1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/StackSafetyAnalysis.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/IRPrintingPasses.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/ModuleSummaryIndex.h" 35 #include "llvm/IR/Verifier.h" 36 #include "llvm/LTO/LTOBackend.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/SubtargetFeature.h" 39 #include "llvm/Passes/PassBuilder.h" 40 #include "llvm/Passes/PassPlugin.h" 41 #include "llvm/Passes/StandardInstrumentations.h" 42 #include "llvm/Support/BuryPointer.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/MemoryBuffer.h" 45 #include "llvm/Support/PrettyStackTrace.h" 46 #include "llvm/Support/TargetRegistry.h" 47 #include "llvm/Support/TimeProfiler.h" 48 #include "llvm/Support/Timer.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Target/TargetMachine.h" 51 #include "llvm/Target/TargetOptions.h" 52 #include "llvm/Transforms/Coroutines.h" 53 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 54 #include "llvm/Transforms/Coroutines/CoroEarly.h" 55 #include "llvm/Transforms/Coroutines/CoroElide.h" 56 #include "llvm/Transforms/Coroutines/CoroSplit.h" 57 #include "llvm/Transforms/IPO.h" 58 #include "llvm/Transforms/IPO/AlwaysInliner.h" 59 #include "llvm/Transforms/IPO/LowerTypeTests.h" 60 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 61 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 62 #include "llvm/Transforms/InstCombine/InstCombine.h" 63 #include "llvm/Transforms/Instrumentation.h" 64 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 65 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 66 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 67 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 68 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 69 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 70 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 71 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 72 #include "llvm/Transforms/ObjCARC.h" 73 #include "llvm/Transforms/Scalar.h" 74 #include "llvm/Transforms/Scalar/GVN.h" 75 #include "llvm/Transforms/Utils.h" 76 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 77 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 78 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 79 #include "llvm/Transforms/Utils/SymbolRewriter.h" 80 #include <memory> 81 using namespace clang; 82 using namespace llvm; 83 84 #define HANDLE_EXTENSION(Ext) \ 85 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 86 #include "llvm/Support/Extension.def" 87 88 namespace { 89 90 // Default filename used for profile generation. 91 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 92 93 class EmitAssemblyHelper { 94 DiagnosticsEngine &Diags; 95 const HeaderSearchOptions &HSOpts; 96 const CodeGenOptions &CodeGenOpts; 97 const clang::TargetOptions &TargetOpts; 98 const LangOptions &LangOpts; 99 Module *TheModule; 100 101 Timer CodeGenerationTime; 102 103 std::unique_ptr<raw_pwrite_stream> OS; 104 105 TargetIRAnalysis getTargetIRAnalysis() const { 106 if (TM) 107 return TM->getTargetIRAnalysis(); 108 109 return TargetIRAnalysis(); 110 } 111 112 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 113 114 /// Generates the TargetMachine. 115 /// Leaves TM unchanged if it is unable to create the target machine. 116 /// Some of our clang tests specify triples which are not built 117 /// into clang. This is okay because these tests check the generated 118 /// IR, and they require DataLayout which depends on the triple. 119 /// In this case, we allow this method to fail and not report an error. 120 /// When MustCreateTM is used, we print an error if we are unable to load 121 /// the requested target. 122 void CreateTargetMachine(bool MustCreateTM); 123 124 /// Add passes necessary to emit assembly or LLVM IR. 125 /// 126 /// \return True on success. 127 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 128 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 129 130 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 131 std::error_code EC; 132 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 133 llvm::sys::fs::OF_None); 134 if (EC) { 135 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 136 F.reset(); 137 } 138 return F; 139 } 140 141 public: 142 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 143 const HeaderSearchOptions &HeaderSearchOpts, 144 const CodeGenOptions &CGOpts, 145 const clang::TargetOptions &TOpts, 146 const LangOptions &LOpts, Module *M) 147 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 148 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 149 CodeGenerationTime("codegen", "Code Generation Time") {} 150 151 ~EmitAssemblyHelper() { 152 if (CodeGenOpts.DisableFree) 153 BuryPointer(std::move(TM)); 154 } 155 156 std::unique_ptr<TargetMachine> TM; 157 158 void EmitAssembly(BackendAction Action, 159 std::unique_ptr<raw_pwrite_stream> OS); 160 161 void EmitAssemblyWithNewPassManager(BackendAction Action, 162 std::unique_ptr<raw_pwrite_stream> OS); 163 }; 164 165 // We need this wrapper to access LangOpts and CGOpts from extension functions 166 // that we add to the PassManagerBuilder. 167 class PassManagerBuilderWrapper : public PassManagerBuilder { 168 public: 169 PassManagerBuilderWrapper(const Triple &TargetTriple, 170 const CodeGenOptions &CGOpts, 171 const LangOptions &LangOpts) 172 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 173 LangOpts(LangOpts) {} 174 const Triple &getTargetTriple() const { return TargetTriple; } 175 const CodeGenOptions &getCGOpts() const { return CGOpts; } 176 const LangOptions &getLangOpts() const { return LangOpts; } 177 178 private: 179 const Triple &TargetTriple; 180 const CodeGenOptions &CGOpts; 181 const LangOptions &LangOpts; 182 }; 183 } 184 185 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 186 if (Builder.OptLevel > 0) 187 PM.add(createObjCARCAPElimPass()); 188 } 189 190 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 191 if (Builder.OptLevel > 0) 192 PM.add(createObjCARCExpandPass()); 193 } 194 195 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 196 if (Builder.OptLevel > 0) 197 PM.add(createObjCARCOptPass()); 198 } 199 200 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 201 legacy::PassManagerBase &PM) { 202 PM.add(createAddDiscriminatorsPass()); 203 } 204 205 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 206 legacy::PassManagerBase &PM) { 207 PM.add(createBoundsCheckingLegacyPass()); 208 } 209 210 static SanitizerCoverageOptions 211 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 212 SanitizerCoverageOptions Opts; 213 Opts.CoverageType = 214 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 215 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 216 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 217 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 218 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 219 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 220 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 221 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 222 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 223 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 224 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 225 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 226 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 227 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 228 return Opts; 229 } 230 231 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 232 legacy::PassManagerBase &PM) { 233 const PassManagerBuilderWrapper &BuilderWrapper = 234 static_cast<const PassManagerBuilderWrapper &>(Builder); 235 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 236 auto Opts = getSancovOptsFromCGOpts(CGOpts); 237 PM.add(createModuleSanitizerCoverageLegacyPassPass( 238 Opts, CGOpts.SanitizeCoverageWhitelistFiles, 239 CGOpts.SanitizeCoverageBlacklistFiles)); 240 } 241 242 // Check if ASan should use GC-friendly instrumentation for globals. 