1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/StackSafetyAnalysis.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/IRPrintingPasses.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/ModuleSummaryIndex.h" 35 #include "llvm/IR/Verifier.h" 36 #include "llvm/LTO/LTOBackend.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/SubtargetFeature.h" 39 #include "llvm/Passes/PassBuilder.h" 40 #include "llvm/Passes/PassPlugin.h" 41 #include "llvm/Passes/StandardInstrumentations.h" 42 #include "llvm/Support/BuryPointer.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/MemoryBuffer.h" 45 #include "llvm/Support/PrettyStackTrace.h" 46 #include "llvm/Support/TargetRegistry.h" 47 #include "llvm/Support/TimeProfiler.h" 48 #include "llvm/Support/Timer.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Target/TargetMachine.h" 51 #include "llvm/Target/TargetOptions.h" 52 #include "llvm/Transforms/Coroutines.h" 53 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 54 #include "llvm/Transforms/Coroutines/CoroEarly.h" 55 #include "llvm/Transforms/Coroutines/CoroElide.h" 56 #include "llvm/Transforms/Coroutines/CoroSplit.h" 57 #include "llvm/Transforms/IPO.h" 58 #include "llvm/Transforms/IPO/AlwaysInliner.h" 59 #include "llvm/Transforms/IPO/LowerTypeTests.h" 60 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 61 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 62 #include "llvm/Transforms/InstCombine/InstCombine.h" 63 #include "llvm/Transforms/Instrumentation.h" 64 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 65 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 66 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 67 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 68 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 69 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 70 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 71 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 72 #include "llvm/Transforms/ObjCARC.h" 73 #include "llvm/Transforms/Scalar.h" 74 #include "llvm/Transforms/Scalar/GVN.h" 75 #include "llvm/Transforms/Utils.h" 76 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 77 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 78 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 79 #include "llvm/Transforms/Utils/SymbolRewriter.h" 80 #include <memory> 81 using namespace clang; 82 using namespace llvm; 83 84 #define HANDLE_EXTENSION(Ext) \ 85 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 86 #include "llvm/Support/Extension.def" 87 88 namespace { 89 90 // Default filename used for profile generation. 91 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 92 93 class EmitAssemblyHelper { 94 DiagnosticsEngine &Diags; 95 const HeaderSearchOptions &HSOpts; 96 const CodeGenOptions &CodeGenOpts; 97 const clang::TargetOptions &TargetOpts; 98 const LangOptions &LangOpts; 99 Module *TheModule; 100 101 Timer CodeGenerationTime; 102 103 std::unique_ptr<raw_pwrite_stream> OS; 104 105 TargetIRAnalysis getTargetIRAnalysis() const { 106 if (TM) 107 return TM->getTargetIRAnalysis(); 108 109 return TargetIRAnalysis(); 110 } 111 112 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 113 114 /// Generates the TargetMachine. 115 /// Leaves TM unchanged if it is unable to create the target machine. 116 /// Some of our clang tests specify triples which are not built 117 /// into clang. This is okay because these tests check the generated 118 /// IR, and they require DataLayout which depends on the triple. 119 /// In this case, we allow this method to fail and not report an error. 120 /// When MustCreateTM is used, we print an error if we are unable to load 121 /// the requested target. 122 void CreateTargetMachine(bool MustCreateTM); 123 124 /// Add passes necessary to emit assembly or LLVM IR. 125 /// 126 /// \return True on success. 127 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 128 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 129 130 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 131 std::error_code EC; 132 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 133 llvm::sys::fs::OF_None); 134 if (EC) { 135 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 136 F.reset(); 137 } 138 return F; 139 } 140 141 public: 142 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 143 const HeaderSearchOptions &HeaderSearchOpts, 144 const CodeGenOptions &CGOpts, 145 const clang::TargetOptions &TOpts, 146 const LangOptions &LOpts, Module *M) 147 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 148 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 149 CodeGenerationTime("codegen", "Code Generation Time") {} 150 151 ~EmitAssemblyHelper() { 152 if (CodeGenOpts.DisableFree) 153 BuryPointer(std::move(TM)); 154 } 155 156 std::unique_ptr<TargetMachine> TM; 157 158 void EmitAssembly(BackendAction Action, 159 std::unique_ptr<raw_pwrite_stream> OS); 160 161 void EmitAssemblyWithNewPassManager(BackendAction Action, 162 std::unique_ptr<raw_pwrite_stream> OS); 163 }; 164 165 // We need this wrapper to access LangOpts and CGOpts from extension functions 166 // that we add to the PassManagerBuilder. 167 class PassManagerBuilderWrapper : public PassManagerBuilder { 168 public: 169 PassManagerBuilderWrapper(const Triple &TargetTriple, 170 const CodeGenOptions &CGOpts, 171 const LangOptions &LangOpts) 172 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 173 LangOpts(LangOpts) {} 174 const Triple &getTargetTriple() const { return TargetTriple; } 175 const CodeGenOptions &getCGOpts() const { return CGOpts; } 176 const LangOptions &getLangOpts() const { return LangOpts; } 177 178 private: 179 const Triple &TargetTriple; 180 const CodeGenOptions &CGOpts; 181 const LangOptions &LangOpts; 182 }; 183 } 184 185 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 186 if (Builder.OptLevel > 0) 187 PM.add(createObjCARCAPElimPass()); 188 } 189 190 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 191 if (Builder.OptLevel > 0) 192 PM.add(createObjCARCExpandPass()); 193 } 194 195 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 196 if (Builder.OptLevel > 0) 197 PM.add(createObjCARCOptPass()); 198 } 199 200 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 201 legacy::PassManagerBase &PM) { 202 PM.add(createAddDiscriminatorsPass()); 203 } 204 205 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 206 legacy::PassManagerBase &PM) { 207 PM.add(createBoundsCheckingLegacyPass()); 208 } 209 210 static SanitizerCoverageOptions 211 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 212 SanitizerCoverageOptions Opts; 213 Opts.CoverageType = 214 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 215 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 216 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 217 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 218 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 219 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 220 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 221 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 222 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 223 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 224 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 225 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 226 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 227 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 228 return Opts; 229 } 230 231 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 232 legacy::PassManagerBase &PM) { 233 const PassManagerBuilderWrapper &BuilderWrapper = 234 static_cast<const PassManagerBuilderWrapper &>(Builder); 235 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 236 auto Opts = getSancovOptsFromCGOpts(CGOpts); 237 PM.add(createModuleSanitizerCoverageLegacyPassPass(Opts)); 238 } 239 240 // Check if ASan should use GC-friendly instrumentation for globals. 