1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/StackSafetyAnalysis.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/IRPrintingPasses.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/ModuleSummaryIndex.h" 35 #include "llvm/IR/PassManager.h" 36 #include "llvm/IR/Verifier.h" 37 #include "llvm/LTO/LTOBackend.h" 38 #include "llvm/MC/MCAsmInfo.h" 39 #include "llvm/MC/SubtargetFeature.h" 40 #include "llvm/Passes/PassBuilder.h" 41 #include "llvm/Passes/PassPlugin.h" 42 #include "llvm/Passes/StandardInstrumentations.h" 43 #include "llvm/Support/BuryPointer.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/MemoryBuffer.h" 46 #include "llvm/Support/PrettyStackTrace.h" 47 #include "llvm/Support/TargetRegistry.h" 48 #include "llvm/Support/TimeProfiler.h" 49 #include "llvm/Support/Timer.h" 50 #include "llvm/Support/ToolOutputFile.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Target/TargetMachine.h" 53 #include "llvm/Target/TargetOptions.h" 54 #include "llvm/Transforms/Coroutines.h" 55 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 56 #include "llvm/Transforms/Coroutines/CoroEarly.h" 57 #include "llvm/Transforms/Coroutines/CoroElide.h" 58 #include "llvm/Transforms/Coroutines/CoroSplit.h" 59 #include "llvm/Transforms/IPO.h" 60 #include "llvm/Transforms/IPO/AlwaysInliner.h" 61 #include "llvm/Transforms/IPO/LowerTypeTests.h" 62 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 63 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 64 #include "llvm/Transforms/InstCombine/InstCombine.h" 65 #include "llvm/Transforms/Instrumentation.h" 66 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 67 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 68 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 69 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 70 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 71 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 72 #include "llvm/Transforms/Instrumentation/MemProfiler.h" 73 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 74 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 75 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 76 #include "llvm/Transforms/ObjCARC.h" 77 #include "llvm/Transforms/Scalar.h" 78 #include "llvm/Transforms/Scalar/GVN.h" 79 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" 80 #include "llvm/Transforms/Utils.h" 81 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 82 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 83 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 84 #include "llvm/Transforms/Utils/SymbolRewriter.h" 85 #include "llvm/Transforms/Utils/UniqueInternalLinkageNames.h" 86 #include <memory> 87 using namespace clang; 88 using namespace llvm; 89 90 #define HANDLE_EXTENSION(Ext) \ 91 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 92 #include "llvm/Support/Extension.def" 93 94 namespace { 95 96 // Default filename used for profile generation. 97 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 98 99 class EmitAssemblyHelper { 100 DiagnosticsEngine &Diags; 101 const HeaderSearchOptions &HSOpts; 102 const CodeGenOptions &CodeGenOpts; 103 const clang::TargetOptions &TargetOpts; 104 const LangOptions &LangOpts; 105 Module *TheModule; 106 107 Timer CodeGenerationTime; 108 109 std::unique_ptr<raw_pwrite_stream> OS; 110 111 TargetIRAnalysis getTargetIRAnalysis() const { 112 if (TM) 113 return TM->getTargetIRAnalysis(); 114 115 return TargetIRAnalysis(); 116 } 117 118 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 119 120 /// Generates the TargetMachine. 121 /// Leaves TM unchanged if it is unable to create the target machine. 122 /// Some of our clang tests specify triples which are not built 123 /// into clang. This is okay because these tests check the generated 124 /// IR, and they require DataLayout which depends on the triple. 125 /// In this case, we allow this method to fail and not report an error. 126 /// When MustCreateTM is used, we print an error if we are unable to load 127 /// the requested target. 128 void CreateTargetMachine(bool MustCreateTM); 129 130 /// Add passes necessary to emit assembly or LLVM IR. 131 /// 132 /// \return True on success. 133 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 134 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 135 136 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 137 std::error_code EC; 138 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 139 llvm::sys::fs::OF_None); 140 if (EC) { 141 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 142 F.reset(); 143 } 144 return F; 145 } 146 147 public: 148 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 149 const HeaderSearchOptions &HeaderSearchOpts, 150 const CodeGenOptions &CGOpts, 151 const clang::TargetOptions &TOpts, 152 const LangOptions &LOpts, Module *M) 153 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 154 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 155 CodeGenerationTime("codegen", "Code Generation Time") {} 156 157 ~EmitAssemblyHelper() { 158 if (CodeGenOpts.DisableFree) 159 BuryPointer(std::move(TM)); 160 } 161 162 std::unique_ptr<TargetMachine> TM; 163 164 void EmitAssembly(BackendAction Action, 165 std::unique_ptr<raw_pwrite_stream> OS); 166 167 void EmitAssemblyWithNewPassManager(BackendAction Action, 168 std::unique_ptr<raw_pwrite_stream> OS); 169 }; 170 171 // We need this wrapper to access LangOpts and CGOpts from extension functions 172 // that we add to the PassManagerBuilder. 173 class PassManagerBuilderWrapper : public PassManagerBuilder { 174 public: 175 PassManagerBuilderWrapper(const Triple &TargetTriple, 176 const CodeGenOptions &CGOpts, 177 const LangOptions &LangOpts) 178 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 179 LangOpts(LangOpts) {} 180 const Triple &getTargetTriple() const { return TargetTriple; } 181 const CodeGenOptions &getCGOpts() const { return CGOpts; } 182 const LangOptions &getLangOpts() const { return LangOpts; } 183 184 private: 185 const Triple &TargetTriple; 186 const CodeGenOptions &CGOpts; 187 const LangOptions &LangOpts; 188 }; 189 } 190 191 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 192 if (Builder.OptLevel > 0) 193 PM.add(createObjCARCAPElimPass()); 194 } 195 196 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 197 if (Builder.OptLevel > 0) 198 PM.add(createObjCARCExpandPass()); 199 } 200 201 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 202 if (Builder.OptLevel > 0) 203 PM.add(createObjCARCOptPass()); 204 } 205 206 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 207 legacy::PassManagerBase &PM) { 208 PM.add(createAddDiscriminatorsPass()); 209 } 210 211 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 212 legacy::PassManagerBase &PM) { 213 PM.add(createBoundsCheckingLegacyPass()); 214 } 215 216 static SanitizerCoverageOptions 217 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 218 SanitizerCoverageOptions Opts; 219 Opts.CoverageType = 220 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 221 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 222 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 223 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 224 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 225 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 226 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 227 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 228 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 229 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 230 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 231 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 232 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 233 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 234 return Opts; 235 } 236 237 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 238 legacy::PassManagerBase &PM) { 239 const PassManagerBuilderWrapper &BuilderWrapper = 240 static_cast<const PassManagerBuilderWrapper &>(Builder); 241 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 242 auto Opts = getSancovOptsFromCGOpts(CGOpts); 243 PM.add(createModuleSanitizerCoverageLegacyPassPass( 244 Opts, CGOpts.SanitizeCoverageAllowlistFiles, 245 CGOpts.SanitizeCoverageBlocklistFiles)); 246 } 247 248 // Check if ASan should use GC-friendly instrumentation for globals. 