243 // First of all, there is no point if -fdata-sections is off (expect for MachO, 244 // where this is not a factor). Also, on ELF this feature requires an assembler 245 // extension that only works with -integrated-as at the moment. 246 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 247 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 248 return false; 249 switch (T.getObjectFormat()) { 250 case Triple::MachO: 251 case Triple::COFF: 252 return true; 253 case Triple::ELF: 254 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 255 case Triple::XCOFF: 256 llvm::report_fatal_error("ASan not implemented for XCOFF."); 257 case Triple::Wasm: 258 case Triple::UnknownObjectFormat: 259 break; 260 } 261 return false; 262 } 263 264 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 265 legacy::PassManagerBase &PM) { 266 const PassManagerBuilderWrapper &BuilderWrapper = 267 static_cast<const PassManagerBuilderWrapper&>(Builder); 268 const Triple &T = BuilderWrapper.getTargetTriple(); 269 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 270 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 271 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 272 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 273 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 274 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 275 UseAfterScope)); 276 PM.add(createModuleAddressSanitizerLegacyPassPass( 277 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator)); 278 } 279 280 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 281 legacy::PassManagerBase &PM) { 282 PM.add(createAddressSanitizerFunctionPass( 283 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 284 PM.add(createModuleAddressSanitizerLegacyPassPass( 285 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 286 /*UseOdrIndicator*/ false)); 287 } 288 289 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 290 legacy::PassManagerBase &PM) { 291 const PassManagerBuilderWrapper &BuilderWrapper = 292 static_cast<const PassManagerBuilderWrapper &>(Builder); 293 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 294 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 295 PM.add( 296 createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover)); 297 } 298 299 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 300 legacy::PassManagerBase &PM) { 301 PM.add(createHWAddressSanitizerLegacyPassPass( 302 /*CompileKernel*/ true, /*Recover*/ true)); 303 } 304 305 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 306 legacy::PassManagerBase &PM, 307 bool CompileKernel) { 308 const PassManagerBuilderWrapper &BuilderWrapper = 309 static_cast<const PassManagerBuilderWrapper&>(Builder); 310 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 311 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 312 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 313 PM.add(createMemorySanitizerLegacyPassPass( 314 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 315 316 // MemorySanitizer inserts complex instrumentation that mostly follows 317 // the logic of the original code, but operates on "shadow" values. 318 // It can benefit from re-running some general purpose optimization passes. 319 if (Builder.OptLevel > 0) { 320 PM.add(createEarlyCSEPass()); 321 PM.add(createReassociatePass()); 322 PM.add(createLICMPass()); 323 PM.add(createGVNPass()); 324 PM.add(createInstructionCombiningPass()); 325 PM.add(createDeadStoreEliminationPass()); 326 } 327 } 328 329 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 330 legacy::PassManagerBase &PM) { 331 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 332 } 333 334 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 335 legacy::PassManagerBase &PM) { 336 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 337 } 338 339 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 340 legacy::PassManagerBase &PM) { 341 PM.add(createThreadSanitizerLegacyPassPass()); 342 } 343 344 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 345 legacy::PassManagerBase &PM) { 346 const PassManagerBuilderWrapper &BuilderWrapper = 347 static_cast<const PassManagerBuilderWrapper&>(Builder); 348 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 349 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 350 } 351 352 static void addMemTagOptimizationPasses(const PassManagerBuilder &Builder, 353 legacy::PassManagerBase &PM) { 354 PM.add(createStackSafetyGlobalInfoWrapperPass(/*SetMetadata=*/true)); 355 } 356 357 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 358 const CodeGenOptions &CodeGenOpts) { 359 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 360 361 switch (CodeGenOpts.getVecLib()) { 362 case CodeGenOptions::Accelerate: 363 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 364 break; 365 case CodeGenOptions::MASSV: 366 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 367 break; 368 case CodeGenOptions::SVML: 369 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 370 break; 371 default: 372 break; 373 } 374 return TLII; 375 } 376 377 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 378 legacy::PassManager *MPM) { 379 llvm::SymbolRewriter::RewriteDescriptorList DL; 380 381 llvm::SymbolRewriter::RewriteMapParser MapParser; 382 for (const auto &MapFile : Opts.RewriteMapFiles) 383 MapParser.parse(MapFile, &DL); 384 385 MPM->add(createRewriteSymbolsPass(DL)); 386 } 387 388 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 389 switch (CodeGenOpts.OptimizationLevel) { 390 default: 391 llvm_unreachable("Invalid optimization level!"); 392 case 0: 393 return CodeGenOpt::None; 394 case 1: 395 return CodeGenOpt::Less; 396 case 2: 397 return CodeGenOpt::Default; // O2/Os/Oz 398 case 3: 399 return CodeGenOpt::Aggressive; 400 } 401 } 402 403 static Optional<llvm::CodeModel::Model> 404 getCodeModel(const CodeGenOptions &CodeGenOpts) { 405 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 406 .Case("tiny", llvm::CodeModel::Tiny) 407 .Case("small", llvm::CodeModel::Small) 408 .Case("kernel", llvm::CodeModel::Kernel) 409 .Case("medium", llvm::CodeModel::Medium) 410 .Case("large", llvm::CodeModel::Large) 411 .Case("default", ~1u) 412 .Default(~0u); 413 assert(CodeModel != ~0u && "invalid code model!"); 414 if (CodeModel == ~1u) 415 return None; 416 return static_cast<llvm::CodeModel::Model>(CodeModel); 417 } 418 419 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 420 if (Action == Backend_EmitObj) 421 return CGFT_ObjectFile; 422 else if (Action == Backend_EmitMCNull) 423 return CGFT_Null; 424 else { 425 assert(Action == Backend_EmitAssembly && "Invalid action!"); 426 return CGFT_AssemblyFile; 427 } 428 } 429 430 static void initTargetOptions(llvm::TargetOptions &Options, 431 const CodeGenOptions &CodeGenOpts, 432 const clang::TargetOptions &TargetOpts, 433 const LangOptions &LangOpts, 434 const HeaderSearchOptions &HSOpts) { 435 Options.ThreadModel = 436 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 437 .Case("posix", llvm::ThreadModel::POSIX) 438 .Case("single", llvm::ThreadModel::Single); 439 440 // Set float ABI type. 441 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 442 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 443 "Invalid Floating Point ABI!"); 444 Options.FloatABIType = 445 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 446 .Case("soft", llvm::FloatABI::Soft) 447 .Case("softfp", llvm::FloatABI::Soft) 448 .Case("hard", llvm::FloatABI::Hard) 449 .Default(llvm::FloatABI::Default); 450 451 // Set FP fusion mode. 452 switch (LangOpts.getDefaultFPContractMode()) { 453 case LangOptions::FPM_Off: 454 // Preserve any contraction performed by the front-end. (Strict performs 455 // splitting of the muladd intrinsic in the backend.) 