1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/StackSafetyAnalysis.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/IRPrintingPasses.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/ModuleSummaryIndex.h" 35 #include "llvm/IR/PassManager.h" 36 #include "llvm/IR/Verifier.h" 37 #include "llvm/LTO/LTOBackend.h" 38 #include "llvm/MC/MCAsmInfo.h" 39 #include "llvm/MC/SubtargetFeature.h" 40 #include "llvm/Passes/PassBuilder.h" 41 #include "llvm/Passes/PassPlugin.h" 42 #include "llvm/Passes/StandardInstrumentations.h" 43 #include "llvm/Support/BuryPointer.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/MemoryBuffer.h" 46 #include "llvm/Support/PrettyStackTrace.h" 47 #include "llvm/Support/TargetRegistry.h" 48 #include "llvm/Support/TimeProfiler.h" 49 #include "llvm/Support/Timer.h" 50 #include "llvm/Support/ToolOutputFile.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Target/TargetMachine.h" 53 #include "llvm/Target/TargetOptions.h" 54 #include "llvm/Transforms/Coroutines.h" 55 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 56 #include "llvm/Transforms/Coroutines/CoroEarly.h" 57 #include "llvm/Transforms/Coroutines/CoroElide.h" 58 #include "llvm/Transforms/Coroutines/CoroSplit.h" 59 #include "llvm/Transforms/IPO.h" 60 #include "llvm/Transforms/IPO/AlwaysInliner.h" 61 #include "llvm/Transforms/IPO/LowerTypeTests.h" 62 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 63 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 64 #include "llvm/Transforms/InstCombine/InstCombine.h" 65 #include "llvm/Transforms/Instrumentation.h" 66 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 67 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 68 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 69 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 70 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 71 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 72 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 73 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 74 #include "llvm/Transforms/ObjCARC.h" 75 #include "llvm/Transforms/Scalar.h" 76 #include "llvm/Transforms/Scalar/GVN.h" 77 #include "llvm/Transforms/Utils.h" 78 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 79 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 80 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 81 #include "llvm/Transforms/Utils/SymbolRewriter.h" 82 #include "llvm/Transforms/Utils/UniqueInternalLinkageNames.h" 83 #include <memory> 84 using namespace clang; 85 using namespace llvm; 86 87 #define HANDLE_EXTENSION(Ext) \ 88 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 89 #include "llvm/Support/Extension.def" 90 91 namespace { 92 93 // Default filename used for profile generation. 94 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 95 96 class EmitAssemblyHelper { 97 DiagnosticsEngine &Diags; 98 const HeaderSearchOptions &HSOpts; 99 const CodeGenOptions &CodeGenOpts; 100 const clang::TargetOptions &TargetOpts; 101 const LangOptions &LangOpts; 102 Module *TheModule; 103 104 Timer CodeGenerationTime; 105 106 std::unique_ptr<raw_pwrite_stream> OS; 107 108 TargetIRAnalysis getTargetIRAnalysis() const { 109 if (TM) 110 return TM->getTargetIRAnalysis(); 111 112 return TargetIRAnalysis(); 113 } 114 115 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 116 117 /// Generates the TargetMachine. 118 /// Leaves TM unchanged if it is unable to create the target machine. 119 /// Some of our clang tests specify triples which are not built 120 /// into clang. This is okay because these tests check the generated 121 /// IR, and they require DataLayout which depends on the triple. 122 /// In this case, we allow this method to fail and not report an error. 123 /// When MustCreateTM is used, we print an error if we are unable to load 124 /// the requested target. 125 void CreateTargetMachine(bool MustCreateTM); 126 127 /// Add passes necessary to emit assembly or LLVM IR. 128 /// 129 /// \return True on success. 130 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 131 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 132 133 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 134 std::error_code EC; 135 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 136 llvm::sys::fs::OF_None); 137 if (EC) { 138 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 139 F.reset(); 140 } 141 return F; 142 } 143 144 public: 145 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 146 const HeaderSearchOptions &HeaderSearchOpts, 147 const CodeGenOptions &CGOpts, 148 const clang::TargetOptions &TOpts, 149 const LangOptions &LOpts, Module *M) 150 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 151 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 152 CodeGenerationTime("codegen", "Code Generation Time") {} 153 154 ~EmitAssemblyHelper() { 155 if (CodeGenOpts.DisableFree) 156 BuryPointer(std::move(TM)); 157 } 158 159 std::unique_ptr<TargetMachine> TM; 160 161 void EmitAssembly(BackendAction Action, 162 std::unique_ptr<raw_pwrite_stream> OS); 163 164 void EmitAssemblyWithNewPassManager(BackendAction Action, 165 std::unique_ptr<raw_pwrite_stream> OS); 166 }; 167 168 // We need this wrapper to access LangOpts and CGOpts from extension functions 169 // that we add to the PassManagerBuilder. 170 class PassManagerBuilderWrapper : public PassManagerBuilder { 171 public: 172 PassManagerBuilderWrapper(const Triple &TargetTriple, 173 const CodeGenOptions &CGOpts, 174 const LangOptions &LangOpts) 175 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 176 LangOpts(LangOpts) {} 177 const Triple &getTargetTriple() const { return TargetTriple; } 178 const CodeGenOptions &getCGOpts() const { return CGOpts; } 179 const LangOptions &getLangOpts() const { return LangOpts; } 180 181 private: 182 const Triple &TargetTriple; 183 const CodeGenOptions &CGOpts; 184 const LangOptions &LangOpts; 185 }; 186 } 187 188 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 189 if (Builder.OptLevel > 0) 190 PM.add(createObjCARCAPElimPass()); 191 } 192 193 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 194 if (Builder.OptLevel > 0) 195 PM.add(createObjCARCExpandPass()); 196 } 197 198 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 199 if (Builder.OptLevel > 0) 200 PM.add(createObjCARCOptPass()); 201 } 202 203 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 204 legacy::PassManagerBase &PM) { 205 PM.add(createAddDiscriminatorsPass()); 206 } 207 208 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 209 legacy::PassManagerBase &PM) { 210 PM.add(createBoundsCheckingLegacyPass()); 211 } 212 213 static SanitizerCoverageOptions 214 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 215 SanitizerCoverageOptions Opts; 216 Opts.CoverageType = 217 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 218 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 219 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 220 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 221 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 222 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 223 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 224 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 225 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 226 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 227 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 228 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 229 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 230 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 231 return Opts; 232 } 233 234 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 235 legacy::PassManagerBase &PM) { 236 const PassManagerBuilderWrapper &BuilderWrapper = 237 static_cast<const PassManagerBuilderWrapper &>(Builder); 238 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 239 auto Opts = getSancovOptsFromCGOpts(CGOpts); 240 PM.add(createModuleSanitizerCoverageLegacyPassPass( 241 Opts, CGOpts.SanitizeCoverageAllowlistFiles, 242 CGOpts.SanitizeCoverageBlocklistFiles)); 243 } 244 245 // Check if ASan should use GC-friendly instrumentation for globals. 