249 // First of all, there is no point if -fdata-sections is off (expect for MachO, 250 // where this is not a factor). Also, on ELF this feature requires an assembler 251 // extension that only works with -integrated-as at the moment. 252 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 253 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 254 return false; 255 switch (T.getObjectFormat()) { 256 case Triple::MachO: 257 case Triple::COFF: 258 return true; 259 case Triple::ELF: 260 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 261 case Triple::GOFF: 262 llvm::report_fatal_error("ASan not implemented for GOFF"); 263 case Triple::XCOFF: 264 llvm::report_fatal_error("ASan not implemented for XCOFF."); 265 case Triple::Wasm: 266 case Triple::UnknownObjectFormat: 267 break; 268 } 269 return false; 270 } 271 272 static void addMemProfilerPasses(const PassManagerBuilder &Builder, 273 legacy::PassManagerBase &PM) { 274 PM.add(createMemProfilerFunctionPass()); 275 PM.add(createModuleMemProfilerLegacyPassPass()); 276 } 277 278 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 279 legacy::PassManagerBase &PM) { 280 const PassManagerBuilderWrapper &BuilderWrapper = 281 static_cast<const PassManagerBuilderWrapper&>(Builder); 282 const Triple &T = BuilderWrapper.getTargetTriple(); 283 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 284 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 285 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 286 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 287 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 288 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 289 UseAfterScope)); 290 PM.add(createModuleAddressSanitizerLegacyPassPass( 291 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator)); 292 } 293 294 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 295 legacy::PassManagerBase &PM) { 296 PM.add(createAddressSanitizerFunctionPass( 297 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 298 PM.add(createModuleAddressSanitizerLegacyPassPass( 299 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 300 /*UseOdrIndicator*/ false)); 301 } 302 303 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 304 legacy::PassManagerBase &PM) { 305 const PassManagerBuilderWrapper &BuilderWrapper = 306 static_cast<const PassManagerBuilderWrapper &>(Builder); 307 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 308 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 309 PM.add( 310 createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover)); 311 } 312 313 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 314 legacy::PassManagerBase &PM) { 315 PM.add(createHWAddressSanitizerLegacyPassPass( 316 /*CompileKernel*/ true, /*Recover*/ true)); 317 } 318 319 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 320 legacy::PassManagerBase &PM, 321 bool CompileKernel) { 322 const PassManagerBuilderWrapper &BuilderWrapper = 323 static_cast<const PassManagerBuilderWrapper&>(Builder); 324 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 325 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 326 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 327 PM.add(createMemorySanitizerLegacyPassPass( 328 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 329 330 // MemorySanitizer inserts complex instrumentation that mostly follows 331 // the logic of the original code, but operates on "shadow" values. 332 // It can benefit from re-running some general purpose optimization passes. 333 if (Builder.OptLevel > 0) { 334 PM.add(createEarlyCSEPass()); 335 PM.add(createReassociatePass()); 336 PM.add(createLICMPass()); 337 PM.add(createGVNPass()); 338 PM.add(createInstructionCombiningPass()); 339 PM.add(createDeadStoreEliminationPass()); 340 } 341 } 342 343 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 344 legacy::PassManagerBase &PM) { 345 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 346 } 347 348 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 349 legacy::PassManagerBase &PM) { 350 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 351 } 352 353 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 354 legacy::PassManagerBase &PM) { 355 PM.add(createThreadSanitizerLegacyPassPass()); 356 } 357 358 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 359 legacy::PassManagerBase &PM) { 360 const PassManagerBuilderWrapper &BuilderWrapper = 361 static_cast<const PassManagerBuilderWrapper&>(Builder); 362 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 363 PM.add( 364 createDataFlowSanitizerLegacyPassPass(LangOpts.SanitizerBlacklistFiles)); 365 } 366 367 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 368 const CodeGenOptions &CodeGenOpts) { 369 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 370 371 switch (CodeGenOpts.getVecLib()) { 372 case CodeGenOptions::Accelerate: 373 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 374 break; 375 case CodeGenOptions::LIBMVEC: 376 switch(TargetTriple.getArch()) { 377 default: 378 break; 379 case llvm::Triple::x86_64: 380 TLII->addVectorizableFunctionsFromVecLib 381 (TargetLibraryInfoImpl::LIBMVEC_X86); 382 break; 383 } 384 break; 385 case CodeGenOptions::MASSV: 386 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 387 break; 388 case CodeGenOptions::SVML: 389 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 390 break; 391 default: 392 break; 393 } 394 return TLII; 395 } 396 397 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 398 legacy::PassManager *MPM) { 399 llvm::SymbolRewriter::RewriteDescriptorList DL; 400 401 llvm::SymbolRewriter::RewriteMapParser MapParser; 402 for (const auto &MapFile : Opts.RewriteMapFiles) 403 MapParser.parse(MapFile, &DL); 404 405 MPM->add(createRewriteSymbolsPass(DL)); 406 } 407 408 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 409 switch (CodeGenOpts.OptimizationLevel) { 410 default: 411 llvm_unreachable("Invalid optimization level!"); 412 case 0: 413 return CodeGenOpt::None; 414 case 1: 415 return CodeGenOpt::Less; 416 case 2: 417 return CodeGenOpt::Default; // O2/Os/Oz 418 case 3: 419 return CodeGenOpt::Aggressive; 420 } 421 } 422 423 static Optional<llvm::CodeModel::Model> 424 getCodeModel(const CodeGenOptions &CodeGenOpts) { 425 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 426 .Case("tiny", llvm::CodeModel::Tiny) 427 .Case("small", llvm::CodeModel::Small) 428 .Case("kernel", llvm::CodeModel::Kernel) 429 .Case("medium", llvm::CodeModel::Medium) 430 .Case("large", llvm::CodeModel::Large) 431 .Case("default", ~1u) 432 .Default(~0u); 433 assert(CodeModel != ~0u && "invalid code model!"); 434 if (CodeModel == ~1u) 435 return None; 436 return static_cast<llvm::CodeModel::Model>(CodeModel); 437 } 438 439 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 440 if (Action == Backend_EmitObj) 441 return CGFT_ObjectFile; 442 else if (Action == Backend_EmitMCNull) 443 return CGFT_Null; 444 else { 445 assert(Action == Backend_EmitAssembly && "Invalid action!"); 446 return CGFT_AssemblyFile; 447 } 448 } 449 450 static bool initTargetOptions(DiagnosticsEngine &Diags, 451 llvm::TargetOptions &Options, 452 const CodeGenOptions &CodeGenOpts, 453 const clang::TargetOptions &TargetOpts, 454 const LangOptions &LangOpts, 455 const HeaderSearchOptions &HSOpts) { 456 switch (LangOpts.getThreadModel()) { 457 case LangOptions::ThreadModelKind::POSIX: 458 Options.ThreadModel = llvm::ThreadModel::POSIX; 459 break; 460 case LangOptions::ThreadModelKind::Single: 461 Options.ThreadModel = llvm::ThreadModel::Single; 462 break; 463 } 464 465 // Set float ABI type. 466 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 467 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 468 "Invalid Floating Point ABI!"); 469 Options.FloatABIType = 470 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 471 .Case("soft", llvm::FloatABI::Soft) 472 .Case("softfp", llvm::FloatABI::Soft) 473 .Case("hard", llvm::FloatABI::Hard) 474 .Default(llvm::FloatABI::Default); 475 476 // Set FP fusion mode. 477 switch (LangOpts.getDefaultFPContractMode()) { 478 case LangOptions::FPM_Off: 479 // Preserve any contraction performed by the front-end. (Strict performs 480 // splitting of the muladd intrinsic in the backend.) 481 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 482 break; 483 case LangOptions::FPM_On: 484 case LangOptions::FPM_FastHonorPragmas: 485 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 486 break; 487 case LangOptions::FPM_Fast: 488 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 489 break; 490 } 491 492 Options.UseInitArray = CodeGenOpts.UseInitArray; 493 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 494 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 495 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 496 497 // Set EABI version. 498 Options.EABIVersion = TargetOpts.EABIVersion; 499 500 if (LangOpts.SjLjExceptions) 501 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 502 if (LangOpts.SEHExceptions) 503 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 504 if (LangOpts.DWARFExceptions) 505 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 506 if (LangOpts.WasmExceptions) 507 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 508 509 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 510 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 511 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 512 Options.UnsafeFPMath = LangOpts.UnsafeFPMath; 513 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 514 515 Options.BBSections = 516 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 517 .Case("all", llvm::BasicBlockSection::All) 518 .Case("labels", llvm::BasicBlockSection::Labels) 519 .StartsWith("list=", llvm::BasicBlockSection::List) 520 .Case("none", llvm::BasicBlockSection::None) 521 .Default(llvm::BasicBlockSection::None); 522 523 if (Options.BBSections == llvm::BasicBlockSection::List) { 524 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 525 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 526 if (!MBOrErr) { 527 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 528 << MBOrErr.getError().message(); 529 return false; 530 } 531 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 532 } 533 534 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions; 535 Options.FunctionSections = CodeGenOpts.FunctionSections; 536 Options.DataSections = CodeGenOpts.DataSections; 537 Options.IgnoreXCOFFVisibility = CodeGenOpts.IgnoreXCOFFVisibility; 538 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 539 Options.UniqueBasicBlockSectionNames = 540 CodeGenOpts.UniqueBasicBlockSectionNames; 541 Options.StackProtectorGuard = 542 llvm::StringSwitch<llvm::StackProtectorGuards>(CodeGenOpts 543 .StackProtectorGuard) 544 .Case("tls", llvm::StackProtectorGuards::TLS) 545 .Case("global", llvm::StackProtectorGuards::Global) 546 .Default(llvm::StackProtectorGuards::None); 547 Options.StackProtectorGuardOffset = CodeGenOpts.StackProtectorGuardOffset; 548 Options.StackProtectorGuardReg = CodeGenOpts.StackProtectorGuardReg; 549 Options.TLSSize = CodeGenOpts.TLSSize; 550 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 551 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 552 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 553 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 554 Options.EmitAddrsig = CodeGenOpts.Addrsig; 555 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 556 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 557 Options.ValueTrackingVariableLocations = 558 CodeGenOpts.ValueTrackingVariableLocations; 559 Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex; 560 561 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 562 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 563 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 564 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 565 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 566 Options.MCOptions.MCIncrementalLinkerCompatible = 567 CodeGenOpts.IncrementalLinkerCompatible; 568 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 569 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 570 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 571 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 572 Options.MCOptions.ABIName = TargetOpts.ABI; 573 for (const auto &Entry : HSOpts.UserEntries) 574 if (!Entry.IsFramework && 575 (Entry.Group == frontend::IncludeDirGroup::Quoted || 576 Entry.Group == frontend::IncludeDirGroup::Angled || 577 Entry.Group == frontend::IncludeDirGroup::System)) 578 Options.MCOptions.IASSearchPaths.push_back( 579 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 580 Options.MCOptions.Argv0 = CodeGenOpts.Argv0; 581 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; 582 583 return true; 584 } 585 586 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts, 587 const LangOptions &LangOpts) { 588 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 589 return None; 590 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 591 // LLVM's -default-gcov-version flag is set to something invalid. 592 GCOVOptions Options; 593 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 594 Options.EmitData = CodeGenOpts.EmitGcovArcs; 595 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 596 Options.NoRedZone = CodeGenOpts.DisableRedZone; 597 Options.Filter = CodeGenOpts.ProfileFilterFiles; 598 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 599 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 600 return Options; 601 } 602 603 static Optional<InstrProfOptions> 604 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 605 const LangOptions &LangOpts) { 606 if (!CodeGenOpts.hasProfileClangInstr()) 607 return None; 608 InstrProfOptions Options; 609 Options.NoRedZone = CodeGenOpts.DisableRedZone; 610 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 611 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 612 return Options; 613 } 614 615 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 616 legacy::FunctionPassManager &FPM) { 617 // Handle disabling of all LLVM passes, where we want to preserve the 618 // internal module before any optimization. 