456 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 457 break; 458 case LangOptions::FPM_On: 459 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 460 break; 461 case LangOptions::FPM_Fast: 462 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 463 break; 464 } 465 466 Options.UseInitArray = CodeGenOpts.UseInitArray; 467 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 468 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 469 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 470 471 // Set EABI version. 472 Options.EABIVersion = TargetOpts.EABIVersion; 473 474 if (LangOpts.SjLjExceptions) 475 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 476 if (LangOpts.SEHExceptions) 477 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 478 if (LangOpts.DWARFExceptions) 479 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 480 if (LangOpts.WasmExceptions) 481 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 482 483 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 484 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 485 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 486 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 487 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 488 Options.FunctionSections = CodeGenOpts.FunctionSections; 489 Options.DataSections = CodeGenOpts.DataSections; 490 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 491 Options.TLSSize = CodeGenOpts.TLSSize; 492 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 493 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 494 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 495 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 496 Options.EmitAddrsig = CodeGenOpts.Addrsig; 497 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 498 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 499 500 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 501 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 502 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 503 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 504 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 505 Options.MCOptions.MCIncrementalLinkerCompatible = 506 CodeGenOpts.IncrementalLinkerCompatible; 507 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 508 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 509 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 510 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 511 Options.MCOptions.ABIName = TargetOpts.ABI; 512 for (const auto &Entry : HSOpts.UserEntries) 513 if (!Entry.IsFramework && 514 (Entry.Group == frontend::IncludeDirGroup::Quoted || 515 Entry.Group == frontend::IncludeDirGroup::Angled || 516 Entry.Group == frontend::IncludeDirGroup::System)) 517 Options.MCOptions.IASSearchPaths.push_back( 518 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 519 } 520 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 521 if (CodeGenOpts.DisableGCov) 522 return None; 523 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 524 return None; 525 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 526 // LLVM's -default-gcov-version flag is set to something invalid. 527 GCOVOptions Options; 528 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 529 Options.EmitData = CodeGenOpts.EmitGcovArcs; 530 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 531 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 532 Options.NoRedZone = CodeGenOpts.DisableRedZone; 533 Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData; 534 Options.Filter = CodeGenOpts.ProfileFilterFiles; 535 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 536 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 537 return Options; 538 } 539 540 static Optional<InstrProfOptions> 541 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 542 const LangOptions &LangOpts) { 543 if (!CodeGenOpts.hasProfileClangInstr()) 544 return None; 545 InstrProfOptions Options; 546 Options.NoRedZone = CodeGenOpts.DisableRedZone; 547 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 548 549 // TODO: Surface the option to emit atomic profile counter increments at 550 // the driver level. 551 Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread); 552 return Options; 553 } 554 555 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 556 legacy::FunctionPassManager &FPM) { 557 // Handle disabling of all LLVM passes, where we want to preserve the 558 // internal module before any optimization. 559 if (CodeGenOpts.DisableLLVMPasses) 560 return; 561 562 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 563 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 564 // are inserted before PMBuilder ones - they'd get the default-constructed 565 // TLI with an unknown target otherwise. 566 Triple TargetTriple(TheModule->getTargetTriple()); 567 std::unique_ptr<TargetLibraryInfoImpl> TLII( 568 createTLII(TargetTriple, CodeGenOpts)); 569 570 // If we reached here with a non-empty index file name, then the index file 571 // was empty and we are not performing ThinLTO backend compilation (used in 572 // testing in a distributed build environment). Drop any the type test 573 // assume sequences inserted for whole program vtables so that codegen doesn't 574 // complain. 575 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 576 MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr, 577 /*ImportSummary=*/nullptr, 578 /*DropTypeTests=*/true)); 579 580 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 581 582 // At O0 and O1 we only run the always inliner which is more efficient. At 583 // higher optimization levels we run the normal inliner. 584 if (CodeGenOpts.OptimizationLevel <= 1) { 585 bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 && 586 !CodeGenOpts.DisableLifetimeMarkers) || 587 LangOpts.Coroutines); 588 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 589 } else { 590 // We do not want to inline hot callsites for SamplePGO module-summary build 591 // because profile annotation will happen again in ThinLTO backend, and we 592 // want the IR of the hot path to match the profile. 593 PMBuilder.Inliner = createFunctionInliningPass( 594 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 595 (!CodeGenOpts.SampleProfileFile.empty() && 596 CodeGenOpts.PrepareForThinLTO)); 597 } 598 599 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 600 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 601 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 602 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 603 604 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 605 // Loop interleaving in the loop vectorizer has historically been set to be 606 // enabled when loop unrolling is enabled. 607 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 608 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 609 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 610 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 611 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 612 613 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 614 615 if (TM) 616 TM->adjustPassManager(PMBuilder); 617 618 if (CodeGenOpts.DebugInfoForProfiling || 619 !CodeGenOpts.SampleProfileFile.empty()) 620 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 621 addAddDiscriminatorsPass); 622 623 // In ObjC ARC mode, add the main ARC optimization passes. 