246 // First of all, there is no point if -fdata-sections is off (expect for MachO, 247 // where this is not a factor). Also, on ELF this feature requires an assembler 248 // extension that only works with -integrated-as at the moment. 249 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 250 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 251 return false; 252 switch (T.getObjectFormat()) { 253 case Triple::MachO: 254 case Triple::COFF: 255 return true; 256 case Triple::ELF: 257 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 258 case Triple::XCOFF: 259 llvm::report_fatal_error("ASan not implemented for XCOFF."); 260 case Triple::Wasm: 261 case Triple::UnknownObjectFormat: 262 break; 263 } 264 return false; 265 } 266 267 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 268 legacy::PassManagerBase &PM) { 269 const PassManagerBuilderWrapper &BuilderWrapper = 270 static_cast<const PassManagerBuilderWrapper&>(Builder); 271 const Triple &T = BuilderWrapper.getTargetTriple(); 272 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 273 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 274 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 275 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 276 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 277 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 278 UseAfterScope)); 279 PM.add(createModuleAddressSanitizerLegacyPassPass( 280 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator)); 281 } 282 283 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 284 legacy::PassManagerBase &PM) { 285 PM.add(createAddressSanitizerFunctionPass( 286 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 287 PM.add(createModuleAddressSanitizerLegacyPassPass( 288 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 289 /*UseOdrIndicator*/ false)); 290 } 291 292 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 293 legacy::PassManagerBase &PM) { 294 const PassManagerBuilderWrapper &BuilderWrapper = 295 static_cast<const PassManagerBuilderWrapper &>(Builder); 296 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 297 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 298 PM.add( 299 createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover)); 300 } 301 302 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 303 legacy::PassManagerBase &PM) { 304 PM.add(createHWAddressSanitizerLegacyPassPass( 305 /*CompileKernel*/ true, /*Recover*/ true)); 306 } 307 308 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 309 legacy::PassManagerBase &PM, 310 bool CompileKernel) { 311 const PassManagerBuilderWrapper &BuilderWrapper = 312 static_cast<const PassManagerBuilderWrapper&>(Builder); 313 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 314 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 315 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 316 PM.add(createMemorySanitizerLegacyPassPass( 317 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 318 319 // MemorySanitizer inserts complex instrumentation that mostly follows 320 // the logic of the original code, but operates on "shadow" values. 321 // It can benefit from re-running some general purpose optimization passes. 322 if (Builder.OptLevel > 0) { 323 PM.add(createEarlyCSEPass()); 324 PM.add(createReassociatePass()); 325 PM.add(createLICMPass()); 326 PM.add(createGVNPass()); 327 PM.add(createInstructionCombiningPass()); 328 PM.add(createDeadStoreEliminationPass()); 329 } 330 } 331 332 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 333 legacy::PassManagerBase &PM) { 334 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 335 } 336 337 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 338 legacy::PassManagerBase &PM) { 339 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 340 } 341 342 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 343 legacy::PassManagerBase &PM) { 344 PM.add(createThreadSanitizerLegacyPassPass()); 345 } 346 347 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 348 legacy::PassManagerBase &PM) { 349 const PassManagerBuilderWrapper &BuilderWrapper = 350 static_cast<const PassManagerBuilderWrapper&>(Builder); 351 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 352 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 353 } 354 355 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 356 const CodeGenOptions &CodeGenOpts) { 357 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 358 359 switch (CodeGenOpts.getVecLib()) { 360 case CodeGenOptions::Accelerate: 361 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 362 break; 363 case CodeGenOptions::MASSV: 364 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 365 break; 366 case CodeGenOptions::SVML: 367 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 368 break; 369 default: 370 break; 371 } 372 return TLII; 373 } 374 375 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 376 legacy::PassManager *MPM) { 377 llvm::SymbolRewriter::RewriteDescriptorList DL; 378 379 llvm::SymbolRewriter::RewriteMapParser MapParser; 380 for (const auto &MapFile : Opts.RewriteMapFiles) 381 MapParser.parse(MapFile, &DL); 382 383 MPM->add(createRewriteSymbolsPass(DL)); 384 } 385 386 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 387 switch (CodeGenOpts.OptimizationLevel) { 388 default: 389 llvm_unreachable("Invalid optimization level!"); 390 case 0: 391 return CodeGenOpt::None; 392 case 1: 393 return CodeGenOpt::Less; 394 case 2: 395 return CodeGenOpt::Default; // O2/Os/Oz 396 case 3: 397 return CodeGenOpt::Aggressive; 398 } 399 } 400 401 static Optional<llvm::CodeModel::Model> 402 getCodeModel(const CodeGenOptions &CodeGenOpts) { 403 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 404 .Case("tiny", llvm::CodeModel::Tiny) 405 .Case("small", llvm::CodeModel::Small) 406 .Case("kernel", llvm::CodeModel::Kernel) 407 .Case("medium", llvm::CodeModel::Medium) 408 .Case("large", llvm::CodeModel::Large) 409 .Case("default", ~1u) 410 .Default(~0u); 411 assert(CodeModel != ~0u && "invalid code model!"); 412 if (CodeModel == ~1u) 413 return None; 414 return static_cast<llvm::CodeModel::Model>(CodeModel); 415 } 416 417 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 418 if (Action == Backend_EmitObj) 419 return CGFT_ObjectFile; 420 else if (Action == Backend_EmitMCNull) 421 return CGFT_Null; 422 else { 423 assert(Action == Backend_EmitAssembly && "Invalid action!"); 424 return CGFT_AssemblyFile; 425 } 426 } 427 428 static void initTargetOptions(DiagnosticsEngine &Diags, 429 llvm::TargetOptions &Options, 430 const CodeGenOptions &CodeGenOpts, 431 const clang::TargetOptions &TargetOpts, 432 const LangOptions &LangOpts, 433 const HeaderSearchOptions &HSOpts) { 434 Options.ThreadModel = 435 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 436 .Case("posix", llvm::ThreadModel::POSIX) 437 .Case("single", llvm::ThreadModel::Single); 438 439 // Set float ABI type. 440 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 441 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 442 "Invalid Floating Point ABI!"); 443 Options.FloatABIType = 444 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 445 .Case("soft", llvm::FloatABI::Soft) 446 .Case("softfp", llvm::FloatABI::Soft) 447 .Case("hard", llvm::FloatABI::Hard) 448 .Default(llvm::FloatABI::Default); 449 450 // Set FP fusion mode. 451 switch (LangOpts.getDefaultFPContractMode()) { 452 case LangOptions::FPM_Off: 453 // Preserve any contraction performed by the front-end. (Strict performs 454 // splitting of the muladd intrinsic in the backend.) 