619 if (CodeGenOpts.DisableLLVMPasses) 620 return; 621 622 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 623 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 624 // are inserted before PMBuilder ones - they'd get the default-constructed 625 // TLI with an unknown target otherwise. 626 Triple TargetTriple(TheModule->getTargetTriple()); 627 std::unique_ptr<TargetLibraryInfoImpl> TLII( 628 createTLII(TargetTriple, CodeGenOpts)); 629 630 // If we reached here with a non-empty index file name, then the index file 631 // was empty and we are not performing ThinLTO backend compilation (used in 632 // testing in a distributed build environment). Drop any the type test 633 // assume sequences inserted for whole program vtables so that codegen doesn't 634 // complain. 635 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 636 MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr, 637 /*ImportSummary=*/nullptr, 638 /*DropTypeTests=*/true)); 639 640 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 641 642 // At O0 and O1 we only run the always inliner which is more efficient. At 643 // higher optimization levels we run the normal inliner. 644 if (CodeGenOpts.OptimizationLevel <= 1) { 645 bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 && 646 !CodeGenOpts.DisableLifetimeMarkers) || 647 LangOpts.Coroutines); 648 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 649 } else { 650 // We do not want to inline hot callsites for SamplePGO module-summary build 651 // because profile annotation will happen again in ThinLTO backend, and we 652 // want the IR of the hot path to match the profile. 653 PMBuilder.Inliner = createFunctionInliningPass( 654 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 655 (!CodeGenOpts.SampleProfileFile.empty() && 656 CodeGenOpts.PrepareForThinLTO)); 657 } 658 659 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 660 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 661 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 662 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 663 // Only enable CGProfilePass when using integrated assembler, since 664 // non-integrated assemblers don't recognize .cgprofile section. 665 PMBuilder.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 666 667 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 668 // Loop interleaving in the loop vectorizer has historically been set to be 669 // enabled when loop unrolling is enabled. 670 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 671 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 672 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 673 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 674 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 675 676 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 677 678 if (TM) 679 TM->adjustPassManager(PMBuilder); 680 681 if (CodeGenOpts.DebugInfoForProfiling || 682 !CodeGenOpts.SampleProfileFile.empty()) 683 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 684 addAddDiscriminatorsPass); 685 686 // In ObjC ARC mode, add the main ARC optimization passes. 687 if (LangOpts.ObjCAutoRefCount) { 688 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 689 addObjCARCExpandPass); 690 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 691 addObjCARCAPElimPass); 692 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 693 addObjCARCOptPass); 694 } 695 696 if (LangOpts.Coroutines) 697 addCoroutinePassesToExtensionPoints(PMBuilder); 698 699 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 700 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 701 addMemProfilerPasses); 702 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 703 addMemProfilerPasses); 704 } 705 706 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 707 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 708 addBoundsCheckingPass); 709 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 710 addBoundsCheckingPass); 711 } 712 713 if (CodeGenOpts.SanitizeCoverageType || 714 CodeGenOpts.SanitizeCoverageIndirectCalls || 715 CodeGenOpts.SanitizeCoverageTraceCmp) { 716 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 717 addSanitizerCoveragePass); 718 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 719 addSanitizerCoveragePass); 720 } 721 722 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 723 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 724 addAddressSanitizerPasses); 725 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 726 addAddressSanitizerPasses); 727 } 728 729 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 730 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 731 addKernelAddressSanitizerPasses); 732 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 733 addKernelAddressSanitizerPasses); 734 } 735 736 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 737 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 738 addHWAddressSanitizerPasses); 739 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 740 addHWAddressSanitizerPasses); 741 } 742 743 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 744 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 745 addKernelHWAddressSanitizerPasses); 746 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 747 addKernelHWAddressSanitizerPasses); 748 } 749 750 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 751 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 752 addMemorySanitizerPass); 753 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 754 addMemorySanitizerPass); 755 } 756 757 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 758 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 759 addKernelMemorySanitizerPass); 760 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 761 addKernelMemorySanitizerPass); 762 } 763 764 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 765 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 766 addThreadSanitizerPass); 767 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 768 addThreadSanitizerPass); 769 } 770 771 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 772 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 773 addDataFlowSanitizerPass); 774 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 775 addDataFlowSanitizerPass); 776 } 777 778 // Set up the per-function pass manager. 779 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 780 if (CodeGenOpts.VerifyModule) 781 FPM.add(createVerifierPass()); 782 783 // Set up the per-module pass manager. 784 if (!CodeGenOpts.RewriteMapFiles.empty()) 785 addSymbolRewriterPass(CodeGenOpts, &MPM); 786 787 // Add UniqueInternalLinkageNames Pass which renames internal linkage symbols 788 // with unique names. 