241 // First of all, there is no point if -fdata-sections is off (expect for MachO, 242 // where this is not a factor). Also, on ELF this feature requires an assembler 243 // extension that only works with -integrated-as at the moment. 244 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 245 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 246 return false; 247 switch (T.getObjectFormat()) { 248 case Triple::MachO: 249 case Triple::COFF: 250 return true; 251 case Triple::ELF: 252 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 253 case Triple::XCOFF: 254 llvm::report_fatal_error("ASan not implemented for XCOFF."); 255 case Triple::Wasm: 256 case Triple::UnknownObjectFormat: 257 break; 258 } 259 return false; 260 } 261 262 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 263 legacy::PassManagerBase &PM) { 264 const PassManagerBuilderWrapper &BuilderWrapper = 265 static_cast<const PassManagerBuilderWrapper&>(Builder); 266 const Triple &T = BuilderWrapper.getTargetTriple(); 267 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 268 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 269 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 270 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 271 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 272 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 273 UseAfterScope)); 274 PM.add(createModuleAddressSanitizerLegacyPassPass( 275 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator)); 276 } 277 278 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 279 legacy::PassManagerBase &PM) { 280 PM.add(createAddressSanitizerFunctionPass( 281 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 282 PM.add(createModuleAddressSanitizerLegacyPassPass( 283 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 284 /*UseOdrIndicator*/ false)); 285 } 286 287 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 288 legacy::PassManagerBase &PM) { 289 const PassManagerBuilderWrapper &BuilderWrapper = 290 static_cast<const PassManagerBuilderWrapper &>(Builder); 291 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 292 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 293 PM.add( 294 createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover)); 295 } 296 297 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 298 legacy::PassManagerBase &PM) { 299 PM.add(createHWAddressSanitizerLegacyPassPass( 300 /*CompileKernel*/ true, /*Recover*/ true)); 301 } 302 303 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 304 legacy::PassManagerBase &PM, 305 bool CompileKernel) { 306 const PassManagerBuilderWrapper &BuilderWrapper = 307 static_cast<const PassManagerBuilderWrapper&>(Builder); 308 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 309 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 310 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 311 PM.add(createMemorySanitizerLegacyPassPass( 312 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 313 314 // MemorySanitizer inserts complex instrumentation that mostly follows 315 // the logic of the original code, but operates on "shadow" values. 316 // It can benefit from re-running some general purpose optimization passes. 317 if (Builder.OptLevel > 0) { 318 PM.add(createEarlyCSEPass()); 319 PM.add(createReassociatePass()); 320 PM.add(createLICMPass()); 321 PM.add(createGVNPass()); 322 PM.add(createInstructionCombiningPass()); 323 PM.add(createDeadStoreEliminationPass()); 324 } 325 } 326 327 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 328 legacy::PassManagerBase &PM) { 329 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 330 } 331 332 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 333 legacy::PassManagerBase &PM) { 334 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 335 } 336 337 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 338 legacy::PassManagerBase &PM) { 339 PM.add(createThreadSanitizerLegacyPassPass()); 340 } 341 342 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 343 legacy::PassManagerBase &PM) { 344 const PassManagerBuilderWrapper &BuilderWrapper = 345 static_cast<const PassManagerBuilderWrapper&>(Builder); 346 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 347 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 348 } 349 350 static void addMemTagOptimizationPasses(const PassManagerBuilder &Builder, 351 legacy::PassManagerBase &PM) { 352 PM.add(createStackSafetyGlobalInfoWrapperPass(/*SetMetadata=*/true)); 353 } 354 355 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 356 const CodeGenOptions &CodeGenOpts) { 357 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 358 359 switch (CodeGenOpts.getVecLib()) { 360 case CodeGenOptions::Accelerate: 361 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 362 break; 363 case CodeGenOptions::MASSV: 364 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 365 break; 366 case CodeGenOptions::SVML: 367 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 368 break; 369 default: 370 break; 371 } 372 return TLII; 373 } 374 375 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 376 legacy::PassManager *MPM) { 377 llvm::SymbolRewriter::RewriteDescriptorList DL; 378 379 llvm::SymbolRewriter::RewriteMapParser MapParser; 380 for (const auto &MapFile : Opts.RewriteMapFiles) 381 MapParser.parse(MapFile, &DL); 382 383 MPM->add(createRewriteSymbolsPass(DL)); 384 } 385 386 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 387 switch (CodeGenOpts.OptimizationLevel) { 388 default: 389 llvm_unreachable("Invalid optimization level!"); 390 case 0: 391 return CodeGenOpt::None; 392 case 1: 393 return CodeGenOpt::Less; 394 case 2: 395 return CodeGenOpt::Default; // O2/Os/Oz 396 case 3: 397 return CodeGenOpt::Aggressive; 398 } 399 } 400 401 static Optional<llvm::CodeModel::Model> 402 getCodeModel(const CodeGenOptions &CodeGenOpts) { 403 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 404 .Case("tiny", llvm::CodeModel::Tiny) 405 .Case("small", llvm::CodeModel::Small) 406 .Case("kernel", llvm::CodeModel::Kernel) 407 .Case("medium", llvm::CodeModel::Medium) 408 .Case("large", llvm::CodeModel::Large) 409 .Case("default", ~1u) 410 .Default(~0u); 411 assert(CodeModel != ~0u && "invalid code model!"); 412 if (CodeModel == ~1u) 413 return None; 414 return static_cast<llvm::CodeModel::Model>(CodeModel); 415 } 416 417 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 418 if (Action == Backend_EmitObj) 419 return CGFT_ObjectFile; 420 else if (Action == Backend_EmitMCNull) 421 return CGFT_Null; 422 else { 423 assert(Action == Backend_EmitAssembly && "Invalid action!"); 424 return CGFT_AssemblyFile; 425 } 426 } 427 428 static void initTargetOptions(llvm::TargetOptions &Options, 429 const CodeGenOptions &CodeGenOpts, 430 const clang::TargetOptions &TargetOpts, 431 const LangOptions &LangOpts, 432 const HeaderSearchOptions &HSOpts) { 433 Options.ThreadModel = 434 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 435 .Case("posix", llvm::ThreadModel::POSIX) 436 .Case("single", llvm::ThreadModel::Single); 437 438 // Set float ABI type. 439 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 440 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 441 "Invalid Floating Point ABI!"); 442 Options.FloatABIType = 443 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 444 .Case("soft", llvm::FloatABI::Soft) 445 .Case("softfp", llvm::FloatABI::Soft) 446 .Case("hard", llvm::FloatABI::Hard) 447 .Default(llvm::FloatABI::Default); 448 449 // Set FP fusion mode. 450 switch (LangOpts.getDefaultFPContractMode()) { 451 case LangOptions::FPC_Off: 452 // Preserve any contraction performed by the front-end. (Strict performs 453 // splitting of the muladd intrinsic in the backend.) 