455 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 456 break; 457 case LangOptions::FPM_On: 458 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 459 break; 460 case LangOptions::FPM_Fast: 461 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 462 break; 463 } 464 465 Options.UseInitArray = CodeGenOpts.UseInitArray; 466 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 467 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 468 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 469 470 // Set EABI version. 471 Options.EABIVersion = TargetOpts.EABIVersion; 472 473 if (LangOpts.SjLjExceptions) 474 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 475 if (LangOpts.SEHExceptions) 476 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 477 if (LangOpts.DWARFExceptions) 478 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 479 if (LangOpts.WasmExceptions) 480 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 481 482 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 483 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 484 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 485 Options.UnsafeFPMath = LangOpts.UnsafeFPMath; 486 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 487 488 Options.BBSections = 489 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 490 .Case("all", llvm::BasicBlockSection::All) 491 .Case("labels", llvm::BasicBlockSection::Labels) 492 .StartsWith("list=", llvm::BasicBlockSection::List) 493 .Case("none", llvm::BasicBlockSection::None) 494 .Default(llvm::BasicBlockSection::None); 495 496 if (Options.BBSections == llvm::BasicBlockSection::List) { 497 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 498 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 499 if (!MBOrErr) 500 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 501 << MBOrErr.getError().message(); 502 else 503 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 504 } 505 506 Options.FunctionSections = CodeGenOpts.FunctionSections; 507 Options.DataSections = CodeGenOpts.DataSections; 508 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 509 Options.UniqueBasicBlockSectionNames = 510 CodeGenOpts.UniqueBasicBlockSectionNames; 511 Options.TLSSize = CodeGenOpts.TLSSize; 512 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 513 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 514 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 515 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 516 Options.EmitAddrsig = CodeGenOpts.Addrsig; 517 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 518 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 519 Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex; 520 521 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 522 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 523 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 524 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 525 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 526 Options.MCOptions.MCIncrementalLinkerCompatible = 527 CodeGenOpts.IncrementalLinkerCompatible; 528 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 529 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 530 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 531 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 532 Options.MCOptions.ABIName = TargetOpts.ABI; 533 for (const auto &Entry : HSOpts.UserEntries) 534 if (!Entry.IsFramework && 535 (Entry.Group == frontend::IncludeDirGroup::Quoted || 536 Entry.Group == frontend::IncludeDirGroup::Angled || 537 Entry.Group == frontend::IncludeDirGroup::System)) 538 Options.MCOptions.IASSearchPaths.push_back( 539 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 540 Options.MCOptions.Argv0 = CodeGenOpts.Argv0; 541 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; 542 } 543 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 544 if (CodeGenOpts.DisableGCov) 545 return None; 546 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 547 return None; 548 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 549 // LLVM's -default-gcov-version flag is set to something invalid. 550 GCOVOptions Options; 551 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 552 Options.EmitData = CodeGenOpts.EmitGcovArcs; 553 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 554 Options.NoRedZone = CodeGenOpts.DisableRedZone; 555 Options.Filter = CodeGenOpts.ProfileFilterFiles; 556 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 557 return Options; 558 } 559 560 static Optional<InstrProfOptions> 561 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 562 const LangOptions &LangOpts) { 563 if (!CodeGenOpts.hasProfileClangInstr()) 564 return None; 565 InstrProfOptions Options; 566 Options.NoRedZone = CodeGenOpts.DisableRedZone; 567 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 568 569 // TODO: Surface the option to emit atomic profile counter increments at 570 // the driver level. 571 Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread); 572 return Options; 573 } 574 575 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 576 legacy::FunctionPassManager &FPM) { 577 // Handle disabling of all LLVM passes, where we want to preserve the 578 // internal module before any optimization. 579 if (CodeGenOpts.DisableLLVMPasses) 580 return; 581 582 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 583 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 584 // are inserted before PMBuilder ones - they'd get the default-constructed 585 // TLI with an unknown target otherwise. 586 Triple TargetTriple(TheModule->getTargetTriple()); 587 std::unique_ptr<TargetLibraryInfoImpl> TLII( 588 createTLII(TargetTriple, CodeGenOpts)); 589 590 // If we reached here with a non-empty index file name, then the index file 591 // was empty and we are not performing ThinLTO backend compilation (used in 592 // testing in a distributed build environment). Drop any the type test 593 // assume sequences inserted for whole program vtables so that codegen doesn't 594 // complain. 595 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 596 MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr, 597 /*ImportSummary=*/nullptr, 598 /*DropTypeTests=*/true)); 599 600 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 601 602 // At O0 and O1 we only run the always inliner which is more efficient. At 603 // higher optimization levels we run the normal inliner. 604 if (CodeGenOpts.OptimizationLevel <= 1) { 605 bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 && 606 !CodeGenOpts.DisableLifetimeMarkers) || 607 LangOpts.Coroutines); 608 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 609 } else { 610 // We do not want to inline hot callsites for SamplePGO module-summary build 611 // because profile annotation will happen again in ThinLTO backend, and we 612 // want the IR of the hot path to match the profile. 613 PMBuilder.Inliner = createFunctionInliningPass( 614 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 615 (!CodeGenOpts.SampleProfileFile.empty() && 616 CodeGenOpts.PrepareForThinLTO)); 617 } 618 619 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 620 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 621 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 622 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 623 624 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 625 // Loop interleaving in the loop vectorizer has historically been set to be 626 // enabled when loop unrolling is enabled. 