624 if (LangOpts.ObjCAutoRefCount) { 625 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 626 addObjCARCExpandPass); 627 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 628 addObjCARCAPElimPass); 629 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 630 addObjCARCOptPass); 631 } 632 633 if (LangOpts.Coroutines) 634 addCoroutinePassesToExtensionPoints(PMBuilder); 635 636 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 637 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 638 addBoundsCheckingPass); 639 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 640 addBoundsCheckingPass); 641 } 642 643 if (CodeGenOpts.SanitizeCoverageType || 644 CodeGenOpts.SanitizeCoverageIndirectCalls || 645 CodeGenOpts.SanitizeCoverageTraceCmp) { 646 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 647 addSanitizerCoveragePass); 648 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 649 addSanitizerCoveragePass); 650 } 651 652 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 653 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 654 addAddressSanitizerPasses); 655 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 656 addAddressSanitizerPasses); 657 } 658 659 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 660 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 661 addKernelAddressSanitizerPasses); 662 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 663 addKernelAddressSanitizerPasses); 664 } 665 666 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 667 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 668 addHWAddressSanitizerPasses); 669 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 670 addHWAddressSanitizerPasses); 671 } 672 673 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 674 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 675 addKernelHWAddressSanitizerPasses); 676 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 677 addKernelHWAddressSanitizerPasses); 678 } 679 680 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 681 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 682 addMemorySanitizerPass); 683 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 684 addMemorySanitizerPass); 685 } 686 687 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 688 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 689 addKernelMemorySanitizerPass); 690 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 691 addKernelMemorySanitizerPass); 692 } 693 694 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 695 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 696 addThreadSanitizerPass); 697 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 698 addThreadSanitizerPass); 699 } 700 701 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 702 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 703 addDataFlowSanitizerPass); 704 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 705 addDataFlowSanitizerPass); 706 } 707 708 if (LangOpts.Sanitize.has(SanitizerKind::MemTag)) { 709 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 710 addMemTagOptimizationPasses); 711 } 712 713 // Set up the per-function pass manager. 714 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 715 if (CodeGenOpts.VerifyModule) 716 FPM.add(createVerifierPass()); 717 718 // Set up the per-module pass manager. 719 if (!CodeGenOpts.RewriteMapFiles.empty()) 720 addSymbolRewriterPass(CodeGenOpts, &MPM); 721 722 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 723 MPM.add(createGCOVProfilerPass(*Options)); 724 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 725 MPM.add(createStripSymbolsPass(true)); 726 } 727 728 if (Optional<InstrProfOptions> Options = 729 getInstrProfOptions(CodeGenOpts, LangOpts)) 730 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 731 732 bool hasIRInstr = false; 733 if (CodeGenOpts.hasProfileIRInstr()) { 734 PMBuilder.EnablePGOInstrGen = true; 735 hasIRInstr = true; 736 } 737 if (CodeGenOpts.hasProfileCSIRInstr()) { 738 assert(!CodeGenOpts.hasProfileCSIRUse() && 739 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 740 "same time"); 741 assert(!hasIRInstr && 742 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 743 "same time"); 744 PMBuilder.EnablePGOCSInstrGen = true; 745 hasIRInstr = true; 746 } 747 if (hasIRInstr) { 748 if (!CodeGenOpts.InstrProfileOutput.empty()) 749 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 750 else 751 PMBuilder.PGOInstrGen = std::string(DefaultProfileGenName); 752 } 753 if (CodeGenOpts.hasProfileIRUse()) { 754 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 755 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 756 } 757 758 if (!CodeGenOpts.SampleProfileFile.empty()) 759 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 760 761 PMBuilder.populateFunctionPassManager(FPM); 762 PMBuilder.populateModulePassManager(MPM); 763 } 764 765 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 766 SmallVector<const char *, 16> BackendArgs; 767 BackendArgs.push_back("clang"); // Fake program name. 768 if (!CodeGenOpts.DebugPass.empty()) { 769 BackendArgs.push_back("-debug-pass"); 770 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 771 } 772 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 773 BackendArgs.push_back("-limit-float-precision"); 774 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 775 } 776 BackendArgs.push_back(nullptr); 777 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 778 BackendArgs.data()); 779 } 780 781 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 782 // Create the TargetMachine for generating code. 783 std::string Error; 784 std::string Triple = TheModule->getTargetTriple(); 785 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 786 if (!TheTarget) { 787 if (MustCreateTM) 788 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 789 return; 790 } 791 792 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 793 std::string FeaturesStr = 794 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 795 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 796 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 797 798 llvm::TargetOptions Options; 799 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 800 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 801 Options, RM, CM, OptLevel)); 802 } 803 804 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 805 BackendAction Action, 806 raw_pwrite_stream &OS, 807 raw_pwrite_stream *DwoOS) { 808 // Add LibraryInfo. 809 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 810 std::unique_ptr<TargetLibraryInfoImpl> TLII( 811 createTLII(TargetTriple, CodeGenOpts)); 812 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 813 814 // Normal mode, emit a .s or .o file by running the code generator. Note, 815 // this also adds codegenerator level optimization passes. 816 CodeGenFileType CGFT = getCodeGenFileType(Action); 817 818 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 819 // "codegen" passes so that it isn't run multiple times when there is 820 // inlining happening. 