454 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 455 break; 456 case LangOptions::FPC_On: 457 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 458 break; 459 case LangOptions::FPC_Fast: 460 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 461 break; 462 } 463 464 Options.UseInitArray = CodeGenOpts.UseInitArray; 465 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 466 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 467 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 468 469 // Set EABI version. 470 Options.EABIVersion = TargetOpts.EABIVersion; 471 472 if (LangOpts.SjLjExceptions) 473 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 474 if (LangOpts.SEHExceptions) 475 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 476 if (LangOpts.DWARFExceptions) 477 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 478 if (LangOpts.WasmExceptions) 479 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 480 481 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 482 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 483 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 484 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 485 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 486 Options.FunctionSections = CodeGenOpts.FunctionSections; 487 Options.DataSections = CodeGenOpts.DataSections; 488 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 489 Options.TLSSize = CodeGenOpts.TLSSize; 490 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 491 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 492 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 493 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 494 Options.EmitAddrsig = CodeGenOpts.Addrsig; 495 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 496 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 497 498 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 499 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 500 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 501 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 502 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 503 Options.MCOptions.MCIncrementalLinkerCompatible = 504 CodeGenOpts.IncrementalLinkerCompatible; 505 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 506 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 507 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 508 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 509 Options.MCOptions.ABIName = TargetOpts.ABI; 510 for (const auto &Entry : HSOpts.UserEntries) 511 if (!Entry.IsFramework && 512 (Entry.Group == frontend::IncludeDirGroup::Quoted || 513 Entry.Group == frontend::IncludeDirGroup::Angled || 514 Entry.Group == frontend::IncludeDirGroup::System)) 515 Options.MCOptions.IASSearchPaths.push_back( 516 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 517 } 518 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 519 if (CodeGenOpts.DisableGCov) 520 return None; 521 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 522 return None; 523 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 524 // LLVM's -default-gcov-version flag is set to something invalid. 525 GCOVOptions Options; 526 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 527 Options.EmitData = CodeGenOpts.EmitGcovArcs; 528 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 529 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 530 Options.NoRedZone = CodeGenOpts.DisableRedZone; 531 Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData; 532 Options.Filter = CodeGenOpts.ProfileFilterFiles; 533 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 534 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 535 return Options; 536 } 537 538 static Optional<InstrProfOptions> 539 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 540 const LangOptions &LangOpts) { 541 if (!CodeGenOpts.hasProfileClangInstr()) 542 return None; 543 InstrProfOptions Options; 544 Options.NoRedZone = CodeGenOpts.DisableRedZone; 545 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 546 547 // TODO: Surface the option to emit atomic profile counter increments at 548 // the driver level. 549 Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread); 550 return Options; 551 } 552 553 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 554 legacy::FunctionPassManager &FPM) { 555 // Handle disabling of all LLVM passes, where we want to preserve the 556 // internal module before any optimization. 557 if (CodeGenOpts.DisableLLVMPasses) 558 return; 559 560 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 561 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 562 // are inserted before PMBuilder ones - they'd get the default-constructed 563 // TLI with an unknown target otherwise. 564 Triple TargetTriple(TheModule->getTargetTriple()); 565 std::unique_ptr<TargetLibraryInfoImpl> TLII( 566 createTLII(TargetTriple, CodeGenOpts)); 567 568 // If we reached here with a non-empty index file name, then the index file 569 // was empty and we are not performing ThinLTO backend compilation (used in 570 // testing in a distributed build environment). Drop any the type test 571 // assume sequences inserted for whole program vtables so that codegen doesn't 572 // complain. 573 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 574 MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr, 575 /*ImportSummary=*/nullptr, 576 /*DropTypeTests=*/true)); 577 578 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 579 580 // At O0 and O1 we only run the always inliner which is more efficient. At 581 // higher optimization levels we run the normal inliner. 582 if (CodeGenOpts.OptimizationLevel <= 1) { 583 bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 && 584 !CodeGenOpts.DisableLifetimeMarkers) || 585 LangOpts.Coroutines); 586 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 587 } else { 588 // We do not want to inline hot callsites for SamplePGO module-summary build 589 // because profile annotation will happen again in ThinLTO backend, and we 590 // want the IR of the hot path to match the profile. 591 PMBuilder.Inliner = createFunctionInliningPass( 592 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 593 (!CodeGenOpts.SampleProfileFile.empty() && 594 CodeGenOpts.PrepareForThinLTO)); 595 } 596 597 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 598 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 599 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 600 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 601 602 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 603 // Loop interleaving in the loop vectorizer has historically been set to be 604 // enabled when loop unrolling is enabled. 