627 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 628 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 629 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 630 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 631 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 632 633 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 634 635 if (TM) 636 TM->adjustPassManager(PMBuilder); 637 638 if (CodeGenOpts.DebugInfoForProfiling || 639 !CodeGenOpts.SampleProfileFile.empty()) 640 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 641 addAddDiscriminatorsPass); 642 643 // In ObjC ARC mode, add the main ARC optimization passes. 644 if (LangOpts.ObjCAutoRefCount) { 645 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 646 addObjCARCExpandPass); 647 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 648 addObjCARCAPElimPass); 649 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 650 addObjCARCOptPass); 651 } 652 653 if (LangOpts.Coroutines) 654 addCoroutinePassesToExtensionPoints(PMBuilder); 655 656 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 657 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 658 addBoundsCheckingPass); 659 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 660 addBoundsCheckingPass); 661 } 662 663 if (CodeGenOpts.SanitizeCoverageType || 664 CodeGenOpts.SanitizeCoverageIndirectCalls || 665 CodeGenOpts.SanitizeCoverageTraceCmp) { 666 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 667 addSanitizerCoveragePass); 668 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 669 addSanitizerCoveragePass); 670 } 671 672 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 673 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 674 addAddressSanitizerPasses); 675 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 676 addAddressSanitizerPasses); 677 } 678 679 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 680 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 681 addKernelAddressSanitizerPasses); 682 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 683 addKernelAddressSanitizerPasses); 684 } 685 686 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 687 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 688 addHWAddressSanitizerPasses); 689 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 690 addHWAddressSanitizerPasses); 691 } 692 693 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 694 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 695 addKernelHWAddressSanitizerPasses); 696 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 697 addKernelHWAddressSanitizerPasses); 698 } 699 700 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 701 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 702 addMemorySanitizerPass); 703 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 704 addMemorySanitizerPass); 705 } 706 707 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 708 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 709 addKernelMemorySanitizerPass); 710 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 711 addKernelMemorySanitizerPass); 712 } 713 714 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 715 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 716 addThreadSanitizerPass); 717 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 718 addThreadSanitizerPass); 719 } 720 721 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 722 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 723 addDataFlowSanitizerPass); 724 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 725 addDataFlowSanitizerPass); 726 } 727 728 // Set up the per-function pass manager. 729 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 730 if (CodeGenOpts.VerifyModule) 731 FPM.add(createVerifierPass()); 732 733 // Set up the per-module pass manager. 734 if (!CodeGenOpts.RewriteMapFiles.empty()) 735 addSymbolRewriterPass(CodeGenOpts, &MPM); 736 737 // Add UniqueInternalLinkageNames Pass which renames internal linkage symbols 738 // with unique names. 739 if (CodeGenOpts.UniqueInternalLinkageNames) { 740 MPM.add(createUniqueInternalLinkageNamesPass()); 741 } 742 743 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 744 MPM.add(createGCOVProfilerPass(*Options)); 745 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 746 MPM.add(createStripSymbolsPass(true)); 747 } 748 749 if (Optional<InstrProfOptions> Options = 750 getInstrProfOptions(CodeGenOpts, LangOpts)) 751 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 752 753 bool hasIRInstr = false; 754 if (CodeGenOpts.hasProfileIRInstr()) { 755 PMBuilder.EnablePGOInstrGen = true; 756 hasIRInstr = true; 757 } 758 if (CodeGenOpts.hasProfileCSIRInstr()) { 759 assert(!CodeGenOpts.hasProfileCSIRUse() && 760 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 761 "same time"); 762 assert(!hasIRInstr && 763 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 764 "same time"); 765 PMBuilder.EnablePGOCSInstrGen = true; 766 hasIRInstr = true; 767 } 768 if (hasIRInstr) { 769 if (!CodeGenOpts.InstrProfileOutput.empty()) 770 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 771 else 772 PMBuilder.PGOInstrGen = std::string(DefaultProfileGenName); 773 } 774 if (CodeGenOpts.hasProfileIRUse()) { 775 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 776 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 777 } 778 779 if (!CodeGenOpts.SampleProfileFile.empty()) 780 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 781 782 PMBuilder.populateFunctionPassManager(FPM); 783 PMBuilder.populateModulePassManager(MPM); 784 } 785 786 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 787 SmallVector<const char *, 16> BackendArgs; 788 BackendArgs.push_back("clang"); // Fake program name. 789 if (!CodeGenOpts.DebugPass.empty()) { 790 BackendArgs.push_back("-debug-pass"); 791 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 792 } 793 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 794 BackendArgs.push_back("-limit-float-precision"); 795 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 796 } 797 BackendArgs.push_back(nullptr); 798 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 799 BackendArgs.data()); 800 } 801 802 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 803 // Create the TargetMachine for generating code. 804 std::string Error; 805 std::string Triple = TheModule->getTargetTriple(); 806 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 807 if (!TheTarget) { 808 if (MustCreateTM) 809 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 810 return; 811 } 812 813 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 814 std::string FeaturesStr = 815 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 816 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 817 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 818 819 llvm::TargetOptions Options; 820 initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 821 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 822 Options, RM, CM, OptLevel)); 823 } 824 825 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 826 BackendAction Action, 827 raw_pwrite_stream &OS, 828 raw_pwrite_stream *DwoOS) { 829 // Add LibraryInfo. 830 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 831 std::unique_ptr<TargetLibraryInfoImpl> TLII( 832 createTLII(TargetTriple, CodeGenOpts)); 833 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 834 835 // Normal mode, emit a .s or .o file by running the code generator. Note, 836 // this also adds codegenerator level optimization passes. 837 CodeGenFileType CGFT = getCodeGenFileType(Action); 838 839 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 840 // "codegen" passes so that it isn't run multiple times when there is 841 // inlining happening. 