821 if (CodeGenOpts.OptimizationLevel > 0) 822 CodeGenPasses.add(createObjCARCContractPass()); 823 824 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 825 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 826 Diags.Report(diag::err_fe_unable_to_interface_with_target); 827 return false; 828 } 829 830 return true; 831 } 832 833 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 834 std::unique_ptr<raw_pwrite_stream> OS) { 835 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 836 837 setCommandLineOpts(CodeGenOpts); 838 839 bool UsesCodeGen = (Action != Backend_EmitNothing && 840 Action != Backend_EmitBC && 841 Action != Backend_EmitLL); 842 CreateTargetMachine(UsesCodeGen); 843 844 if (UsesCodeGen && !TM) 845 return; 846 if (TM) 847 TheModule->setDataLayout(TM->createDataLayout()); 848 849 legacy::PassManager PerModulePasses; 850 PerModulePasses.add( 851 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 852 853 legacy::FunctionPassManager PerFunctionPasses(TheModule); 854 PerFunctionPasses.add( 855 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 856 857 CreatePasses(PerModulePasses, PerFunctionPasses); 858 859 legacy::PassManager CodeGenPasses; 860 CodeGenPasses.add( 861 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 862 863 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 864 865 switch (Action) { 866 case Backend_EmitNothing: 867 break; 868 869 case Backend_EmitBC: 870 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 871 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 872 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 873 if (!ThinLinkOS) 874 return; 875 } 876 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 877 CodeGenOpts.EnableSplitLTOUnit); 878 PerModulePasses.add(createWriteThinLTOBitcodePass( 879 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 880 } else { 881 // Emit a module summary by default for Regular LTO except for ld64 882 // targets 883 bool EmitLTOSummary = 884 (CodeGenOpts.PrepareForLTO && 885 !CodeGenOpts.DisableLLVMPasses && 886 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 887 llvm::Triple::Apple); 888 if (EmitLTOSummary) { 889 if (!TheModule->getModuleFlag("ThinLTO")) 890 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 891 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 892 uint32_t(1)); 893 } 894 895 PerModulePasses.add(createBitcodeWriterPass( 896 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 897 } 898 break; 899 900 case Backend_EmitLL: 901 PerModulePasses.add( 902 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 903 break; 904 905 default: 906 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 907 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 908 if (!DwoOS) 909 return; 910 } 911 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 912 DwoOS ? &DwoOS->os() : nullptr)) 913 return; 914 } 915 916 // Before executing passes, print the final values of the LLVM options. 917 cl::PrintOptionValues(); 918 919 // Run passes. For now we do all passes at once, but eventually we 920 // would like to have the option of streaming code generation. 921 922 { 923 PrettyStackTraceString CrashInfo("Per-function optimization"); 924 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 925 926 PerFunctionPasses.doInitialization(); 927 for (Function &F : *TheModule) 928 if (!F.isDeclaration()) 929 PerFunctionPasses.run(F); 930 PerFunctionPasses.doFinalization(); 931 } 932 933 { 934 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 935 llvm::TimeTraceScope TimeScope("PerModulePasses"); 936 PerModulePasses.run(*TheModule); 937 } 938 939 { 940 PrettyStackTraceString CrashInfo("Code generation"); 941 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 942 CodeGenPasses.run(*TheModule); 943 } 944 945 if (ThinLinkOS) 946 ThinLinkOS->keep(); 947 if (DwoOS) 948 DwoOS->keep(); 949 } 950 951 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 952 switch (Opts.OptimizationLevel) { 953 default: 954 llvm_unreachable("Invalid optimization level!"); 955 956 case 1: 957 return PassBuilder::OptimizationLevel::O1; 958 959 case 2: 960 switch (Opts.OptimizeSize) { 961 default: 962 llvm_unreachable("Invalid optimization level for size!"); 963 964 case 0: 965 return PassBuilder::OptimizationLevel::O2; 966 967 case 1: 968 return PassBuilder::OptimizationLevel::Os; 969 970 case 2: 971 return PassBuilder::OptimizationLevel::Oz; 972 } 973 974 case 3: 975 return PassBuilder::OptimizationLevel::O3; 976 } 977 } 978 979 static void addCoroutinePassesAtO0(ModulePassManager &MPM, 980 const LangOptions &LangOpts, 981 const CodeGenOptions &CodeGenOpts) { 982 if (!LangOpts.Coroutines) 983 return; 984 985 MPM.addPass(createModuleToFunctionPassAdaptor(CoroEarlyPass())); 986 987 CGSCCPassManager CGPM(CodeGenOpts.DebugPassManager); 988 CGPM.addPass(CoroSplitPass()); 989 CGPM.addPass(createCGSCCToFunctionPassAdaptor(CoroElidePass())); 990 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM))); 991 992 MPM.addPass(createModuleToFunctionPassAdaptor(CoroCleanupPass())); 993 } 994 995 static void addSanitizersAtO0(ModulePassManager &MPM, 996 const Triple &TargetTriple, 997 const LangOptions &LangOpts, 998 const CodeGenOptions &CodeGenOpts) { 999 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1000 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1001 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1002 MPM.addPass(createModuleToFunctionPassAdaptor(AddressSanitizerPass( 1003 CompileKernel, Recover, CodeGenOpts.SanitizeAddressUseAfterScope))); 1004 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1005 MPM.addPass( 1006 ModuleAddressSanitizerPass(CompileKernel, Recover, ModuleUseAfterScope, 1007 CodeGenOpts.SanitizeAddressUseOdrIndicator)); 1008 }; 1009 1010 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1011 ASanPass(SanitizerKind::Address, /*CompileKernel=*/false); 1012 } 1013 1014 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 1015 ASanPass(SanitizerKind::KernelAddress, /*CompileKernel=*/true); 1016 } 1017 1018 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 1019 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Memory); 1020 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1021 MPM.addPass(MemorySanitizerPass({TrackOrigins, Recover, false})); 1022 MPM.addPass(createModuleToFunctionPassAdaptor( 1023 MemorySanitizerPass({TrackOrigins, Recover, false}))); 1024 } 1025 1026 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 1027 MPM.addPass(createModuleToFunctionPassAdaptor( 1028 MemorySanitizerPass({0, false, /*Kernel=*/true}))); 1029 } 1030 1031 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1032 MPM.addPass(ThreadSanitizerPass()); 1033 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1034 } 1035 } 1036 1037 /// A clean version of `EmitAssembly` that uses the new pass manager. 1038 /// 1039 /// Not all features are currently supported in this system, but where 1040 /// necessary it falls back to the legacy pass manager to at least provide 1041 /// basic functionality. 1042 /// 1043 /// This API is planned to have its functionality finished and then to replace 1044 /// `EmitAssembly` at some point in the future when the default switches. 1045 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 1046 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 1047 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 1048 setCommandLineOpts(CodeGenOpts); 1049 1050 bool RequiresCodeGen = (Action != Backend_EmitNothing && 1051 Action != Backend_EmitBC && 1052 Action != Backend_EmitLL); 1053 CreateTargetMachine(RequiresCodeGen); 1054 1055 if (RequiresCodeGen && !TM) 1056 return; 1057 if (TM) 1058 TheModule->setDataLayout(TM->createDataLayout()); 1059 1060 Optional<PGOOptions> PGOOpt; 1061 1062 if (CodeGenOpts.hasProfileIRInstr()) 1063 // -fprofile-generate. 