605 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 606 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 607 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 608 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 609 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 610 611 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 612 613 if (TM) 614 TM->adjustPassManager(PMBuilder); 615 616 if (CodeGenOpts.DebugInfoForProfiling || 617 !CodeGenOpts.SampleProfileFile.empty()) 618 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 619 addAddDiscriminatorsPass); 620 621 // In ObjC ARC mode, add the main ARC optimization passes. 622 if (LangOpts.ObjCAutoRefCount) { 623 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 624 addObjCARCExpandPass); 625 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 626 addObjCARCAPElimPass); 627 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 628 addObjCARCOptPass); 629 } 630 631 if (LangOpts.Coroutines) 632 addCoroutinePassesToExtensionPoints(PMBuilder); 633 634 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 635 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 636 addBoundsCheckingPass); 637 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 638 addBoundsCheckingPass); 639 } 640 641 if (CodeGenOpts.SanitizeCoverageType || 642 CodeGenOpts.SanitizeCoverageIndirectCalls || 643 CodeGenOpts.SanitizeCoverageTraceCmp) { 644 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 645 addSanitizerCoveragePass); 646 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 647 addSanitizerCoveragePass); 648 } 649 650 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 651 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 652 addAddressSanitizerPasses); 653 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 654 addAddressSanitizerPasses); 655 } 656 657 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 658 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 659 addKernelAddressSanitizerPasses); 660 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 661 addKernelAddressSanitizerPasses); 662 } 663 664 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 665 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 666 addHWAddressSanitizerPasses); 667 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 668 addHWAddressSanitizerPasses); 669 } 670 671 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 672 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 673 addKernelHWAddressSanitizerPasses); 674 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 675 addKernelHWAddressSanitizerPasses); 676 } 677 678 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 679 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 680 addMemorySanitizerPass); 681 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 682 addMemorySanitizerPass); 683 } 684 685 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 686 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 687 addKernelMemorySanitizerPass); 688 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 689 addKernelMemorySanitizerPass); 690 } 691 692 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 693 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 694 addThreadSanitizerPass); 695 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 696 addThreadSanitizerPass); 697 } 698 699 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 700 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 701 addDataFlowSanitizerPass); 702 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 703 addDataFlowSanitizerPass); 704 } 705 706 if (LangOpts.Sanitize.has(SanitizerKind::MemTag)) { 707 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 708 addMemTagOptimizationPasses); 709 } 710 711 // Set up the per-function pass manager. 712 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 713 if (CodeGenOpts.VerifyModule) 714 FPM.add(createVerifierPass()); 715 716 // Set up the per-module pass manager. 717 if (!CodeGenOpts.RewriteMapFiles.empty()) 718 addSymbolRewriterPass(CodeGenOpts, &MPM); 719 720 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 721 MPM.add(createGCOVProfilerPass(*Options)); 722 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 723 MPM.add(createStripSymbolsPass(true)); 724 } 725 726 if (Optional<InstrProfOptions> Options = 727 getInstrProfOptions(CodeGenOpts, LangOpts)) 728 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 729 730 bool hasIRInstr = false; 731 if (CodeGenOpts.hasProfileIRInstr()) { 732 PMBuilder.EnablePGOInstrGen = true; 733 hasIRInstr = true; 734 } 735 if (CodeGenOpts.hasProfileCSIRInstr()) { 736 assert(!CodeGenOpts.hasProfileCSIRUse() && 737 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 738 "same time"); 739 assert(!hasIRInstr && 740 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 741 "same time"); 742 PMBuilder.EnablePGOCSInstrGen = true; 743 hasIRInstr = true; 744 } 745 if (hasIRInstr) { 746 if (!CodeGenOpts.InstrProfileOutput.empty()) 747 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 748 else 749 PMBuilder.PGOInstrGen = std::string(DefaultProfileGenName); 750 } 751 if (CodeGenOpts.hasProfileIRUse()) { 752 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 753 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 754 } 755 756 if (!CodeGenOpts.SampleProfileFile.empty()) 757 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 758 759 PMBuilder.populateFunctionPassManager(FPM); 760 PMBuilder.populateModulePassManager(MPM); 761 } 762 763 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 764 SmallVector<const char *, 16> BackendArgs; 765 BackendArgs.push_back("clang"); // Fake program name. 766 if (!CodeGenOpts.DebugPass.empty()) { 767 BackendArgs.push_back("-debug-pass"); 768 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 769 } 770 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 771 BackendArgs.push_back("-limit-float-precision"); 772 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 773 } 774 BackendArgs.push_back(nullptr); 775 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 776 BackendArgs.data()); 777 } 778 779 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 780 // Create the TargetMachine for generating code. 781 std::string Error; 782 std::string Triple = TheModule->getTargetTriple(); 783 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 784 if (!TheTarget) { 785 if (MustCreateTM) 786 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 787 return; 788 } 789 790 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 791 std::string FeaturesStr = 792 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 793 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 794 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 795 796 llvm::TargetOptions Options; 797 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 798 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 799 Options, RM, CM, OptLevel)); 800 } 801 802 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 803 BackendAction Action, 804 raw_pwrite_stream &OS, 805 raw_pwrite_stream *DwoOS) { 806 // Add LibraryInfo. 807 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 808 std::unique_ptr<TargetLibraryInfoImpl> TLII( 809 createTLII(TargetTriple, CodeGenOpts)); 810 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 811 812 // Normal mode, emit a .s or .o file by running the code generator. Note, 813 // this also adds codegenerator level optimization passes. 814 CodeGenFileType CGFT = getCodeGenFileType(Action); 815 816 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 817 // "codegen" passes so that it isn't run multiple times when there is 818 // inlining happening. 