitMCNull: 1007 case Backend_EmitObj: 1008 NeedCodeGen = true; 1009 CodeGenPasses.add( 1010 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1011 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 1012 // FIXME: Should we handle this error differently? 1013 return; 1014 break; 1015 } 1016 1017 // Before executing passes, print the final values of the LLVM options. 1018 cl::PrintOptionValues(); 1019 1020 // Now that we have all of the passes ready, run them. 1021 { 1022 PrettyStackTraceString CrashInfo("Optimizer"); 1023 MPM.run(*TheModule, MAM); 1024 } 1025 1026 // Now if needed, run the legacy PM for codegen. 1027 if (NeedCodeGen) { 1028 PrettyStackTraceString CrashInfo("Code generation"); 1029 CodeGenPasses.run(*TheModule); 1030 } 1031 } 1032 1033 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1034 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1035 if (!BMsOrErr) 1036 return BMsOrErr.takeError(); 1037 1038 // The bitcode file may contain multiple modules, we want the one that is 1039 // marked as being the ThinLTO module. 1040 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1041 return *Bm; 1042 1043 return make_error<StringError>("Could not find module summary", 1044 inconvertibleErrorCode()); 1045 } 1046 1047 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1048 for (BitcodeModule &BM : BMs) { 1049 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1050 if (LTOInfo && LTOInfo->IsThinLTO) 1051 return &BM; 1052 } 1053 return nullptr; 1054 } 1055 1056 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1057 const HeaderSearchOptions &HeaderOpts, 1058 const CodeGenOptions &CGOpts, 1059 const clang::TargetOptions &TOpts, 1060 const LangOptions &LOpts, 1061 std::unique_ptr<raw_pwrite_stream> OS, 1062 std::string SampleProfile, 1063 BackendAction Action) { 1064 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1065 ModuleToDefinedGVSummaries; 1066 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1067 1068 setCommandLineOpts(CGOpts); 1069 1070 // We can simply import the values mentioned in the combined index, since 1071 // we should only invoke this using the individual indexes written out 1072 // via a WriteIndexesThinBackend. 1073 FunctionImporter::ImportMapTy ImportList; 1074 for (auto &GlobalList : *CombinedIndex) { 1075 // Ignore entries for undefined references. 1076 if (GlobalList.second.SummaryList.empty()) 1077 continue; 1078 1079 auto GUID = GlobalList.first; 1080 assert(GlobalList.second.SummaryList.size() == 1 && 1081 "Expected individual combined index to have one summary per GUID"); 1082 auto &Summary = GlobalList.second.SummaryList[0]; 1083 // Skip the summaries for the importing module. These are included to 1084 // e.g. record required linkage changes. 1085 if (Summary->modulePath() == M->getModuleIdentifier()) 1086 continue; 1087 // Doesn't matter what value we plug in to the map, just needs an entry 1088 // to provoke importing by thinBackend. 1089 ImportList[Summary->modulePath()][GUID] = 1; 1090 } 1091 1092 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1093 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1094 1095 for (auto &I : ImportList) { 1096 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1097 llvm::MemoryBuffer::getFile(I.first()); 1098 if (!MBOrErr) { 1099 errs() << "Error loading imported file '" << I.first() 1100 << "': " << MBOrErr.getError().message() << "\n"; 1101 return; 1102 } 1103 1104 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1105 if (!BMOrErr) { 1106 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1107 errs() << "Error loading imported file '" << I.first() 1108 << "': " << EIB.message() << '\n'; 1109 }); 1110 return; 1111 } 1112 ModuleMap.insert({I.first(), *BMOrErr}); 1113 1114 OwnedImports.push_back(std::move(*MBOrErr)); 1115 } 1116 auto AddStream = [&](size_t Task) { 1117 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 1118 }; 1119 lto::Config Conf; 1120 if (CGOpts.SaveTempsFilePrefix != "") { 1121 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1122 /* UseInputModulePath */ false)) { 1123 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1124 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1125 << '\n'; 1126 }); 1127 } 1128 } 1129 Conf.CPU = TOpts.CPU; 1130 Conf.CodeModel = getCodeModel(CGOpts); 1131 Conf.MAttrs = TOpts.Features; 1132 Conf.RelocModel = CGOpts.RelocationModel; 1133 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1134 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1135 Conf.SampleProfile = std::move(SampleProfile); 1136 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1137 Conf.DebugPassManager = CGOpts.DebugPassManager; 1138 switch (Action) { 1139 case Backend_EmitNothing: 1140 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1141 return false; 1142 }; 1143 break; 1144 case Backend_EmitLL: 1145 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1146 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1147 return false; 1148 }; 1149 break; 1150 case Backend_EmitBC: 1151 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1152 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1153 return false; 1154 }; 1155 break; 1156 default: 1157 Conf.CGFileType = getCodeGenFileType(Action); 1158 break; 1159 } 1160 if (Error E = thinBackend( 1161 Conf, 0, AddStream, *M, *CombinedIndex, ImportList, 1162 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1163 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1164 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1165 }); 1166 } 1167 } 1168 1169 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1170 const HeaderSearchOptions &HeaderOpts, 1171 const CodeGenOptions &CGOpts, 1172 const clang::TargetOptions &TOpts, 1173 const LangOptions &LOpts, 1174 const llvm::DataLayout &TDesc, Module *M, 1175 BackendAction Action, 1176 std::unique_ptr<raw_pwrite_stream> OS) { 1177 std::unique_ptr<llvm::Module> EmptyModule; 1178 if (!CGOpts.ThinLTOIndexFile.empty()) { 1179 // If we are performing a ThinLTO importing compile, load the function index 1180 // into memory and pass it into runThinLTOBackend, which will run the 1181 // function importer and invoke LTO passes. 1182 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1183 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1184 /*IgnoreEmptyThinLTOIndexFile*/true); 1185 if (!IndexOrErr) { 1186 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1187 "Error loading index file '" + 1188 CGOpts.ThinLTOIndexFile + "': "); 1189 return; 1190 } 1191 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1192 // A null CombinedIndex means we should skip ThinLTO compilation 1193 // (LLVM will optionally ignore empty index files, returning null instead 1194 // of an error). 1195 if (CombinedIndex) { 1196 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1197 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1198 LOpts, std::move(OS), CGOpts.SampleProfileFile, 1199 Action); 1200 return; 1201 } 1202 // Distributed indexing detected that nothing from the module is needed 1203 // for the final linking. So we can skip the compilation. We sill need to 1204 // output an empty object file to make sure that a linker does not fail 1205 // trying to read it. Also for some features, like CFI, we must skip 1206 // the compilation as CombinedIndex does not contain all required 1207 // information. 1208 EmptyModule = llvm::make_unique<llvm::Module>("empty", M->getContext()); 1209 EmptyModule->setTargetTriple(M->getTargetTriple()); 1210 M = EmptyModule.get(); 1211 } 1212 } 1213 1214 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1215 1216 if (CGOpts.ExperimentalNewPassManager) 1217 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1218 else 1219 AsmHelper.EmitAssembly(Action, std::move(OS)); 1220 1221 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1222 // DataLayout. 