1064 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1065 ? std::string(DefaultProfileGenName) 1066 : CodeGenOpts.InstrProfileOutput, 1067 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1068 CodeGenOpts.DebugInfoForProfiling); 1069 else if (CodeGenOpts.hasProfileIRUse()) { 1070 // -fprofile-use. 1071 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1072 : PGOOptions::NoCSAction; 1073 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1074 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1075 CSAction, CodeGenOpts.DebugInfoForProfiling); 1076 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1077 // -fprofile-sample-use 1078 PGOOpt = 1079 PGOOptions(CodeGenOpts.SampleProfileFile, "", 1080 CodeGenOpts.ProfileRemappingFile, PGOOptions::SampleUse, 1081 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling); 1082 else if (CodeGenOpts.DebugInfoForProfiling) 1083 // -fdebug-info-for-profiling 1084 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1085 PGOOptions::NoCSAction, true); 1086 1087 // Check to see if we want to generate a CS profile. 1088 if (CodeGenOpts.hasProfileCSIRInstr()) { 1089 assert(!CodeGenOpts.hasProfileCSIRUse() && 1090 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1091 "the same time"); 1092 if (PGOOpt.hasValue()) { 1093 assert(PGOOpt->Action != PGOOptions::IRInstr && 1094 PGOOpt->Action != PGOOptions::SampleUse && 1095 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1096 " pass"); 1097 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1098 ? std::string(DefaultProfileGenName) 1099 : CodeGenOpts.InstrProfileOutput; 1100 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1101 } else 1102 PGOOpt = PGOOptions("", 1103 CodeGenOpts.InstrProfileOutput.empty() 1104 ? std::string(DefaultProfileGenName) 1105 : CodeGenOpts.InstrProfileOutput, 1106 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1107 CodeGenOpts.DebugInfoForProfiling); 1108 } 1109 1110 PipelineTuningOptions PTO; 1111 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1112 // For historical reasons, loop interleaving is set to mirror setting for loop 1113 // unrolling. 1114 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1115 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1116 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1117 PTO.CallGraphProfile = CodeGenOpts.CallGraphProfile; 1118 PTO.Coroutines = LangOpts.Coroutines; 1119 1120 PassInstrumentationCallbacks PIC; 1121 StandardInstrumentations SI; 1122 SI.registerCallbacks(PIC); 1123 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 1124 1125 // Attempt to load pass plugins and register their callbacks with PB. 1126 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1127 auto PassPlugin = PassPlugin::Load(PluginFN); 1128 if (PassPlugin) { 1129 PassPlugin->registerPassBuilderCallbacks(PB); 1130 } else { 1131 Diags.Report(diag::err_fe_unable_to_load_plugin) 1132 << PluginFN << toString(PassPlugin.takeError()); 1133 } 1134 } 1135 #define HANDLE_EXTENSION(Ext) \ 1136 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 1137 #include "llvm/Support/Extension.def" 1138 1139 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 1140 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 1141 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 1142 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 1143 1144 // Register the AA manager first so that our version is the one used. 1145 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1146 1147 // Register the target library analysis directly and give it a customized 1148 // preset TLI. 1149 Triple TargetTriple(TheModule->getTargetTriple()); 1150 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1151 createTLII(TargetTriple, CodeGenOpts)); 1152 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1153 1154 // Register all the basic analyses with the managers. 1155 PB.registerModuleAnalyses(MAM); 1156 PB.registerCGSCCAnalyses(CGAM); 1157 PB.registerFunctionAnalyses(FAM); 1158 PB.registerLoopAnalyses(LAM); 1159 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1160 1161 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 1162 1163 if (!CodeGenOpts.DisableLLVMPasses) { 1164 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1165 bool IsLTO = CodeGenOpts.PrepareForLTO; 1166 1167 if (CodeGenOpts.OptimizationLevel == 0) { 1168 // If we reached here with a non-empty index file name, then the index 1169 // file was empty and we are not performing ThinLTO backend compilation 1170 // (used in testing in a distributed build environment). Drop any the type 1171 // test assume sequences inserted for whole program vtables so that 1172 // codegen doesn't complain. 1173 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 1174 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1175 /*ImportSummary=*/nullptr, 1176 /*DropTypeTests=*/true)); 1177 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1178 MPM.addPass(GCOVProfilerPass(*Options)); 1179 if (Optional<InstrProfOptions> Options = 1180 getInstrProfOptions(CodeGenOpts, LangOpts)) 1181 MPM.addPass(InstrProfiling(*Options, false)); 1182 1183 // Build a minimal pipeline based on the semantics required by Clang, 1184 // which is just that always inlining occurs. Further, disable generating 1185 // lifetime intrinsics to avoid enabling further optimizations during 1186 // code generation. 1187 // However, we need to insert lifetime intrinsics to avoid invalid access 1188 // caused by multithreaded coroutines. 1189 MPM.addPass( 1190 AlwaysInlinerPass(/*InsertLifetimeIntrinsics=*/LangOpts.Coroutines)); 1191 1192 // At -O0, we can still do PGO. Add all the requested passes for 1193 // instrumentation PGO, if requested. 1194 if (PGOOpt && (PGOOpt->Action == PGOOptions::IRInstr || 1195 PGOOpt->Action == PGOOptions::IRUse)) 1196 PB.addPGOInstrPassesForO0( 1197 MPM, CodeGenOpts.DebugPassManager, 1198 /* RunProfileGen */ (PGOOpt->Action == PGOOptions::IRInstr), 1199 /* IsCS */ false, PGOOpt->ProfileFile, 1200 PGOOpt->ProfileRemappingFile); 1201 1202 // At -O0 we directly run necessary sanitizer passes. 1203 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1204 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 1205 1206 // Lastly, add semantically necessary passes for LTO. 1207 if (IsLTO || IsThinLTO) { 1208 MPM.addPass(CanonicalizeAliasesPass()); 1209 MPM.addPass(NameAnonGlobalPass()); 1210 } 1211 } else { 1212 // Map our optimization levels into one of the distinct levels used to 1213 // configure the pipeline. 1214 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1215 1216 // If we reached here with a non-empty index file name, then the index 1217 // file was empty and we are not performing ThinLTO backend compilation 1218 // (used in testing in a distributed build environment). Drop any the type 1219 // test assume sequences inserted for whole program vtables so that 1220 // codegen doesn't complain. 1221 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 1222 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1223 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1224 /*ImportSummary=*/nullptr, 1225 /*DropTypeTests=*/true)); 1226 }); 1227 1228 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1229 MPM.addPass(createModuleToFunctionPassAdaptor( 1230 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1231 }); 1232 1233 // Register callbacks to schedule sanitizer passes at the appropriate part of 1234 // the pipeline. 