789 if (CodeGenOpts.UniqueInternalLinkageNames) { 790 MPM.add(createUniqueInternalLinkageNamesPass()); 791 } 792 793 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) { 794 MPM.add(createGCOVProfilerPass(*Options)); 795 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 796 MPM.add(createStripSymbolsPass(true)); 797 } 798 799 if (Optional<InstrProfOptions> Options = 800 getInstrProfOptions(CodeGenOpts, LangOpts)) 801 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 802 803 bool hasIRInstr = false; 804 if (CodeGenOpts.hasProfileIRInstr()) { 805 PMBuilder.EnablePGOInstrGen = true; 806 hasIRInstr = true; 807 } 808 if (CodeGenOpts.hasProfileCSIRInstr()) { 809 assert(!CodeGenOpts.hasProfileCSIRUse() && 810 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 811 "same time"); 812 assert(!hasIRInstr && 813 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 814 "same time"); 815 PMBuilder.EnablePGOCSInstrGen = true; 816 hasIRInstr = true; 817 } 818 if (hasIRInstr) { 819 if (!CodeGenOpts.InstrProfileOutput.empty()) 820 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 821 else 822 PMBuilder.PGOInstrGen = std::string(DefaultProfileGenName); 823 } 824 if (CodeGenOpts.hasProfileIRUse()) { 825 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 826 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 827 } 828 829 if (!CodeGenOpts.SampleProfileFile.empty()) 830 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 831 832 PMBuilder.populateFunctionPassManager(FPM); 833 PMBuilder.populateModulePassManager(MPM); 834 } 835 836 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 837 SmallVector<const char *, 16> BackendArgs; 838 BackendArgs.push_back("clang"); // Fake program name. 839 if (!CodeGenOpts.DebugPass.empty()) { 840 BackendArgs.push_back("-debug-pass"); 841 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 842 } 843 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 844 BackendArgs.push_back("-limit-float-precision"); 845 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 846 } 847 BackendArgs.push_back(nullptr); 848 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 849 BackendArgs.data()); 850 } 851 852 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 853 // Create the TargetMachine for generating code. 854 std::string Error; 855 std::string Triple = TheModule->getTargetTriple(); 856 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 857 if (!TheTarget) { 858 if (MustCreateTM) 859 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 860 return; 861 } 862 863 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 864 std::string FeaturesStr = 865 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 866 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 867 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 868 869 llvm::TargetOptions Options; 870 if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, 871 HSOpts)) 872 return; 873 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 874 Options, RM, CM, OptLevel)); 875 } 876 877 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 878 BackendAction Action, 879 raw_pwrite_stream &OS, 880 raw_pwrite_stream *DwoOS) { 881 // Add LibraryInfo. 882 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 883 std::unique_ptr<TargetLibraryInfoImpl> TLII( 884 createTLII(TargetTriple, CodeGenOpts)); 885 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 886 887 // Normal mode, emit a .s or .o file by running the code generator. Note, 888 // this also adds codegenerator level optimization passes. 889 CodeGenFileType CGFT = getCodeGenFileType(Action); 890 891 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 892 // "codegen" passes so that it isn't run multiple times when there is 893 // inlining happening. 894 if (CodeGenOpts.OptimizationLevel > 0) 895 CodeGenPasses.add(createObjCARCContractPass()); 896 897 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 898 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 899 Diags.Report(diag::err_fe_unable_to_interface_with_target); 900 return false; 901 } 902 903 return true; 904 } 905 906 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 907 std::unique_ptr<raw_pwrite_stream> OS) { 908 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 909 910 setCommandLineOpts(CodeGenOpts); 911 912 bool UsesCodeGen = (Action != Backend_EmitNothing && 913 Action != Backend_EmitBC && 914 Action != Backend_EmitLL); 915 CreateTargetMachine(UsesCodeGen); 916 917 if (UsesCodeGen && !TM) 918 return; 919 if (TM) 920 TheModule->setDataLayout(TM->createDataLayout()); 921 922 legacy::PassManager PerModulePasses; 923 PerModulePasses.add( 924 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 925 926 legacy::FunctionPassManager PerFunctionPasses(TheModule); 927 PerFunctionPasses.add( 928 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 929 930 CreatePasses(PerModulePasses, PerFunctionPasses); 931 932 legacy::PassManager CodeGenPasses; 933 CodeGenPasses.add( 934 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 935 936 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 937 938 switch (Action) { 939 case Backend_EmitNothing: 940 break; 941 942 case Backend_EmitBC: 943 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 944 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 945 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 946 if (!ThinLinkOS) 947 return; 948 } 949 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 950 CodeGenOpts.EnableSplitLTOUnit); 951 PerModulePasses.add(createWriteThinLTOBitcodePass( 952 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 953 } else { 954 // Emit a module summary by default for Regular LTO except for ld64 955 // targets 956 bool EmitLTOSummary = 957 (CodeGenOpts.PrepareForLTO && 958 !CodeGenOpts.DisableLLVMPasses && 959 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 960 llvm::Triple::Apple); 961 if (EmitLTOSummary) { 962 if (!TheModule->getModuleFlag("ThinLTO")) 963 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 964 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 965 uint32_t(1)); 966 } 967 968 PerModulePasses.add(createBitcodeWriterPass( 969 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 970 } 971 break; 972 973 case Backend_EmitLL: 974 PerModulePasses.add( 975 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 976 break; 977 978 default: 979 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 980 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 981 if (!DwoOS) 982 return; 983 } 984 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 985 DwoOS ? &DwoOS->os() : nullptr)) 986 return; 987 } 988 989 // Before executing passes, print the final values of the LLVM options. 990 cl::PrintOptionValues(); 991 992 // Run passes. For now we do all passes at once, but eventually we 993 // would like to have the option of streaming code generation. 