842 if (CodeGenOpts.OptimizationLevel > 0) 843 CodeGenPasses.add(createObjCARCContractPass()); 844 845 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 846 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 847 Diags.Report(diag::err_fe_unable_to_interface_with_target); 848 return false; 849 } 850 851 return true; 852 } 853 854 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 855 std::unique_ptr<raw_pwrite_stream> OS) { 856 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 857 858 setCommandLineOpts(CodeGenOpts); 859 860 bool UsesCodeGen = (Action != Backend_EmitNothing && 861 Action != Backend_EmitBC && 862 Action != Backend_EmitLL); 863 CreateTargetMachine(UsesCodeGen); 864 865 if (UsesCodeGen && !TM) 866 return; 867 if (TM) 868 TheModule->setDataLayout(TM->createDataLayout()); 869 870 legacy::PassManager PerModulePasses; 871 PerModulePasses.add( 872 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 873 874 legacy::FunctionPassManager PerFunctionPasses(TheModule); 875 PerFunctionPasses.add( 876 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 877 878 CreatePasses(PerModulePasses, PerFunctionPasses); 879 880 legacy::PassManager CodeGenPasses; 881 CodeGenPasses.add( 882 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 883 884 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 885 886 switch (Action) { 887 case Backend_EmitNothing: 888 break; 889 890 case Backend_EmitBC: 891 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 892 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 893 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 894 if (!ThinLinkOS) 895 return; 896 } 897 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 898 CodeGenOpts.EnableSplitLTOUnit); 899 PerModulePasses.add(createWriteThinLTOBitcodePass( 900 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 901 } else { 902 // Emit a module summary by default for Regular LTO except for ld64 903 // targets 904 bool EmitLTOSummary = 905 (CodeGenOpts.PrepareForLTO && 906 !CodeGenOpts.DisableLLVMPasses && 907 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 908 llvm::Triple::Apple); 909 if (EmitLTOSummary) { 910 if (!TheModule->getModuleFlag("ThinLTO")) 911 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 912 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 913 uint32_t(1)); 914 } 915 916 PerModulePasses.add(createBitcodeWriterPass( 917 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 918 } 919 break; 920 921 case Backend_EmitLL: 922 PerModulePasses.add( 923 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 924 break; 925 926 default: 927 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 928 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 929 if (!DwoOS) 930 return; 931 } 932 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 933 DwoOS ? &DwoOS->os() : nullptr)) 934 return; 935 } 936 937 // Before executing passes, print the final values of the LLVM options. 938 cl::PrintOptionValues(); 939 940 // Run passes. For now we do all passes at once, but eventually we 941 // would like to have the option of streaming code generation. 942 943 { 944 PrettyStackTraceString CrashInfo("Per-function optimization"); 945 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 946 947 PerFunctionPasses.doInitialization(); 948 for (Function &F : *TheModule) 949 if (!F.isDeclaration()) 950 PerFunctionPasses.run(F); 951 PerFunctionPasses.doFinalization(); 952 } 953 954 { 955 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 956 llvm::TimeTraceScope TimeScope("PerModulePasses"); 957 PerModulePasses.run(*TheModule); 958 } 959 960 { 961 PrettyStackTraceString CrashInfo("Code generation"); 962 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 963 CodeGenPasses.run(*TheModule); 964 } 965 966 if (ThinLinkOS) 967 ThinLinkOS->keep(); 968 if (DwoOS) 969 DwoOS->keep(); 970 } 971 972 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 973 switch (Opts.OptimizationLevel) { 974 default: 975 llvm_unreachable("Invalid optimization level!"); 976 977 case 1: 978 return PassBuilder::OptimizationLevel::O1; 979 980 case 2: 981 switch (Opts.OptimizeSize) { 982 default: 983 llvm_unreachable("Invalid optimization level for size!"); 984 985 case 0: 986 return PassBuilder::OptimizationLevel::O2; 987 988 case 1: 989 return PassBuilder::OptimizationLevel::Os; 990 991 case 2: 992 return PassBuilder::OptimizationLevel::Oz; 993 } 994 995 case 3: 996 return PassBuilder::OptimizationLevel::O3; 997 } 998 } 999 1000 static void addCoroutinePassesAtO0(ModulePassManager &MPM, 1001 const LangOptions &LangOpts, 1002 const CodeGenOptions &CodeGenOpts) { 1003 if (!LangOpts.Coroutines) 1004 return; 1005 1006 MPM.addPass(createModuleToFunctionPassAdaptor(CoroEarlyPass())); 1007 1008 CGSCCPassManager CGPM(CodeGenOpts.DebugPassManager); 1009 CGPM.addPass(CoroSplitPass()); 1010 CGPM.addPass(createCGSCCToFunctionPassAdaptor(CoroElidePass())); 1011 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM))); 1012 1013 MPM.addPass(createModuleToFunctionPassAdaptor(CoroCleanupPass())); 1014 } 1015 1016 static void addSanitizersAtO0(ModulePassManager &MPM, 1017 const Triple &TargetTriple, 1018 const LangOptions &LangOpts, 1019 const CodeGenOptions &CodeGenOpts) { 1020 if (CodeGenOpts.SanitizeCoverageType || 1021 CodeGenOpts.SanitizeCoverageIndirectCalls || 1022 CodeGenOpts.SanitizeCoverageTraceCmp) { 1023 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1024 MPM.addPass(ModuleSanitizerCoveragePass( 1025 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1026 CodeGenOpts.SanitizeCoverageBlocklistFiles)); 1027 } 1028 1029 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1030 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1031 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1032 MPM.addPass(createModuleToFunctionPassAdaptor(AddressSanitizerPass( 1033 CompileKernel, Recover, CodeGenOpts.SanitizeAddressUseAfterScope))); 1034 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1035 MPM.addPass( 1036 ModuleAddressSanitizerPass(CompileKernel, Recover, ModuleUseAfterScope, 1037 CodeGenOpts.SanitizeAddressUseOdrIndicator)); 1038 }; 1039 1040 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1041 ASanPass(SanitizerKind::Address, /*CompileKernel=*/false); 1042 } 1043 1044 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 1045 ASanPass(SanitizerKind::KernelAddress, /*CompileKernel=*/true); 1046 } 1047 1048 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 1049 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Memory); 1050 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1051 MPM.addPass(MemorySanitizerPass({TrackOrigins, Recover, false})); 1052 MPM.addPass(createModuleToFunctionPassAdaptor( 1053 MemorySanitizerPass({TrackOrigins, Recover, false}))); 1054 } 1055 1056 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 1057 MPM.addPass(createModuleToFunctionPassAdaptor( 1058 MemorySanitizerPass({0, false, /*Kernel=*/true}))); 1059 } 1060 1061 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1062 MPM.addPass(ThreadSanitizerPass()); 1063 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1064 } 1065 } 1066 1067 /// A clean version of `EmitAssembly` that uses the new pass manager. 1068 /// 1069 /// Not all features are currently supported in this system, but where 1070 /// necessary it falls back to the legacy pass manager to at least provide 1071 /// basic functionality. 1072 /// 1073 /// This API is planned to have its functionality finished and then to replace 1074 /// `EmitAssembly` at some point in the future when the default switches. 1075 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 1076 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 1077 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 1078 setCommandLineOpts(CodeGenOpts); 1079 1080 bool RequiresCodeGen = (Action != Backend_EmitNothing && 1081 Action != Backend_EmitBC && 1082 Action != Backend_EmitLL); 1083 CreateTargetMachine(RequiresCodeGen); 1084 1085 if (RequiresCodeGen && !TM) 1086 return; 1087 if (TM) 1088 TheModule->setDataLayout(TM->createDataLayout()); 1089 1090 Optional<PGOOptions> PGOOpt; 1091 1092 if (CodeGenOpts.hasProfileIRInstr()) 1093 // -fprofile-generate. 