1235 // FIXME: either handle asan/the remaining sanitizers or error out 1236 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1237 PB.registerScalarOptimizerLateEPCallback( 1238 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1239 FPM.addPass(BoundsCheckingPass()); 1240 }); 1241 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 1242 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1243 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Memory); 1244 PB.registerPipelineStartEPCallback( 1245 [TrackOrigins, Recover](ModulePassManager &MPM) { 1246 MPM.addPass(MemorySanitizerPass({TrackOrigins, Recover, false})); 1247 }); 1248 PB.registerOptimizerLastEPCallback( 1249 [TrackOrigins, Recover](FunctionPassManager &FPM, 1250 PassBuilder::OptimizationLevel Level) { 1251 FPM.addPass(MemorySanitizerPass({TrackOrigins, Recover, false})); 1252 }); 1253 } 1254 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1255 PB.registerPipelineStartEPCallback( 1256 [](ModulePassManager &MPM) { MPM.addPass(ThreadSanitizerPass()); }); 1257 PB.registerOptimizerLastEPCallback( 1258 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1259 FPM.addPass(ThreadSanitizerPass()); 1260 }); 1261 } 1262 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1263 PB.registerPipelineStartEPCallback([&](ModulePassManager &MPM) { 1264 MPM.addPass( 1265 RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1266 }); 1267 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address); 1268 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1269 PB.registerOptimizerLastEPCallback( 1270 [Recover, UseAfterScope](FunctionPassManager &FPM, 1271 PassBuilder::OptimizationLevel Level) { 1272 FPM.addPass(AddressSanitizerPass( 1273 /*CompileKernel=*/false, Recover, UseAfterScope)); 1274 }); 1275 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1276 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1277 PB.registerPipelineStartEPCallback( 1278 [Recover, ModuleUseAfterScope, 1279 UseOdrIndicator](ModulePassManager &MPM) { 1280 MPM.addPass(ModuleAddressSanitizerPass( 1281 /*CompileKernel=*/false, Recover, ModuleUseAfterScope, 1282 UseOdrIndicator)); 1283 }); 1284 } 1285 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1286 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1287 MPM.addPass(GCOVProfilerPass(*Options)); 1288 }); 1289 if (Optional<InstrProfOptions> Options = 1290 getInstrProfOptions(CodeGenOpts, LangOpts)) 1291 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1292 MPM.addPass(InstrProfiling(*Options, false)); 1293 }); 1294 1295 if (IsThinLTO) { 1296 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 1297 Level, CodeGenOpts.DebugPassManager); 1298 MPM.addPass(CanonicalizeAliasesPass()); 1299 MPM.addPass(NameAnonGlobalPass()); 1300 } else if (IsLTO) { 1301 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 1302 CodeGenOpts.DebugPassManager); 1303 MPM.addPass(CanonicalizeAliasesPass()); 1304 MPM.addPass(NameAnonGlobalPass()); 1305 } else { 1306 MPM = PB.buildPerModuleDefaultPipeline(Level, 1307 CodeGenOpts.DebugPassManager); 1308 } 1309 } 1310 1311 if (CodeGenOpts.SanitizeCoverageType || 1312 CodeGenOpts.SanitizeCoverageIndirectCalls || 1313 CodeGenOpts.SanitizeCoverageTraceCmp) { 1314 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1315 MPM.addPass(ModuleSanitizerCoveragePass(SancovOpts)); 1316 } 1317 1318 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 1319 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 1320 MPM.addPass(HWAddressSanitizerPass( 1321 /*CompileKernel=*/false, Recover)); 1322 } 1323 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 1324 MPM.addPass(HWAddressSanitizerPass( 1325 /*CompileKernel=*/true, /*Recover=*/true)); 1326 } 1327 1328 if (CodeGenOpts.OptimizationLevel > 0 && 1329 LangOpts.Sanitize.has(SanitizerKind::MemTag)) { 1330 MPM.addPass(StackSafetyGlobalAnnotatorPass()); 1331 } 1332 1333 if (CodeGenOpts.OptimizationLevel == 0) { 1334 addCoroutinePassesAtO0(MPM, LangOpts, CodeGenOpts); 1335 addSanitizersAtO0(MPM, TargetTriple, LangOpts, CodeGenOpts); 1336 } 1337 } 1338 1339 // FIXME: We still use the legacy pass manager to do code generation. We 1340 // create that pass manager here and use it as needed below. 1341 legacy::PassManager CodeGenPasses; 1342 bool NeedCodeGen = false; 1343 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1344 1345 // Append any output we need to the pass manager. 1346 switch (Action) { 1347 case Backend_EmitNothing: 1348 break; 1349 1350 case Backend_EmitBC: 1351 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1352 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1353 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1354 if (!ThinLinkOS) 1355 return; 1356 } 1357 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1358 CodeGenOpts.EnableSplitLTOUnit); 1359 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1360 : nullptr)); 1361 } else { 1362 // Emit a module summary by default for Regular LTO except for ld64 1363 // targets 1364 bool EmitLTOSummary = 1365 (CodeGenOpts.PrepareForLTO && 1366 !CodeGenOpts.DisableLLVMPasses && 1367 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1368 llvm::Triple::Apple); 1369 if (EmitLTOSummary) { 1370 if (!TheModule->getModuleFlag("ThinLTO")) 1371 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1372 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1373 uint32_t(1)); 1374 } 1375 MPM.addPass( 1376 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1377 } 1378 break; 1379 1380 case Backend_EmitLL: 1381 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1382 break; 1383 1384 case Backend_EmitAssembly: 1385 case Backend_EmitMCNull: 1386 case Backend_EmitObj: 1387 NeedCodeGen = true; 1388 CodeGenPasses.add( 1389 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1390 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1391 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1392 if (!DwoOS) 1393 return; 1394 } 1395 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1396 DwoOS ? &DwoOS->os() : nullptr)) 1397 // FIXME: Should we handle this error differently? 1398 return; 1399 break; 1400 } 1401 1402 // Before executing passes, print the final values of the LLVM options. 1403 cl::PrintOptionValues(); 1404 1405 // Now that we have all of the passes ready, run them. 1406 { 1407 PrettyStackTraceString CrashInfo("Optimizer"); 1408 MPM.run(*TheModule, MAM); 1409 } 1410 1411 // Now if needed, run the legacy PM for codegen. 1412 if (NeedCodeGen) { 1413 PrettyStackTraceString CrashInfo("Code generation"); 1414 CodeGenPasses.run(*TheModule); 1415 } 1416 1417 if (ThinLinkOS) 1418 ThinLinkOS->keep(); 1419 if (DwoOS) 1420 DwoOS->keep(); 1421 } 1422 1423 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1424 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1425 if (!BMsOrErr) 1426 return BMsOrErr.takeError(); 1427 1428 // The bitcode file may contain multiple modules, we want the one that is 1429 // marked as being the ThinLTO module. 1430 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1431 return *Bm; 1432 1433 return make_error<StringError>("Could not find module summary", 1434 inconvertibleErrorCode()); 1435 } 1436 1437 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1438 for (BitcodeModule &BM : BMs) { 1439 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1440 if (LTOInfo && LTOInfo->IsThinLTO) 1441 return &BM; 1442 } 1443 return nullptr; 1444 } 1445 1446 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1447 const HeaderSearchOptions &HeaderOpts, 1448 const CodeGenOptions &CGOpts, 1449 const clang::TargetOptions &TOpts, 1450 const LangOptions &LOpts, 1451 std::unique_ptr<raw_pwrite_stream> OS, 1452 std::string SampleProfile, 1453 std::string ProfileRemapping, 1454 BackendAction Action) { 1455 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1456 ModuleToDefinedGVSummaries; 1457 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1458 1459 setCommandLineOpts(CGOpts); 1460 1461 // We can simply import the values mentioned in the combined index, since 1462 // we should only invoke this using the individual indexes written out 1463 // via a WriteIndexesThinBackend. 