994 995 { 996 PrettyStackTraceString CrashInfo("Per-function optimization"); 997 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 998 999 PerFunctionPasses.doInitialization(); 1000 for (Function &F : *TheModule) 1001 if (!F.isDeclaration()) 1002 PerFunctionPasses.run(F); 1003 PerFunctionPasses.doFinalization(); 1004 } 1005 1006 { 1007 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 1008 llvm::TimeTraceScope TimeScope("PerModulePasses"); 1009 PerModulePasses.run(*TheModule); 1010 } 1011 1012 { 1013 PrettyStackTraceString CrashInfo("Code generation"); 1014 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1015 CodeGenPasses.run(*TheModule); 1016 } 1017 1018 if (ThinLinkOS) 1019 ThinLinkOS->keep(); 1020 if (DwoOS) 1021 DwoOS->keep(); 1022 } 1023 1024 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 1025 switch (Opts.OptimizationLevel) { 1026 default: 1027 llvm_unreachable("Invalid optimization level!"); 1028 1029 case 0: 1030 return PassBuilder::OptimizationLevel::O0; 1031 1032 case 1: 1033 return PassBuilder::OptimizationLevel::O1; 1034 1035 case 2: 1036 switch (Opts.OptimizeSize) { 1037 default: 1038 llvm_unreachable("Invalid optimization level for size!"); 1039 1040 case 0: 1041 return PassBuilder::OptimizationLevel::O2; 1042 1043 case 1: 1044 return PassBuilder::OptimizationLevel::Os; 1045 1046 case 2: 1047 return PassBuilder::OptimizationLevel::Oz; 1048 } 1049 1050 case 3: 1051 return PassBuilder::OptimizationLevel::O3; 1052 } 1053 } 1054 1055 /// A clean version of `EmitAssembly` that uses the new pass manager. 1056 /// 1057 /// Not all features are currently supported in this system, but where 1058 /// necessary it falls back to the legacy pass manager to at least provide 1059 /// basic functionality. 1060 /// 1061 /// This API is planned to have its functionality finished and then to replace 1062 /// `EmitAssembly` at some point in the future when the default switches. 1063 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 1064 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 1065 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 1066 setCommandLineOpts(CodeGenOpts); 1067 1068 bool RequiresCodeGen = (Action != Backend_EmitNothing && 1069 Action != Backend_EmitBC && 1070 Action != Backend_EmitLL); 1071 CreateTargetMachine(RequiresCodeGen); 1072 1073 if (RequiresCodeGen && !TM) 1074 return; 1075 if (TM) 1076 TheModule->setDataLayout(TM->createDataLayout()); 1077 1078 Optional<PGOOptions> PGOOpt; 1079 1080 if (CodeGenOpts.hasProfileIRInstr()) 1081 // -fprofile-generate. 1082 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1083 ? std::string(DefaultProfileGenName) 1084 : CodeGenOpts.InstrProfileOutput, 1085 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1086 CodeGenOpts.DebugInfoForProfiling); 1087 else if (CodeGenOpts.hasProfileIRUse()) { 1088 // -fprofile-use. 1089 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1090 : PGOOptions::NoCSAction; 1091 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1092 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1093 CSAction, CodeGenOpts.DebugInfoForProfiling); 1094 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1095 // -fprofile-sample-use 1096 PGOOpt = 1097 PGOOptions(CodeGenOpts.SampleProfileFile, "", 1098 CodeGenOpts.ProfileRemappingFile, PGOOptions::SampleUse, 1099 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling); 1100 else if (CodeGenOpts.DebugInfoForProfiling) 1101 // -fdebug-info-for-profiling 1102 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1103 PGOOptions::NoCSAction, true); 1104 1105 // Check to see if we want to generate a CS profile. 1106 if (CodeGenOpts.hasProfileCSIRInstr()) { 1107 assert(!CodeGenOpts.hasProfileCSIRUse() && 1108 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1109 "the same time"); 1110 if (PGOOpt.hasValue()) { 1111 assert(PGOOpt->Action != PGOOptions::IRInstr && 1112 PGOOpt->Action != PGOOptions::SampleUse && 1113 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1114 " pass"); 1115 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1116 ? std::string(DefaultProfileGenName) 1117 : CodeGenOpts.InstrProfileOutput; 1118 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1119 } else 1120 PGOOpt = PGOOptions("", 1121 CodeGenOpts.InstrProfileOutput.empty() 1122 ? std::string(DefaultProfileGenName) 1123 : CodeGenOpts.InstrProfileOutput, 1124 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1125 CodeGenOpts.DebugInfoForProfiling); 1126 } 1127 1128 PipelineTuningOptions PTO; 1129 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1130 // For historical reasons, loop interleaving is set to mirror setting for loop 1131 // unrolling. 1132 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1133 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1134 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1135 // Only enable CGProfilePass when using integrated assembler, since 1136 // non-integrated assemblers don't recognize .cgprofile section. 1137 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 1138 PTO.Coroutines = LangOpts.Coroutines; 1139 1140 PassInstrumentationCallbacks PIC; 1141 StandardInstrumentations SI(CodeGenOpts.DebugPassManager); 1142 SI.registerCallbacks(PIC); 1143 PassBuilder PB(CodeGenOpts.DebugPassManager, TM.get(), PTO, PGOOpt, &PIC); 1144 1145 // Attempt to load pass plugins and register their callbacks with PB. 1146 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1147 auto PassPlugin = PassPlugin::Load(PluginFN); 1148 if (PassPlugin) { 1149 PassPlugin->registerPassBuilderCallbacks(PB); 1150 } else { 1151 Diags.Report(diag::err_fe_unable_to_load_plugin) 1152 << PluginFN << toString(PassPlugin.takeError()); 1153 } 1154 } 1155 #define HANDLE_EXTENSION(Ext) \ 1156 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 1157 #include "llvm/Support/Extension.def" 1158 1159 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 1160 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 1161 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 1162 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 1163 1164 // Register the AA manager first so that our version is the one used. 1165 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1166 1167 // Register the target library analysis directly and give it a customized 1168 // preset TLI. 1169 Triple TargetTriple(TheModule->getTargetTriple()); 1170 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1171 createTLII(TargetTriple, CodeGenOpts)); 1172 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1173 1174 // Register all the basic analyses with the managers. 1175 PB.registerModuleAnalyses(MAM); 1176 PB.registerCGSCCAnalyses(CGAM); 1177 PB.registerFunctionAnalyses(FAM); 1178 PB.registerLoopAnalyses(LAM); 1179 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1180 1181 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 1182 1183 if (!CodeGenOpts.DisableLLVMPasses) { 1184 // Map our optimization levels into one of the distinct levels used to 1185 // configure the pipeline. 1186 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1187 1188 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1189 bool IsLTO = CodeGenOpts.PrepareForLTO; 1190 1191 // If we reached here with a non-empty index file name, then the index 1192 // file was empty and we are not performing ThinLTO backend compilation 1193 // (used in testing in a distributed build environment). Drop any the type 1194 // test assume sequences inserted for whole program vtables so that 1195 // codegen doesn't complain. 1196 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 1197 PB.registerPipelineStartEPCallback( 1198 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1199 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1200 /*ImportSummary=*/nullptr, 1201 /*DropTypeTests=*/true)); 1202 }); 1203 1204 if (Level != PassBuilder::OptimizationLevel::O0) { 1205 PB.registerPipelineStartEPCallback( 1206 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1207 MPM.addPass(createModuleToFunctionPassAdaptor( 1208 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1209 }); 1210 } 1211 1212 // Register callbacks to schedule sanitizer passes at the appropriate part 1213 // of the pipeline. 