1094 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1095 ? std::string(DefaultProfileGenName) 1096 : CodeGenOpts.InstrProfileOutput, 1097 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1098 CodeGenOpts.DebugInfoForProfiling); 1099 else if (CodeGenOpts.hasProfileIRUse()) { 1100 // -fprofile-use. 1101 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1102 : PGOOptions::NoCSAction; 1103 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1104 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1105 CSAction, CodeGenOpts.DebugInfoForProfiling); 1106 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1107 // -fprofile-sample-use 1108 PGOOpt = 1109 PGOOptions(CodeGenOpts.SampleProfileFile, "", 1110 CodeGenOpts.ProfileRemappingFile, PGOOptions::SampleUse, 1111 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling); 1112 else if (CodeGenOpts.DebugInfoForProfiling) 1113 // -fdebug-info-for-profiling 1114 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1115 PGOOptions::NoCSAction, true); 1116 1117 // Check to see if we want to generate a CS profile. 1118 if (CodeGenOpts.hasProfileCSIRInstr()) { 1119 assert(!CodeGenOpts.hasProfileCSIRUse() && 1120 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1121 "the same time"); 1122 if (PGOOpt.hasValue()) { 1123 assert(PGOOpt->Action != PGOOptions::IRInstr && 1124 PGOOpt->Action != PGOOptions::SampleUse && 1125 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1126 " pass"); 1127 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1128 ? std::string(DefaultProfileGenName) 1129 : CodeGenOpts.InstrProfileOutput; 1130 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1131 } else 1132 PGOOpt = PGOOptions("", 1133 CodeGenOpts.InstrProfileOutput.empty() 1134 ? std::string(DefaultProfileGenName) 1135 : CodeGenOpts.InstrProfileOutput, 1136 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1137 CodeGenOpts.DebugInfoForProfiling); 1138 } 1139 1140 PipelineTuningOptions PTO; 1141 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1142 // For historical reasons, loop interleaving is set to mirror setting for loop 1143 // unrolling. 1144 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1145 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1146 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1147 PTO.CallGraphProfile = CodeGenOpts.CallGraphProfile; 1148 PTO.Coroutines = LangOpts.Coroutines; 1149 1150 PassInstrumentationCallbacks PIC; 1151 StandardInstrumentations SI; 1152 SI.registerCallbacks(PIC); 1153 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 1154 1155 // Attempt to load pass plugins and register their callbacks with PB. 1156 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1157 auto PassPlugin = PassPlugin::Load(PluginFN); 1158 if (PassPlugin) { 1159 PassPlugin->registerPassBuilderCallbacks(PB); 1160 } else { 1161 Diags.Report(diag::err_fe_unable_to_load_plugin) 1162 << PluginFN << toString(PassPlugin.takeError()); 1163 } 1164 } 1165 #define HANDLE_EXTENSION(Ext) \ 1166 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 1167 #include "llvm/Support/Extension.def" 1168 1169 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 1170 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 1171 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 1172 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 1173 1174 // Register the AA manager first so that our version is the one used. 1175 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1176 1177 // Register the target library analysis directly and give it a customized 1178 // preset TLI. 1179 Triple TargetTriple(TheModule->getTargetTriple()); 1180 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1181 createTLII(TargetTriple, CodeGenOpts)); 1182 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1183 1184 // Register all the basic analyses with the managers. 1185 PB.registerModuleAnalyses(MAM); 1186 PB.registerCGSCCAnalyses(CGAM); 1187 PB.registerFunctionAnalyses(FAM); 1188 PB.registerLoopAnalyses(LAM); 1189 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1190 1191 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 1192 1193 if (!CodeGenOpts.DisableLLVMPasses) { 1194 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1195 bool IsLTO = CodeGenOpts.PrepareForLTO; 1196 1197 if (CodeGenOpts.OptimizationLevel == 0) { 1198 // If we reached here with a non-empty index file name, then the index 1199 // file was empty and we are not performing ThinLTO backend compilation 1200 // (used in testing in a distributed build environment). Drop any the type 1201 // test assume sequences inserted for whole program vtables so that 1202 // codegen doesn't complain. 1203 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 1204 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1205 /*ImportSummary=*/nullptr, 1206 /*DropTypeTests=*/true)); 1207 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1208 MPM.addPass(GCOVProfilerPass(*Options)); 1209 if (Optional<InstrProfOptions> Options = 1210 getInstrProfOptions(CodeGenOpts, LangOpts)) 1211 MPM.addPass(InstrProfiling(*Options, false)); 1212 1213 // Build a minimal pipeline based on the semantics required by Clang, 1214 // which is just that always inlining occurs. Further, disable generating 1215 // lifetime intrinsics to avoid enabling further optimizations during 1216 // code generation. 1217 // However, we need to insert lifetime intrinsics to avoid invalid access 1218 // caused by multithreaded coroutines. 1219 MPM.addPass( 1220 AlwaysInlinerPass(/*InsertLifetimeIntrinsics=*/LangOpts.Coroutines)); 1221 1222 // At -O0, we can still do PGO. Add all the requested passes for 1223 // instrumentation PGO, if requested. 1224 if (PGOOpt && (PGOOpt->Action == PGOOptions::IRInstr || 1225 PGOOpt->Action == PGOOptions::IRUse)) 1226 PB.addPGOInstrPassesForO0( 1227 MPM, CodeGenOpts.DebugPassManager, 1228 /* RunProfileGen */ (PGOOpt->Action == PGOOptions::IRInstr), 1229 /* IsCS */ false, PGOOpt->ProfileFile, 1230 PGOOpt->ProfileRemappingFile); 1231 1232 // At -O0 we directly run necessary sanitizer passes. 1233 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1234 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 1235 1236 // Add UniqueInternalLinkageNames Pass which renames internal linkage 1237 // symbols with unique names. 1238 if (CodeGenOpts.UniqueInternalLinkageNames) { 1239 MPM.addPass(UniqueInternalLinkageNamesPass()); 1240 } 1241 1242 // Lastly, add semantically necessary passes for LTO. 1243 if (IsLTO || IsThinLTO) { 1244 MPM.addPass(CanonicalizeAliasesPass()); 1245 MPM.addPass(NameAnonGlobalPass()); 1246 } 1247 } else { 1248 // Map our optimization levels into one of the distinct levels used to 1249 // configure the pipeline. 1250 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1251 1252 // If we reached here with a non-empty index file name, then the index 1253 // file was empty and we are not performing ThinLTO backend compilation 1254 // (used in testing in a distributed build environment). Drop any the type 1255 // test assume sequences inserted for whole program vtables so that 1256 // codegen doesn't complain. 1257 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 1258 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1259 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1260 /*ImportSummary=*/nullptr, 1261 /*DropTypeTests=*/true)); 1262 }); 1263 1264 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1265 MPM.addPass(createModuleToFunctionPassAdaptor( 1266 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1267 }); 1268 1269 // Register callbacks to schedule sanitizer passes at the appropriate part of 1270 // the pipeline. 