1464 FunctionImporter::ImportMapTy ImportList; 1465 for (auto &GlobalList : *CombinedIndex) { 1466 // Ignore entries for undefined references. 1467 if (GlobalList.second.SummaryList.empty()) 1468 continue; 1469 1470 auto GUID = GlobalList.first; 1471 for (auto &Summary : GlobalList.second.SummaryList) { 1472 // Skip the summaries for the importing module. These are included to 1473 // e.g. record required linkage changes. 1474 if (Summary->modulePath() == M->getModuleIdentifier()) 1475 continue; 1476 // Add an entry to provoke importing by thinBackend. 1477 ImportList[Summary->modulePath()].insert(GUID); 1478 } 1479 } 1480 1481 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1482 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1483 1484 for (auto &I : ImportList) { 1485 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1486 llvm::MemoryBuffer::getFile(I.first()); 1487 if (!MBOrErr) { 1488 errs() << "Error loading imported file '" << I.first() 1489 << "': " << MBOrErr.getError().message() << "\n"; 1490 return; 1491 } 1492 1493 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1494 if (!BMOrErr) { 1495 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1496 errs() << "Error loading imported file '" << I.first() 1497 << "': " << EIB.message() << '\n'; 1498 }); 1499 return; 1500 } 1501 ModuleMap.insert({I.first(), *BMOrErr}); 1502 1503 OwnedImports.push_back(std::move(*MBOrErr)); 1504 } 1505 auto AddStream = [&](size_t Task) { 1506 return std::make_unique<lto::NativeObjectStream>(std::move(OS)); 1507 }; 1508 lto::Config Conf; 1509 if (CGOpts.SaveTempsFilePrefix != "") { 1510 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1511 /* UseInputModulePath */ false)) { 1512 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1513 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1514 << '\n'; 1515 }); 1516 } 1517 } 1518 Conf.CPU = TOpts.CPU; 1519 Conf.CodeModel = getCodeModel(CGOpts); 1520 Conf.MAttrs = TOpts.Features; 1521 Conf.RelocModel = CGOpts.RelocationModel; 1522 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1523 Conf.OptLevel = CGOpts.OptimizationLevel; 1524 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1525 Conf.SampleProfile = std::move(SampleProfile); 1526 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1527 // For historical reasons, loop interleaving is set to mirror setting for loop 1528 // unrolling. 1529 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1530 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1531 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1532 Conf.PTO.CallGraphProfile = CGOpts.CallGraphProfile; 1533 1534 // Context sensitive profile. 1535 if (CGOpts.hasProfileCSIRInstr()) { 1536 Conf.RunCSIRInstr = true; 1537 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1538 } else if (CGOpts.hasProfileCSIRUse()) { 1539 Conf.RunCSIRInstr = false; 1540 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1541 } 1542 1543 Conf.ProfileRemapping = std::move(ProfileRemapping); 1544 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1545 Conf.DebugPassManager = CGOpts.DebugPassManager; 1546 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1547 Conf.RemarksFilename = CGOpts.OptRecordFile; 1548 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1549 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1550 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1551 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1552 switch (Action) { 1553 case Backend_EmitNothing: 1554 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1555 return false; 1556 }; 1557 break; 1558 case Backend_EmitLL: 1559 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1560 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1561 return false; 1562 }; 1563 break; 1564 case Backend_EmitBC: 1565 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1566 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1567 return false; 1568 }; 1569 break; 1570 default: 1571 Conf.CGFileType = getCodeGenFileType(Action); 1572 break; 1573 } 1574 if (Error E = thinBackend( 1575 Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1576 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1577 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1578 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1579 }); 1580 } 1581 } 1582 1583 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1584 const HeaderSearchOptions &HeaderOpts, 1585 const CodeGenOptions &CGOpts, 1586 const clang::TargetOptions &TOpts, 1587 const LangOptions &LOpts, 1588 const llvm::DataLayout &TDesc, Module *M, 1589 BackendAction Action, 1590 std::unique_ptr<raw_pwrite_stream> OS) { 1591 1592 llvm::TimeTraceScope TimeScope("Backend"); 1593 1594 std::unique_ptr<llvm::Module> EmptyModule; 1595 if (!CGOpts.ThinLTOIndexFile.empty()) { 1596 // If we are performing a ThinLTO importing compile, load the function index 1597 // into memory and pass it into runThinLTOBackend, which will run the 1598 // function importer and invoke LTO passes. 1599 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1600 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1601 /*IgnoreEmptyThinLTOIndexFile*/true); 1602 if (!IndexOrErr) { 1603 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1604 "Error loading index file '" + 1605 CGOpts.ThinLTOIndexFile + "': "); 1606 return; 1607 } 1608 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1609 // A null CombinedIndex means we should skip ThinLTO compilation 1610 // (LLVM will optionally ignore empty index files, returning null instead 1611 // of an error). 1612 if (CombinedIndex) { 1613 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1614 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1615 LOpts, std::move(OS), CGOpts.SampleProfileFile, 1616 CGOpts.ProfileRemappingFile, Action); 1617 return; 1618 } 1619 // Distributed indexing detected that nothing from the module is needed 1620 // for the final linking. So we can skip the compilation. We sill need to 1621 // output an empty object file to make sure that a linker does not fail 1622 // trying to read it. Also for some features, like CFI, we must skip 1623 // the compilation as CombinedIndex does not contain all required 1624 // information. 1625 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1626 EmptyModule->setTargetTriple(M->getTargetTriple()); 1627 M = EmptyModule.get(); 1628 } 1629 } 1630 1631 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1632 1633 if (CGOpts.ExperimentalNewPassManager) 1634 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1635 else 1636 AsmHelper.EmitAssembly(Action, std::move(OS)); 1637 1638 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1639 // DataLayout. 1640 if (AsmHelper.TM) { 1641 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1642 if (DLDesc != TDesc.getStringRepresentation()) { 1643 unsigned DiagID = Diags.getCustomDiagID( 1644 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1645 "expected target description '%1'"); 1646 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1647 } 1648 } 1649 } 1650 1651 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1652 // __LLVM,__bitcode section. 1653 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1654 llvm::MemoryBufferRef Buf) { 1655 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1656 return; 1657 llvm::EmbedBitcodeInModule( 1658 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1659 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1660 &CGOpts.CmdArgs); 1661 } 1662