1214 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1215 PB.registerScalarOptimizerLateEPCallback( 1216 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1217 FPM.addPass(BoundsCheckingPass()); 1218 }); 1219 1220 if (CodeGenOpts.SanitizeCoverageType || 1221 CodeGenOpts.SanitizeCoverageIndirectCalls || 1222 CodeGenOpts.SanitizeCoverageTraceCmp) { 1223 PB.registerOptimizerLastEPCallback( 1224 [this](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1225 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1226 MPM.addPass(ModuleSanitizerCoveragePass( 1227 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1228 CodeGenOpts.SanitizeCoverageBlocklistFiles)); 1229 }); 1230 } 1231 1232 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 1233 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1234 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Memory); 1235 PB.registerOptimizerLastEPCallback( 1236 [TrackOrigins, Recover](ModulePassManager &MPM, 1237 PassBuilder::OptimizationLevel Level) { 1238 MPM.addPass(MemorySanitizerPass({TrackOrigins, Recover, false})); 1239 MPM.addPass(createModuleToFunctionPassAdaptor( 1240 MemorySanitizerPass({TrackOrigins, Recover, false}))); 1241 }); 1242 } 1243 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1244 PB.registerOptimizerLastEPCallback( 1245 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1246 MPM.addPass(ThreadSanitizerPass()); 1247 MPM.addPass( 1248 createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1249 }); 1250 } 1251 1252 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1253 if (LangOpts.Sanitize.has(Mask)) { 1254 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1255 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1256 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1257 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1258 PB.registerOptimizerLastEPCallback( 1259 [CompileKernel, Recover, UseAfterScope, ModuleUseAfterScope, 1260 UseOdrIndicator](ModulePassManager &MPM, 1261 PassBuilder::OptimizationLevel Level) { 1262 MPM.addPass( 1263 RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1264 MPM.addPass(ModuleAddressSanitizerPass(CompileKernel, Recover, 1265 ModuleUseAfterScope, 1266 UseOdrIndicator)); 1267 MPM.addPass(createModuleToFunctionPassAdaptor( 1268 AddressSanitizerPass(CompileKernel, Recover, UseAfterScope))); 1269 }); 1270 } 1271 }; 1272 ASanPass(SanitizerKind::Address, false); 1273 ASanPass(SanitizerKind::KernelAddress, true); 1274 1275 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1276 if (LangOpts.Sanitize.has(Mask)) { 1277 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1278 PB.registerOptimizerLastEPCallback( 1279 [CompileKernel, Recover](ModulePassManager &MPM, 1280 PassBuilder::OptimizationLevel Level) { 1281 MPM.addPass(HWAddressSanitizerPass(CompileKernel, Recover)); 1282 }); 1283 } 1284 }; 1285 HWASanPass(SanitizerKind::HWAddress, false); 1286 HWASanPass(SanitizerKind::KernelHWAddress, true); 1287 1288 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 1289 PB.registerOptimizerLastEPCallback( 1290 [this](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1291 MPM.addPass( 1292 DataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 1293 }); 1294 } 1295 1296 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) 1297 PB.registerPipelineStartEPCallback( 1298 [Options](ModulePassManager &MPM, 1299 PassBuilder::OptimizationLevel Level) { 1300 MPM.addPass(GCOVProfilerPass(*Options)); 1301 }); 1302 if (Optional<InstrProfOptions> Options = 1303 getInstrProfOptions(CodeGenOpts, LangOpts)) 1304 PB.registerPipelineStartEPCallback( 1305 [Options](ModulePassManager &MPM, 1306 PassBuilder::OptimizationLevel Level) { 1307 MPM.addPass(InstrProfiling(*Options, false)); 1308 }); 1309 1310 if (CodeGenOpts.OptimizationLevel == 0) { 1311 MPM = PB.buildO0DefaultPipeline(Level, IsLTO || IsThinLTO); 1312 } else if (IsThinLTO) { 1313 MPM = PB.buildThinLTOPreLinkDefaultPipeline(Level); 1314 } else if (IsLTO) { 1315 MPM = PB.buildLTOPreLinkDefaultPipeline(Level); 1316 } else { 1317 MPM = PB.buildPerModuleDefaultPipeline(Level); 1318 } 1319 1320 // Add UniqueInternalLinkageNames Pass which renames internal linkage 1321 // symbols with unique names. 1322 if (CodeGenOpts.UniqueInternalLinkageNames) 1323 MPM.addPass(UniqueInternalLinkageNamesPass()); 1324 1325 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1326 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass())); 1327 MPM.addPass(ModuleMemProfilerPass()); 1328 } 1329 } 1330 1331 // FIXME: We still use the legacy pass manager to do code generation. We 1332 // create that pass manager here and use it as needed below. 1333 legacy::PassManager CodeGenPasses; 1334 bool NeedCodeGen = false; 1335 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1336 1337 // Append any output we need to the pass manager. 1338 switch (Action) { 1339 case Backend_EmitNothing: 1340 break; 1341 1342 case Backend_EmitBC: 1343 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1344 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1345 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1346 if (!ThinLinkOS) 1347 return; 1348 } 1349 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1350 CodeGenOpts.EnableSplitLTOUnit); 1351 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1352 : nullptr)); 1353 } else { 1354 // Emit a module summary by default for Regular LTO except for ld64 1355 // targets 1356 bool EmitLTOSummary = 1357 (CodeGenOpts.PrepareForLTO && 1358 !CodeGenOpts.DisableLLVMPasses && 1359 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1360 llvm::Triple::Apple); 1361 if (EmitLTOSummary) { 1362 if (!TheModule->getModuleFlag("ThinLTO")) 1363 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1364 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1365 uint32_t(1)); 1366 } 1367 MPM.addPass( 1368 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1369 } 1370 break; 1371 1372 case Backend_EmitLL: 1373 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1374 break; 1375 1376 case Backend_EmitAssembly: 1377 case Backend_EmitMCNull: 1378 case Backend_EmitObj: 1379 NeedCodeGen = true; 1380 CodeGenPasses.add( 1381 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1382 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1383 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1384 if (!DwoOS) 1385 return; 1386 } 1387 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1388 DwoOS ? &DwoOS->os() : nullptr)) 1389 // FIXME: Should we handle this error differently? 1390 return; 1391 break; 1392 } 1393 1394 // Before executing passes, print the final values of the LLVM options. 1395 cl::PrintOptionValues(); 1396 1397 // Now that we have all of the passes ready, run them. 1398 { 1399 PrettyStackTraceString CrashInfo("Optimizer"); 1400 MPM.run(*TheModule, MAM); 1401 } 1402 1403 // Now if needed, run the legacy PM for codegen. 