1271 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1272 PB.registerScalarOptimizerLateEPCallback( 1273 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1274 FPM.addPass(BoundsCheckingPass()); 1275 }); 1276 1277 if (CodeGenOpts.SanitizeCoverageType || 1278 CodeGenOpts.SanitizeCoverageIndirectCalls || 1279 CodeGenOpts.SanitizeCoverageTraceCmp) { 1280 PB.registerOptimizerLastEPCallback( 1281 [this](ModulePassManager &MPM, 1282 PassBuilder::OptimizationLevel Level) { 1283 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1284 MPM.addPass(ModuleSanitizerCoveragePass( 1285 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1286 CodeGenOpts.SanitizeCoverageBlocklistFiles)); 1287 }); 1288 } 1289 1290 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 1291 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1292 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Memory); 1293 PB.registerOptimizerLastEPCallback( 1294 [TrackOrigins, Recover](ModulePassManager &MPM, 1295 PassBuilder::OptimizationLevel Level) { 1296 MPM.addPass(MemorySanitizerPass({TrackOrigins, Recover, false})); 1297 MPM.addPass(createModuleToFunctionPassAdaptor( 1298 MemorySanitizerPass({TrackOrigins, Recover, false}))); 1299 }); 1300 } 1301 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1302 PB.registerOptimizerLastEPCallback( 1303 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1304 MPM.addPass(ThreadSanitizerPass()); 1305 MPM.addPass( 1306 createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1307 }); 1308 } 1309 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1310 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address); 1311 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1312 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1313 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1314 PB.registerOptimizerLastEPCallback( 1315 [Recover, UseAfterScope, ModuleUseAfterScope, UseOdrIndicator]( 1316 ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1317 MPM.addPass( 1318 RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1319 MPM.addPass(ModuleAddressSanitizerPass( 1320 /*CompileKernel=*/false, Recover, ModuleUseAfterScope, 1321 UseOdrIndicator)); 1322 MPM.addPass( 1323 createModuleToFunctionPassAdaptor(AddressSanitizerPass( 1324 /*CompileKernel=*/false, Recover, UseAfterScope))); 1325 }); 1326 } 1327 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1328 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1329 MPM.addPass(GCOVProfilerPass(*Options)); 1330 }); 1331 if (Optional<InstrProfOptions> Options = 1332 getInstrProfOptions(CodeGenOpts, LangOpts)) 1333 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1334 MPM.addPass(InstrProfiling(*Options, false)); 1335 }); 1336 1337 // Add UniqueInternalLinkageNames Pass which renames internal linkage 1338 // symbols with unique names. 1339 if (CodeGenOpts.UniqueInternalLinkageNames) { 1340 MPM.addPass(UniqueInternalLinkageNamesPass()); 1341 } 1342 1343 if (IsThinLTO) { 1344 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 1345 Level, CodeGenOpts.DebugPassManager); 1346 MPM.addPass(CanonicalizeAliasesPass()); 1347 MPM.addPass(NameAnonGlobalPass()); 1348 } else if (IsLTO) { 1349 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 1350 CodeGenOpts.DebugPassManager); 1351 MPM.addPass(CanonicalizeAliasesPass()); 1352 MPM.addPass(NameAnonGlobalPass()); 1353 } else { 1354 MPM = PB.buildPerModuleDefaultPipeline(Level, 1355 CodeGenOpts.DebugPassManager); 1356 } 1357 } 1358 1359 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 1360 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 1361 MPM.addPass(HWAddressSanitizerPass( 1362 /*CompileKernel=*/false, Recover)); 1363 } 1364 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 1365 MPM.addPass(HWAddressSanitizerPass( 1366 /*CompileKernel=*/true, /*Recover=*/true)); 1367 } 1368 1369 if (CodeGenOpts.OptimizationLevel == 0) { 1370 addCoroutinePassesAtO0(MPM, LangOpts, CodeGenOpts); 1371 addSanitizersAtO0(MPM, TargetTriple, LangOpts, CodeGenOpts); 1372 } 1373 } 1374 1375 // FIXME: We still use the legacy pass manager to do code generation. We 1376 // create that pass manager here and use it as needed below. 1377 legacy::PassManager CodeGenPasses; 1378 bool NeedCodeGen = false; 1379 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1380 1381 // Append any output we need to the pass manager. 1382 switch (Action) { 1383 case Backend_EmitNothing: 1384 break; 1385 1386 case Backend_EmitBC: 1387 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1388 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1389 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1390 if (!ThinLinkOS) 1391 return; 1392 } 1393 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1394 CodeGenOpts.EnableSplitLTOUnit); 1395 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1396 : nullptr)); 1397 } else { 1398 // Emit a module summary by default for Regular LTO except for ld64 1399 // targets 1400 bool EmitLTOSummary = 1401 (CodeGenOpts.PrepareForLTO && 1402 !CodeGenOpts.DisableLLVMPasses && 1403 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1404 llvm::Triple::Apple); 1405 if (EmitLTOSummary) { 1406 if (!TheModule->getModuleFlag("ThinLTO")) 1407 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1408 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1409 uint32_t(1)); 1410 } 1411 MPM.addPass( 1412 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1413 } 1414 break; 1415 1416 case Backend_EmitLL: 1417 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1418 break; 1419 1420 case Backend_EmitAssembly: 1421 case Backend_EmitMCNull: 1422 case Backend_EmitObj: 1423 NeedCodeGen = true; 1424 CodeGenPasses.add( 1425 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1426 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1427 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1428 if (!DwoOS) 1429 return; 1430 } 1431 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1432 DwoOS ? &DwoOS->os() : nullptr)) 1433 // FIXME: Should we handle this error differently? 1434 return; 1435 break; 1436 } 1437 1438 // Before executing passes, print the final values of the LLVM options. 1439 cl::PrintOptionValues(); 1440 1441 // Now that we have all of the passes ready, run them. 1442 { 1443 PrettyStackTraceString CrashInfo("Optimizer"); 1444 MPM.run(*TheModule, MAM); 1445 } 1446 1447 // Now if needed, run the legacy PM for codegen. 1448 if (NeedCodeGen) { 1449 PrettyStackTraceString CrashInfo("Code generation"); 1450 CodeGenPasses.run(*TheModule); 1451 } 1452 1453 if (ThinLinkOS) 1454 ThinLinkOS->keep(); 1455 if (DwoOS) 1456 DwoOS->keep(); 1457 } 1458 1459 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1460 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1461 if (!BMsOrErr) 1462 return BMsOrErr.takeError(); 1463 1464 // The bitcode file may contain multiple modules, we want the one that is 1465 // marked as being the ThinLTO module. 1466 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1467 return *Bm; 1468 1469 return make_error<StringError>("Could not find module summary", 1470 inconvertibleErrorCode()); 1471 } 1472 1473 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1474 for (BitcodeModule &BM : BMs) { 1475 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1476 if (LTOInfo && LTOInfo->IsThinLTO) 1477 return &BM; 1478 } 1479 return nullptr; 1480 } 1481 1482 static void runThinLTOBackend( 1483 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M, 1484 const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, 1485 const clang::TargetOptions &TOpts, const LangOptions &LOpts, 1486 std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile, 1487 std::string ProfileRemapping, BackendAction Action) { 1488 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1489 ModuleToDefinedGVSummaries; 1490 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1491 1492 setCommandLineOpts(CGOpts); 1493 1494 // We can simply import the values mentioned in the combined index, since 1495 // we should only invoke this using the individual indexes written out 1496 // via a WriteIndexesThinBackend. 