819 if (CodeGenOpts.OptimizationLevel > 0) 820 CodeGenPasses.add(createObjCARCContractPass()); 821 822 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 823 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 824 Diags.Report(diag::err_fe_unable_to_interface_with_target); 825 return false; 826 } 827 828 return true; 829 } 830 831 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 832 std::unique_ptr<raw_pwrite_stream> OS) { 833 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 834 835 setCommandLineOpts(CodeGenOpts); 836 837 bool UsesCodeGen = (Action != Backend_EmitNothing && 838 Action != Backend_EmitBC && 839 Action != Backend_EmitLL); 840 CreateTargetMachine(UsesCodeGen); 841 842 if (UsesCodeGen && !TM) 843 return; 844 if (TM) 845 TheModule->setDataLayout(TM->createDataLayout()); 846 847 legacy::PassManager PerModulePasses; 848 PerModulePasses.add( 849 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 850 851 legacy::FunctionPassManager PerFunctionPasses(TheModule); 852 PerFunctionPasses.add( 853 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 854 855 CreatePasses(PerModulePasses, PerFunctionPasses); 856 857 legacy::PassManager CodeGenPasses; 858 CodeGenPasses.add( 859 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 860 861 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 862 863 switch (Action) { 864 case Backend_EmitNothing: 865 break; 866 867 case Backend_EmitBC: 868 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 869 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 870 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 871 if (!ThinLinkOS) 872 return; 873 } 874 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 875 CodeGenOpts.EnableSplitLTOUnit); 876 PerModulePasses.add(createWriteThinLTOBitcodePass( 877 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 878 } else { 879 // Emit a module summary by default for Regular LTO except for ld64 880 // targets 881 bool EmitLTOSummary = 882 (CodeGenOpts.PrepareForLTO && 883 !CodeGenOpts.DisableLLVMPasses && 884 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 885 llvm::Triple::Apple); 886 if (EmitLTOSummary) { 887 if (!TheModule->getModuleFlag("ThinLTO")) 888 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 889 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 890 uint32_t(1)); 891 } 892 893 PerModulePasses.add(createBitcodeWriterPass( 894 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 895 } 896 break; 897 898 case Backend_EmitLL: 899 PerModulePasses.add( 900 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 901 break; 902 903 default: 904 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 905 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 906 if (!DwoOS) 907 return; 908 } 909 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 910 DwoOS ? &DwoOS->os() : nullptr)) 911 return; 912 } 913 914 // Before executing passes, print the final values of the LLVM options. 915 cl::PrintOptionValues(); 916 917 // Run passes. For now we do all passes at once, but eventually we 918 // would like to have the option of streaming code generation. 919 920 { 921 PrettyStackTraceString CrashInfo("Per-function optimization"); 922 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 923 924 PerFunctionPasses.doInitialization(); 925 for (Function &F : *TheModule) 926 if (!F.isDeclaration()) 927 PerFunctionPasses.run(F); 928 PerFunctionPasses.doFinalization(); 929 } 930 931 { 932 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 933 llvm::TimeTraceScope TimeScope("PerModulePasses"); 934 PerModulePasses.run(*TheModule); 935 } 936 937 { 938 PrettyStackTraceString CrashInfo("Code generation"); 939 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 940 CodeGenPasses.run(*TheModule); 941 } 942 943 if (ThinLinkOS) 944 ThinLinkOS->keep(); 945 if (DwoOS) 946 DwoOS->keep(); 947 } 948 949 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 950 switch (Opts.OptimizationLevel) { 951 default: 952 llvm_unreachable("Invalid optimization level!"); 953 954 case 1: 955 return PassBuilder::OptimizationLevel::O1; 956 957 case 2: 958 switch (Opts.OptimizeSize) { 959 default: 960 llvm_unreachable("Invalid optimization level for size!"); 961 962 case 0: 963 return PassBuilder::OptimizationLevel::O2; 964 965 case 1: 966 return PassBuilder::OptimizationLevel::Os; 967 968 case 2: 969 return PassBuilder::OptimizationLevel::Oz; 970 } 971 972 case 3: 973 return PassBuilder::OptimizationLevel::O3; 974 } 975 } 976 977 static void addCoroutinePassesAtO0(ModulePassManager &MPM, 978 const LangOptions &LangOpts, 979 const CodeGenOptions &CodeGenOpts) { 980 if (!LangOpts.Coroutines) 981 return; 982 983 MPM.addPass(createModuleToFunctionPassAdaptor(CoroEarlyPass())); 984 985 CGSCCPassManager CGPM(CodeGenOpts.DebugPassManager); 986 CGPM.addPass(CoroSplitPass()); 987 CGPM.addPass(createCGSCCToFunctionPassAdaptor(CoroElidePass())); 988 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM))); 989 990 MPM.addPass(createModuleToFunctionPassAdaptor(CoroCleanupPass())); 991 } 992 993 static void addSanitizersAtO0(ModulePassManager &MPM, 994 const Triple &TargetTriple, 995 const LangOptions &LangOpts, 996 const CodeGenOptions &CodeGenOpts) { 997 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 998 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 999 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1000 MPM.addPass(createModuleToFunctionPassAdaptor(AddressSanitizerPass( 1001 CompileKernel, Recover, CodeGenOpts.SanitizeAddressUseAfterScope))); 1002 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1003 MPM.addPass( 1004 ModuleAddressSanitizerPass(CompileKernel, Recover, ModuleUseAfterScope, 1005 CodeGenOpts.SanitizeAddressUseOdrIndicator)); 1006 }; 1007 1008 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1009 ASanPass(SanitizerKind::Address, /*CompileKernel=*/false); 1010 } 1011 1012 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 1013 ASanPass(SanitizerKind::KernelAddress, /*CompileKernel=*/true); 1014 } 1015 1016 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 1017 MPM.addPass(MemorySanitizerPass({})); 1018 MPM.addPass(createModuleToFunctionPassAdaptor(MemorySanitizerPass({}))); 1019 } 1020 1021 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 1022 MPM.addPass(createModuleToFunctionPassAdaptor( 1023 MemorySanitizerPass({0, false, /*Kernel=*/true}))); 1024 } 1025 1026 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1027 MPM.addPass(ThreadSanitizerPass()); 1028 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1029 } 1030 } 1031 1032 /// A clean version of `EmitAssembly` that uses the new pass manager. 1033 /// 1034 /// Not all features are currently supported in this system, but where 1035 /// necessary it falls back to the legacy pass manager to at least provide 1036 /// basic functionality. 1037 /// 1038 /// This API is planned to have its functionality finished and then to replace 1039 /// `EmitAssembly` at some point in the future when the default switches. 1040 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 1041 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 1042 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 1043 setCommandLineOpts(CodeGenOpts); 1044 1045 bool RequiresCodeGen = (Action != Backend_EmitNothing && 1046 Action != Backend_EmitBC && 1047 Action != Backend_EmitLL); 1048 CreateTargetMachine(RequiresCodeGen); 1049 1050 if (RequiresCodeGen && !TM) 1051 return; 1052 if (TM) 1053 TheModule->setDataLayout(TM->createDataLayout()); 1054 1055 Optional<PGOOptions> PGOOpt; 1056 1057 if (CodeGenOpts.hasProfileIRInstr()) 1058 // -fprofile-generate. 