1223 if (AsmHelper.TM) { 1224 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1225 if (DLDesc != TDesc.getStringRepresentation()) { 1226 unsigned DiagID = Diags.getCustomDiagID( 1227 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1228 "expected target description '%1'"); 1229 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1230 } 1231 } 1232 } 1233 1234 static const char* getSectionNameForBitcode(const Triple &T) { 1235 switch (T.getObjectFormat()) { 1236 case Triple::MachO: 1237 return "__LLVM,__bitcode"; 1238 case Triple::COFF: 1239 case Triple::ELF: 1240 case Triple::Wasm: 1241 case Triple::UnknownObjectFormat: 1242 return ".llvmbc"; 1243 } 1244 llvm_unreachable("Unimplemented ObjectFormatType"); 1245 } 1246 1247 static const char* getSectionNameForCommandline(const Triple &T) { 1248 switch (T.getObjectFormat()) { 1249 case Triple::MachO: 1250 return "__LLVM,__cmdline"; 1251 case Triple::COFF: 1252 case Triple::ELF: 1253 case Triple::Wasm: 1254 case Triple::UnknownObjectFormat: 1255 return ".llvmcmd"; 1256 } 1257 llvm_unreachable("Unimplemented ObjectFormatType"); 1258 } 1259 1260 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1261 // __LLVM,__bitcode section. 1262 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1263 llvm::MemoryBufferRef Buf) { 1264 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1265 return; 1266 1267 // Save llvm.compiler.used and remote it. 1268 SmallVector<Constant*, 2> UsedArray; 1269 SmallSet<GlobalValue*, 4> UsedGlobals; 1270 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1271 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1272 for (auto *GV : UsedGlobals) { 1273 if (GV->getName() != "llvm.embedded.module" && 1274 GV->getName() != "llvm.cmdline") 1275 UsedArray.push_back( 1276 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1277 } 1278 if (Used) 1279 Used->eraseFromParent(); 1280 1281 // Embed the bitcode for the llvm module. 1282 std::string Data; 1283 ArrayRef<uint8_t> ModuleData; 1284 Triple T(M->getTargetTriple()); 1285 // Create a constant that contains the bitcode. 1286 // In case of embedding a marker, ignore the input Buf and use the empty 1287 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1288 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1289 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1290 (const unsigned char *)Buf.getBufferEnd())) { 1291 // If the input is LLVM Assembly, bitcode is produced by serializing 1292 // the module. Use-lists order need to be perserved in this case. 1293 llvm::raw_string_ostream OS(Data); 1294 llvm::WriteBitcodeToFile(*M, OS, /* ShouldPreserveUseListOrder */ true); 1295 ModuleData = 1296 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1297 } else 1298 // If the input is LLVM bitcode, write the input byte stream directly. 1299 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1300 Buf.getBufferSize()); 1301 } 1302 llvm::Constant *ModuleConstant = 1303 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1304 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1305 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1306 ModuleConstant); 1307 GV->setSection(getSectionNameForBitcode(T)); 1308 UsedArray.push_back( 1309 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1310 if (llvm::GlobalVariable *Old = 1311 M->getGlobalVariable("llvm.embedded.module", true)) { 1312 assert(Old->hasOneUse() && 1313 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1314 GV->takeName(Old); 1315 Old->eraseFromParent(); 1316 } else { 1317 GV->setName("llvm.embedded.module"); 1318 } 1319 1320 // Skip if only bitcode needs to be embedded. 1321 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1322 // Embed command-line options. 1323 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1324 CGOpts.CmdArgs.size()); 1325 llvm::Constant *CmdConstant = 1326 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1327 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1328 llvm::GlobalValue::PrivateLinkage, 1329 CmdConstant); 1330 GV->setSection(getSectionNameForCommandline(T)); 1331 UsedArray.push_back( 1332 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1333 if (llvm::GlobalVariable *Old = 1334 M->getGlobalVariable("llvm.cmdline", true)) { 1335 assert(Old->hasOneUse() && 1336 "llvm.cmdline can only be used once in llvm.compiler.used"); 1337 GV->takeName(Old); 1338 Old->eraseFromParent(); 1339 } else { 1340 GV->setName("llvm.cmdline"); 1341 } 1342 } 1343 1344 if (UsedArray.empty()) 1345 return; 1346 1347 // Recreate llvm.compiler.used. 1348 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1349 auto *NewUsed = new GlobalVariable( 1350 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1351 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1352 NewUsed->setSection("llvm.metadata"); 1353 } 1354