1497 FunctionImporter::ImportMapTy ImportList; 1498 for (auto &GlobalList : *CombinedIndex) { 1499 // Ignore entries for undefined references. 1500 if (GlobalList.second.SummaryList.empty()) 1501 continue; 1502 1503 auto GUID = GlobalList.first; 1504 for (auto &Summary : GlobalList.second.SummaryList) { 1505 // Skip the summaries for the importing module. These are included to 1506 // e.g. record required linkage changes. 1507 if (Summary->modulePath() == M->getModuleIdentifier()) 1508 continue; 1509 // Add an entry to provoke importing by thinBackend. 1510 ImportList[Summary->modulePath()].insert(GUID); 1511 } 1512 } 1513 1514 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1515 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1516 1517 for (auto &I : ImportList) { 1518 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1519 llvm::MemoryBuffer::getFile(I.first()); 1520 if (!MBOrErr) { 1521 errs() << "Error loading imported file '" << I.first() 1522 << "': " << MBOrErr.getError().message() << "\n"; 1523 return; 1524 } 1525 1526 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1527 if (!BMOrErr) { 1528 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1529 errs() << "Error loading imported file '" << I.first() 1530 << "': " << EIB.message() << '\n'; 1531 }); 1532 return; 1533 } 1534 ModuleMap.insert({I.first(), *BMOrErr}); 1535 1536 OwnedImports.push_back(std::move(*MBOrErr)); 1537 } 1538 auto AddStream = [&](size_t Task) { 1539 return std::make_unique<lto::NativeObjectStream>(std::move(OS)); 1540 }; 1541 lto::Config Conf; 1542 if (CGOpts.SaveTempsFilePrefix != "") { 1543 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1544 /* UseInputModulePath */ false)) { 1545 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1546 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1547 << '\n'; 1548 }); 1549 } 1550 } 1551 Conf.CPU = TOpts.CPU; 1552 Conf.CodeModel = getCodeModel(CGOpts); 1553 Conf.MAttrs = TOpts.Features; 1554 Conf.RelocModel = CGOpts.RelocationModel; 1555 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1556 Conf.OptLevel = CGOpts.OptimizationLevel; 1557 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1558 Conf.SampleProfile = std::move(SampleProfile); 1559 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1560 // For historical reasons, loop interleaving is set to mirror setting for loop 1561 // unrolling. 1562 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1563 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1564 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1565 Conf.PTO.CallGraphProfile = CGOpts.CallGraphProfile; 1566 1567 // Context sensitive profile. 1568 if (CGOpts.hasProfileCSIRInstr()) { 1569 Conf.RunCSIRInstr = true; 1570 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1571 } else if (CGOpts.hasProfileCSIRUse()) { 1572 Conf.RunCSIRInstr = false; 1573 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1574 } 1575 1576 Conf.ProfileRemapping = std::move(ProfileRemapping); 1577 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1578 Conf.DebugPassManager = CGOpts.DebugPassManager; 1579 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1580 Conf.RemarksFilename = CGOpts.OptRecordFile; 1581 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1582 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1583 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1584 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1585 switch (Action) { 1586 case Backend_EmitNothing: 1587 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1588 return false; 1589 }; 1590 break; 1591 case Backend_EmitLL: 1592 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1593 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1594 return false; 1595 }; 1596 break; 1597 case Backend_EmitBC: 1598 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1599 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1600 return false; 1601 }; 1602 break; 1603 default: 1604 Conf.CGFileType = getCodeGenFileType(Action); 1605 break; 1606 } 1607 if (Error E = thinBackend( 1608 Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1609 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1610 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1611 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1612 }); 1613 } 1614 } 1615 1616 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1617 const HeaderSearchOptions &HeaderOpts, 1618 const CodeGenOptions &CGOpts, 1619 const clang::TargetOptions &TOpts, 1620 const LangOptions &LOpts, 1621 const llvm::DataLayout &TDesc, Module *M, 1622 BackendAction Action, 1623 std::unique_ptr<raw_pwrite_stream> OS) { 1624 1625 llvm::TimeTraceScope TimeScope("Backend"); 1626 1627 std::unique_ptr<llvm::Module> EmptyModule; 1628 if (!CGOpts.ThinLTOIndexFile.empty()) { 1629 // If we are performing a ThinLTO importing compile, load the function index 1630 // into memory and pass it into runThinLTOBackend, which will run the 1631 // function importer and invoke LTO passes. 1632 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1633 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1634 /*IgnoreEmptyThinLTOIndexFile*/true); 1635 if (!IndexOrErr) { 1636 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1637 "Error loading index file '" + 1638 CGOpts.ThinLTOIndexFile + "': "); 1639 return; 1640 } 1641 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1642 // A null CombinedIndex means we should skip ThinLTO compilation 1643 // (LLVM will optionally ignore empty index files, returning null instead 1644 // of an error). 1645 if (CombinedIndex) { 1646 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1647 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, 1648 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, 1649 CGOpts.ProfileRemappingFile, Action); 1650 return; 1651 } 1652 // Distributed indexing detected that nothing from the module is needed 1653 // for the final linking. So we can skip the compilation. We sill need to 1654 // output an empty object file to make sure that a linker does not fail 1655 // trying to read it. Also for some features, like CFI, we must skip 1656 // the compilation as CombinedIndex does not contain all required 1657 // information. 1658 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1659 EmptyModule->setTargetTriple(M->getTargetTriple()); 1660 M = EmptyModule.get(); 1661 } 1662 } 1663 1664 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1665 1666 if (CGOpts.ExperimentalNewPassManager) 1667 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1668 else 1669 AsmHelper.EmitAssembly(Action, std::move(OS)); 1670 1671 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1672 // DataLayout. 1673 if (AsmHelper.TM) { 1674 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1675 if (DLDesc != TDesc.getStringRepresentation()) { 1676 unsigned DiagID = Diags.getCustomDiagID( 1677 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1678 "expected target description '%1'"); 1679 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1680 } 1681 } 1682 } 1683 1684 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1685 // __LLVM,__bitcode section. 1686 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1687 llvm::MemoryBufferRef Buf) { 1688 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1689 return; 1690 llvm::EmbedBitcodeInModule( 1691 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1692 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1693 &CGOpts.CmdArgs); 1694 } 1695