1059 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1060 ? std::string(DefaultProfileGenName) 1061 : CodeGenOpts.InstrProfileOutput, 1062 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1063 CodeGenOpts.DebugInfoForProfiling); 1064 else if (CodeGenOpts.hasProfileIRUse()) { 1065 // -fprofile-use. 1066 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1067 : PGOOptions::NoCSAction; 1068 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1069 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1070 CSAction, CodeGenOpts.DebugInfoForProfiling); 1071 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1072 // -fprofile-sample-use 1073 PGOOpt = 1074 PGOOptions(CodeGenOpts.SampleProfileFile, "", 1075 CodeGenOpts.ProfileRemappingFile, PGOOptions::SampleUse, 1076 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling); 1077 else if (CodeGenOpts.DebugInfoForProfiling) 1078 // -fdebug-info-for-profiling 1079 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1080 PGOOptions::NoCSAction, true); 1081 1082 // Check to see if we want to generate a CS profile. 1083 if (CodeGenOpts.hasProfileCSIRInstr()) { 1084 assert(!CodeGenOpts.hasProfileCSIRUse() && 1085 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1086 "the same time"); 1087 if (PGOOpt.hasValue()) { 1088 assert(PGOOpt->Action != PGOOptions::IRInstr && 1089 PGOOpt->Action != PGOOptions::SampleUse && 1090 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1091 " pass"); 1092 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1093 ? std::string(DefaultProfileGenName) 1094 : CodeGenOpts.InstrProfileOutput; 1095 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1096 } else 1097 PGOOpt = PGOOptions("", 1098 CodeGenOpts.InstrProfileOutput.empty() 1099 ? std::string(DefaultProfileGenName) 1100 : CodeGenOpts.InstrProfileOutput, 1101 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1102 CodeGenOpts.DebugInfoForProfiling); 1103 } 1104 1105 PipelineTuningOptions PTO; 1106 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1107 // For historical reasons, loop interleaving is set to mirror setting for loop 1108 // unrolling. 1109 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1110 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1111 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1112 PTO.CallGraphProfile = CodeGenOpts.CallGraphProfile; 1113 PTO.Coroutines = LangOpts.Coroutines; 1114 1115 PassInstrumentationCallbacks PIC; 1116 StandardInstrumentations SI; 1117 SI.registerCallbacks(PIC); 1118 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 1119 1120 // Attempt to load pass plugins and register their callbacks with PB. 1121 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1122 auto PassPlugin = PassPlugin::Load(PluginFN); 1123 if (PassPlugin) { 1124 PassPlugin->registerPassBuilderCallbacks(PB); 1125 } else { 1126 Diags.Report(diag::err_fe_unable_to_load_plugin) 1127 << PluginFN << toString(PassPlugin.takeError()); 1128 } 1129 } 1130 #define HANDLE_EXTENSION(Ext) \ 1131 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 1132 #include "llvm/Support/Extension.def" 1133 1134 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 1135 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 1136 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 1137 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 1138 1139 // Register the AA manager first so that our version is the one used. 1140 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1141 1142 // Register the target library analysis directly and give it a customized 1143 // preset TLI. 1144 Triple TargetTriple(TheModule->getTargetTriple()); 1145 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1146 createTLII(TargetTriple, CodeGenOpts)); 1147 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1148 1149 // Register all the basic analyses with the managers. 1150 PB.registerModuleAnalyses(MAM); 1151 PB.registerCGSCCAnalyses(CGAM); 1152 PB.registerFunctionAnalyses(FAM); 1153 PB.registerLoopAnalyses(LAM); 1154 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1155 1156 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 1157 1158 if (!CodeGenOpts.DisableLLVMPasses) { 1159 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1160 bool IsLTO = CodeGenOpts.PrepareForLTO; 1161 1162 if (CodeGenOpts.OptimizationLevel == 0) { 1163 // If we reached here with a non-empty index file name, then the index 1164 // file was empty and we are not performing ThinLTO backend compilation 1165 // (used in testing in a distributed build environment). Drop any the type 1166 // test assume sequences inserted for whole program vtables so that 1167 // codegen doesn't complain. 1168 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 1169 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1170 /*ImportSummary=*/nullptr, 1171 /*DropTypeTests=*/true)); 1172 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1173 MPM.addPass(GCOVProfilerPass(*Options)); 1174 if (Optional<InstrProfOptions> Options = 1175 getInstrProfOptions(CodeGenOpts, LangOpts)) 1176 MPM.addPass(InstrProfiling(*Options, false)); 1177 1178 // Build a minimal pipeline based on the semantics required by Clang, 1179 // which is just that always inlining occurs. Further, disable generating 1180 // lifetime intrinsics to avoid enabling further optimizations during 1181 // code generation. 1182 // However, we need to insert lifetime intrinsics to avoid invalid access 1183 // caused by multithreaded coroutines. 1184 MPM.addPass( 1185 AlwaysInlinerPass(/*InsertLifetimeIntrinsics=*/LangOpts.Coroutines)); 1186 1187 // At -O0, we can still do PGO. Add all the requested passes for 1188 // instrumentation PGO, if requested. 1189 if (PGOOpt && (PGOOpt->Action == PGOOptions::IRInstr || 1190 PGOOpt->Action == PGOOptions::IRUse)) 1191 PB.addPGOInstrPassesForO0( 1192 MPM, CodeGenOpts.DebugPassManager, 1193 /* RunProfileGen */ (PGOOpt->Action == PGOOptions::IRInstr), 1194 /* IsCS */ false, PGOOpt->ProfileFile, 1195 PGOOpt->ProfileRemappingFile); 1196 1197 // At -O0 we directly run necessary sanitizer passes. 1198 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1199 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 1200 1201 // Lastly, add semantically necessary passes for LTO. 1202 if (IsLTO || IsThinLTO) { 1203 MPM.addPass(CanonicalizeAliasesPass()); 1204 MPM.addPass(NameAnonGlobalPass()); 1205 } 1206 } else { 1207 // Map our optimization levels into one of the distinct levels used to 1208 // configure the pipeline. 1209 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1210 1211 // If we reached here with a non-empty index file name, then the index 1212 // file was empty and we are not performing ThinLTO backend compilation 1213 // (used in testing in a distributed build environment). Drop any the type 1214 // test assume sequences inserted for whole program vtables so that 1215 // codegen doesn't complain. 1216 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 1217 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1218 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1219 /*ImportSummary=*/nullptr, 1220 /*DropTypeTests=*/true)); 1221 }); 1222 1223 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1224 MPM.addPass(createModuleToFunctionPassAdaptor( 1225 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1226 }); 1227 1228 // Register callbacks to schedule sanitizer passes at the appropriate part of 1229 // the pipeline. 