1404 if (NeedCodeGen) { 1405 PrettyStackTraceString CrashInfo("Code generation"); 1406 CodeGenPasses.run(*TheModule); 1407 } 1408 1409 if (ThinLinkOS) 1410 ThinLinkOS->keep(); 1411 if (DwoOS) 1412 DwoOS->keep(); 1413 } 1414 1415 static void runThinLTOBackend( 1416 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M, 1417 const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, 1418 const clang::TargetOptions &TOpts, const LangOptions &LOpts, 1419 std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile, 1420 std::string ProfileRemapping, BackendAction Action) { 1421 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1422 ModuleToDefinedGVSummaries; 1423 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1424 1425 setCommandLineOpts(CGOpts); 1426 1427 // We can simply import the values mentioned in the combined index, since 1428 // we should only invoke this using the individual indexes written out 1429 // via a WriteIndexesThinBackend. 1430 FunctionImporter::ImportMapTy ImportList; 1431 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1432 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1433 if (!lto::loadReferencedModules(*M, *CombinedIndex, ImportList, ModuleMap, 1434 OwnedImports)) 1435 return; 1436 1437 auto AddStream = [&](size_t Task) { 1438 return std::make_unique<lto::NativeObjectStream>(std::move(OS)); 1439 }; 1440 lto::Config Conf; 1441 if (CGOpts.SaveTempsFilePrefix != "") { 1442 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1443 /* UseInputModulePath */ false)) { 1444 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1445 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1446 << '\n'; 1447 }); 1448 } 1449 } 1450 Conf.CPU = TOpts.CPU; 1451 Conf.CodeModel = getCodeModel(CGOpts); 1452 Conf.MAttrs = TOpts.Features; 1453 Conf.RelocModel = CGOpts.RelocationModel; 1454 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1455 Conf.OptLevel = CGOpts.OptimizationLevel; 1456 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1457 Conf.SampleProfile = std::move(SampleProfile); 1458 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1459 // For historical reasons, loop interleaving is set to mirror setting for loop 1460 // unrolling. 1461 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1462 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1463 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1464 // Only enable CGProfilePass when using integrated assembler, since 1465 // non-integrated assemblers don't recognize .cgprofile section. 1466 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1467 1468 // Context sensitive profile. 1469 if (CGOpts.hasProfileCSIRInstr()) { 1470 Conf.RunCSIRInstr = true; 1471 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1472 } else if (CGOpts.hasProfileCSIRUse()) { 1473 Conf.RunCSIRInstr = false; 1474 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1475 } 1476 1477 Conf.ProfileRemapping = std::move(ProfileRemapping); 1478 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1479 Conf.DebugPassManager = CGOpts.DebugPassManager; 1480 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1481 Conf.RemarksFilename = CGOpts.OptRecordFile; 1482 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1483 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1484 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1485 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1486 switch (Action) { 1487 case Backend_EmitNothing: 1488 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1489 return false; 1490 }; 1491 break; 1492 case Backend_EmitLL: 1493 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1494 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1495 return false; 1496 }; 1497 break; 1498 case Backend_EmitBC: 1499 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1500 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1501 return false; 1502 }; 1503 break; 1504 default: 1505 Conf.CGFileType = getCodeGenFileType(Action); 1506 break; 1507 } 1508 if (Error E = 1509 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1510 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], 1511 ModuleMap, CGOpts.CmdArgs)) { 1512 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1513 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1514 }); 1515 } 1516 } 1517 1518 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1519 const HeaderSearchOptions &HeaderOpts, 1520 const CodeGenOptions &CGOpts, 1521 const clang::TargetOptions &TOpts, 1522 const LangOptions &LOpts, 1523 const llvm::DataLayout &TDesc, Module *M, 1524 BackendAction Action, 1525 std::unique_ptr<raw_pwrite_stream> OS) { 1526 1527 llvm::TimeTraceScope TimeScope("Backend"); 1528 1529 std::unique_ptr<llvm::Module> EmptyModule; 1530 if (!CGOpts.ThinLTOIndexFile.empty()) { 1531 // If we are performing a ThinLTO importing compile, load the function index 1532 // into memory and pass it into runThinLTOBackend, which will run the 1533 // function importer and invoke LTO passes. 1534 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1535 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1536 /*IgnoreEmptyThinLTOIndexFile*/true); 1537 if (!IndexOrErr) { 1538 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1539 "Error loading index file '" + 1540 CGOpts.ThinLTOIndexFile + "': "); 1541 return; 1542 } 1543 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1544 // A null CombinedIndex means we should skip ThinLTO compilation 1545 // (LLVM will optionally ignore empty index files, returning null instead 1546 // of an error). 1547 if (CombinedIndex) { 1548 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1549 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, 1550 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, 1551 CGOpts.ProfileRemappingFile, Action); 1552 return; 1553 } 1554 // Distributed indexing detected that nothing from the module is needed 1555 // for the final linking. So we can skip the compilation. We sill need to 1556 // output an empty object file to make sure that a linker does not fail 1557 // trying to read it. Also for some features, like CFI, we must skip 1558 // the compilation as CombinedIndex does not contain all required 1559 // information. 1560 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1561 EmptyModule->setTargetTriple(M->getTargetTriple()); 1562 M = EmptyModule.get(); 1563 } 1564 } 1565 1566 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1567 1568 if (CGOpts.ExperimentalNewPassManager) 1569 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1570 else 1571 AsmHelper.EmitAssembly(Action, std::move(OS)); 1572 1573 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1574 // DataLayout. 1575 if (AsmHelper.TM) { 1576 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1577 if (DLDesc != TDesc.getStringRepresentation()) { 1578 unsigned DiagID = Diags.getCustomDiagID( 1579 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1580 "expected target description '%1'"); 1581 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1582 } 1583 } 1584 } 1585 1586 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1587 // __LLVM,__bitcode section. 1588 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1589 llvm::MemoryBufferRef Buf) { 1590 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1591 return; 1592 llvm::EmbedBitcodeInModule( 1593 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1594 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1595 CGOpts.CmdArgs); 1596 } 1597