1230 // FIXME: either handle asan/the remaining sanitizers or error out 1231 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1232 PB.registerScalarOptimizerLateEPCallback( 1233 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1234 FPM.addPass(BoundsCheckingPass()); 1235 }); 1236 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 1237 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1238 MPM.addPass(MemorySanitizerPass({})); 1239 }); 1240 PB.registerOptimizerLastEPCallback( 1241 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1242 FPM.addPass(MemorySanitizerPass({})); 1243 }); 1244 } 1245 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1246 PB.registerPipelineStartEPCallback( 1247 [](ModulePassManager &MPM) { MPM.addPass(ThreadSanitizerPass()); }); 1248 PB.registerOptimizerLastEPCallback( 1249 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1250 FPM.addPass(ThreadSanitizerPass()); 1251 }); 1252 } 1253 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1254 PB.registerPipelineStartEPCallback([&](ModulePassManager &MPM) { 1255 MPM.addPass( 1256 RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1257 }); 1258 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address); 1259 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1260 PB.registerOptimizerLastEPCallback( 1261 [Recover, UseAfterScope](FunctionPassManager &FPM, 1262 PassBuilder::OptimizationLevel Level) { 1263 FPM.addPass(AddressSanitizerPass( 1264 /*CompileKernel=*/false, Recover, UseAfterScope)); 1265 }); 1266 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1267 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1268 PB.registerPipelineStartEPCallback( 1269 [Recover, ModuleUseAfterScope, 1270 UseOdrIndicator](ModulePassManager &MPM) { 1271 MPM.addPass(ModuleAddressSanitizerPass( 1272 /*CompileKernel=*/false, Recover, ModuleUseAfterScope, 1273 UseOdrIndicator)); 1274 }); 1275 } 1276 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1277 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1278 MPM.addPass(GCOVProfilerPass(*Options)); 1279 }); 1280 if (Optional<InstrProfOptions> Options = 1281 getInstrProfOptions(CodeGenOpts, LangOpts)) 1282 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1283 MPM.addPass(InstrProfiling(*Options, false)); 1284 }); 1285 1286 if (IsThinLTO) { 1287 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 1288 Level, CodeGenOpts.DebugPassManager); 1289 MPM.addPass(CanonicalizeAliasesPass()); 1290 MPM.addPass(NameAnonGlobalPass()); 1291 } else if (IsLTO) { 1292 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 1293 CodeGenOpts.DebugPassManager); 1294 MPM.addPass(CanonicalizeAliasesPass()); 1295 MPM.addPass(NameAnonGlobalPass()); 1296 } else { 1297 MPM = PB.buildPerModuleDefaultPipeline(Level, 1298 CodeGenOpts.DebugPassManager); 1299 } 1300 } 1301 1302 if (CodeGenOpts.SanitizeCoverageType || 1303 CodeGenOpts.SanitizeCoverageIndirectCalls || 1304 CodeGenOpts.SanitizeCoverageTraceCmp) { 1305 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1306 MPM.addPass(ModuleSanitizerCoveragePass(SancovOpts)); 1307 } 1308 1309 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 1310 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 1311 MPM.addPass(HWAddressSanitizerPass( 1312 /*CompileKernel=*/false, Recover)); 1313 } 1314 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 1315 MPM.addPass(HWAddressSanitizerPass( 1316 /*CompileKernel=*/true, /*Recover=*/true)); 1317 } 1318 1319 if (CodeGenOpts.OptimizationLevel > 0 && 1320 LangOpts.Sanitize.has(SanitizerKind::MemTag)) { 1321 MPM.addPass(StackSafetyGlobalAnnotatorPass()); 1322 } 1323 1324 if (CodeGenOpts.OptimizationLevel == 0) { 1325 addCoroutinePassesAtO0(MPM, LangOpts, CodeGenOpts); 1326 addSanitizersAtO0(MPM, TargetTriple, LangOpts, CodeGenOpts); 1327 } 1328 } 1329 1330 // FIXME: We still use the legacy pass manager to do code generation. We 1331 // create that pass manager here and use it as needed below. 1332 legacy::PassManager CodeGenPasses; 1333 bool NeedCodeGen = false; 1334 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1335 1336 // Append any output we need to the pass manager. 1337 switch (Action) { 1338 case Backend_EmitNothing: 1339 break; 1340 1341 case Backend_EmitBC: 1342 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1343 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1344 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1345 if (!ThinLinkOS) 1346 return; 1347 } 1348 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1349 CodeGenOpts.EnableSplitLTOUnit); 1350 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1351 : nullptr)); 1352 } else { 1353 // Emit a module summary by default for Regular LTO except for ld64 1354 // targets 1355 bool EmitLTOSummary = 1356 (CodeGenOpts.PrepareForLTO && 1357 !CodeGenOpts.DisableLLVMPasses && 1358 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1359 llvm::Triple::Apple); 1360 if (EmitLTOSummary) { 1361 if (!TheModule->getModuleFlag("ThinLTO")) 1362 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1363 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1364 uint32_t(1)); 1365 } 1366 MPM.addPass( 1367 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1368 } 1369 break; 1370 1371 case Backend_EmitLL: 1372 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1373 break; 1374 1375 case Backend_EmitAssembly: 1376 case Backend_EmitMCNull: 1377 case Backend_EmitObj: 1378 NeedCodeGen = true; 1379 CodeGenPasses.add( 1380 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1381 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1382 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1383 if (!DwoOS) 1384 return; 1385 } 1386 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1387 DwoOS ? &DwoOS->os() : nullptr)) 1388 // FIXME: Should we handle this error differently? 1389 return; 1390 break; 1391 } 1392 1393 // Before executing passes, print the final values of the LLVM options. 1394 cl::PrintOptionValues(); 1395 1396 // Now that we have all of the passes ready, run them. 1397 { 1398 PrettyStackTraceString CrashInfo("Optimizer"); 1399 MPM.run(*TheModule, MAM); 1400 } 1401 1402 // Now if needed, run the legacy PM for codegen. 1403 if (NeedCodeGen) { 1404 PrettyStackTraceString CrashInfo("Code generation"); 1405 CodeGenPasses.run(*TheModule); 1406 } 1407 1408 if (ThinLinkOS) 1409 ThinLinkOS->keep(); 1410 if (DwoOS) 1411 DwoOS->keep(); 1412 } 1413 1414 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1415 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1416 if (!BMsOrErr) 1417 return BMsOrErr.takeError(); 1418 1419 // The bitcode file may contain multiple modules, we want the one that is 1420 // marked as being the ThinLTO module. 1421 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1422 return *Bm; 1423 1424 return make_error<StringError>("Could not find module summary", 1425 inconvertibleErrorCode()); 1426 } 1427 1428 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1429 for (BitcodeModule &BM : BMs) { 1430 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1431 if (LTOInfo && LTOInfo->IsThinLTO) 1432 return &BM; 1433 } 1434 return nullptr; 1435 } 1436 1437 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1438 const HeaderSearchOptions &HeaderOpts, 1439 const CodeGenOptions &CGOpts, 1440 const clang::TargetOptions &TOpts, 1441 const LangOptions &LOpts, 1442 std::unique_ptr<raw_pwrite_stream> OS, 1443 std::string SampleProfile, 1444 std::string ProfileRemapping, 1445 BackendAction Action) { 1446 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1447 ModuleToDefinedGVSummaries; 1448 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1449 1450 setCommandLineOpts(CGOpts); 1451 1452 // We can simply import the values mentioned in the combined index, since 1453 // we should only invoke this using the individual indexes written out 1454 // via a WriteIndexesThinBackend. 1455 FunctionImporter::ImportMapTy ImportList; 1456 for (auto &GlobalList : *CombinedIndex) { 1457 // Ignore entries for undefined references. 1458 if (GlobalList.second.SummaryList.empty()) 1459 continue; 1460 1461 auto GUID = GlobalList.first; 1462 for (auto &Summary : GlobalList.second.SummaryList) { 1463 // Skip the summaries for the importing module. These are included to 1464 // e.g. record required linkage changes. 1465 if (Summary->modulePath() == M->getModuleIdentifier()) 1466 continue; 1467 // Add an entry to provoke importing by thinBackend. 1468 ImportList[Summary->modulePath()].insert(GUID); 1469 } 1470 } 1471 1472 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1473 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1474 1475 for (auto &I : ImportList) { 1476 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1477 llvm::MemoryBuffer::getFile(I.first()); 1478 if (!MBOrErr) { 1479 errs() << "Error loading imported file '" << I.first() 1480 << "': " << MBOrErr.getError().message() << "\n"; 1481 return; 1482 } 1483 1484 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1485 if (!BMOrErr) { 1486 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1487 errs() << "Error loading imported file '" << I.first() 1488 << "': " << EIB.message() << '\n'; 1489 }); 1490 return; 1491 } 1492 ModuleMap.insert({I.first(), *BMOrErr}); 1493 1494 OwnedImports.push_back(std::move(*MBOrErr)); 1495 } 1496 auto AddStream = [&](size_t Task) { 1497 return std::make_unique<lto::NativeObjectStream>(std::move(OS)); 1498 }; 1499 lto::Config Conf; 1500 if (CGOpts.SaveTempsFilePrefix != "") { 1501 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1502 /* UseInputModulePath */ false)) { 1503 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1504 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1505 << '\n'; 1506 }); 1507 } 1508 } 1509 Conf.CPU = TOpts.CPU; 1510 Conf.CodeModel = getCodeModel(CGOpts); 1511 Conf.MAttrs = TOpts.Features; 1512 Conf.RelocModel = CGOpts.RelocationModel; 1513 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1514 Conf.OptLevel = CGOpts.OptimizationLevel; 1515 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1516 Conf.SampleProfile = std::move(SampleProfile); 1517 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1518 // For historical reasons, loop interleaving is set to mirror setting for loop 1519 // unrolling. 1520 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1521 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1522 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1523 Conf.PTO.CallGraphProfile = CGOpts.CallGraphProfile; 1524 1525 // Context sensitive profile. 1526 if (CGOpts.hasProfileCSIRInstr()) { 1527 Conf.RunCSIRInstr = true; 1528 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1529 } else if (CGOpts.hasProfileCSIRUse()) { 1530 Conf.RunCSIRInstr = false; 1531 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1532 } 1533 1534 Conf.ProfileRemapping = std::move(ProfileRemapping); 1535 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1536 Conf.DebugPassManager = CGOpts.DebugPassManager; 1537 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1538 Conf.RemarksFilename = CGOpts.OptRecordFile; 1539 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1540 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1541 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1542 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1543 switch (Action) { 1544 case Backend_EmitNothing: 1545 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1546 return false; 1547 }; 1548 break; 1549 case Backend_EmitLL: 1550 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1551 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1552 return false; 1553 }; 1554 break; 1555 case Backend_EmitBC: 1556 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1557 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1558 return false; 1559 }; 1560 break; 1561 default: 1562 Conf.CGFileType = getCodeGenFileType(Action); 1563 break; 1564 } 1565 if (Error E = thinBackend( 1566 Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1567 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1568 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1569 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1570 }); 1571 } 1572 } 1573 1574 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1575 const HeaderSearchOptions &HeaderOpts, 1576 const CodeGenOptions &CGOpts, 1577 const clang::TargetOptions &TOpts, 1578 const LangOptions &LOpts, 1579 const llvm::DataLayout &TDesc, Module *M, 1580 BackendAction Action, 1581 std::unique_ptr<raw_pwrite_stream> OS) { 1582 1583 llvm::TimeTraceScope TimeScope("Backend"); 1584 1585 std::unique_ptr<llvm::Module> EmptyModule; 1586 if (!CGOpts.ThinLTOIndexFile.empty()) { 1587 // If we are performing a ThinLTO importing compile, load the function index 1588 // into memory and pass it into runThinLTOBackend, which will run the 1589 // function importer and invoke LTO passes. 1590 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1591 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1592 /*IgnoreEmptyThinLTOIndexFile*/true); 1593 if (!IndexOrErr) { 1594 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1595 "Error loading index file '" + 1596 CGOpts.ThinLTOIndexFile + "': "); 1597 return; 1598 } 1599 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1600 // A null CombinedIndex means we should skip ThinLTO compilation 1601 // (LLVM will optionally ignore empty index files, returning null instead 1602 // of an error). 1603 if (CombinedIndex) { 1604 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1605 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1606 LOpts, std::move(OS), CGOpts.SampleProfileFile, 1607 CGOpts.ProfileRemappingFile, Action); 1608 return; 1609 } 1610 // Distributed indexing detected that nothing from the module is needed 1611 // for the final linking. So we can skip the compilation. We sill need to 1612 // output an empty object file to make sure that a linker does not fail 1613 // trying to read it. Also for some features, like CFI, we must skip 1614 // the compilation as CombinedIndex does not contain all required 1615 // information. 1616 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1617 EmptyModule->setTargetTriple(M->getTargetTriple()); 1618 M = EmptyModule.get(); 1619 } 1620 } 1621 1622 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1623 1624 if (CGOpts.ExperimentalNewPassManager) 1625 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1626 else 1627 AsmHelper.EmitAssembly(Action, std::move(OS)); 1628 1629 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1630 // DataLayout. 1631 if (AsmHelper.TM) { 1632 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1633 if (DLDesc != TDesc.getStringRepresentation()) { 1634 unsigned DiagID = Diags.getCustomDiagID( 1635 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1636 "expected target description '%1'"); 1637 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1638 } 1639 } 1640 } 1641 1642 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1643 // __LLVM,__bitcode section. 1644 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1645 llvm::MemoryBufferRef Buf) { 1646 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1647 return; 1648 llvm::EmbedBitcodeInModule( 1649 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1650 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1651 &CGOpts.CmdArgs); 1652 } 1653