1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Bitcode/BitcodeReader.h" 24 #include "llvm/Bitcode/BitcodeWriter.h" 25 #include "llvm/Bitcode/BitcodeWriterPass.h" 26 #include "llvm/CodeGen/RegAllocRegistry.h" 27 #include "llvm/CodeGen/SchedulerRegistry.h" 28 #include "llvm/CodeGen/TargetSubtargetInfo.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/IRPrintingPasses.h" 31 #include "llvm/IR/LegacyPassManager.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSummaryIndex.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/LTO/LTOBackend.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/SubtargetFeature.h" 38 #include "llvm/Passes/PassBuilder.h" 39 #include "llvm/Passes/PassPlugin.h" 40 #include "llvm/Support/BuryPointer.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/MemoryBuffer.h" 43 #include "llvm/Support/PrettyStackTrace.h" 44 #include "llvm/Support/TargetRegistry.h" 45 #include "llvm/Support/Timer.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include "llvm/Transforms/Coroutines.h" 50 #include "llvm/Transforms/IPO.h" 51 #include "llvm/Transforms/IPO/AlwaysInliner.h" 52 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 53 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 54 #include "llvm/Transforms/InstCombine/InstCombine.h" 55 #include "llvm/Transforms/Instrumentation.h" 56 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 57 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 58 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 59 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 60 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 61 #include "llvm/Transforms/ObjCARC.h" 62 #include "llvm/Transforms/Scalar.h" 63 #include "llvm/Transforms/Scalar/GVN.h" 64 #include "llvm/Transforms/Utils.h" 65 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 66 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 67 #include "llvm/Transforms/Utils/SymbolRewriter.h" 68 #include <memory> 69 using namespace clang; 70 using namespace llvm; 71 72 namespace { 73 74 // Default filename used for profile generation. 75 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 76 77 class EmitAssemblyHelper { 78 DiagnosticsEngine &Diags; 79 const HeaderSearchOptions &HSOpts; 80 const CodeGenOptions &CodeGenOpts; 81 const clang::TargetOptions &TargetOpts; 82 const LangOptions &LangOpts; 83 Module *TheModule; 84 85 Timer CodeGenerationTime; 86 87 std::unique_ptr<raw_pwrite_stream> OS; 88 89 TargetIRAnalysis getTargetIRAnalysis() const { 90 if (TM) 91 return TM->getTargetIRAnalysis(); 92 93 return TargetIRAnalysis(); 94 } 95 96 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 97 98 /// Generates the TargetMachine. 99 /// Leaves TM unchanged if it is unable to create the target machine. 100 /// Some of our clang tests specify triples which are not built 101 /// into clang. This is okay because these tests check the generated 102 /// IR, and they require DataLayout which depends on the triple. 103 /// In this case, we allow this method to fail and not report an error. 104 /// When MustCreateTM is used, we print an error if we are unable to load 105 /// the requested target. 106 void CreateTargetMachine(bool MustCreateTM); 107 108 /// Add passes necessary to emit assembly or LLVM IR. 109 /// 110 /// \return True on success. 111 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 112 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 113 114 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 115 std::error_code EC; 116 auto F = llvm::make_unique<llvm::ToolOutputFile>(Path, EC, 117 llvm::sys::fs::F_None); 118 if (EC) { 119 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 120 F.reset(); 121 } 122 return F; 123 } 124 125 public: 126 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 127 const HeaderSearchOptions &HeaderSearchOpts, 128 const CodeGenOptions &CGOpts, 129 const clang::TargetOptions &TOpts, 130 const LangOptions &LOpts, Module *M) 131 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 132 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 133 CodeGenerationTime("codegen", "Code Generation Time") {} 134 135 ~EmitAssemblyHelper() { 136 if (CodeGenOpts.DisableFree) 137 BuryPointer(std::move(TM)); 138 } 139 140 std::unique_ptr<TargetMachine> TM; 141 142 void EmitAssembly(BackendAction Action, 143 std::unique_ptr<raw_pwrite_stream> OS); 144 145 void EmitAssemblyWithNewPassManager(BackendAction Action, 146 std::unique_ptr<raw_pwrite_stream> OS); 147 }; 148 149 // We need this wrapper to access LangOpts and CGOpts from extension functions 150 // that we add to the PassManagerBuilder. 151 class PassManagerBuilderWrapper : public PassManagerBuilder { 152 public: 153 PassManagerBuilderWrapper(const Triple &TargetTriple, 154 const CodeGenOptions &CGOpts, 155 const LangOptions &LangOpts) 156 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 157 LangOpts(LangOpts) {} 158 const Triple &getTargetTriple() const { return TargetTriple; } 159 const CodeGenOptions &getCGOpts() const { return CGOpts; } 160 const LangOptions &getLangOpts() const { return LangOpts; } 161 162 private: 163 const Triple &TargetTriple; 164 const CodeGenOptions &CGOpts; 165 const LangOptions &LangOpts; 166 }; 167 } 168 169 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 170 if (Builder.OptLevel > 0) 171 PM.add(createObjCARCAPElimPass()); 172 } 173 174 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 175 if (Builder.OptLevel > 0) 176 PM.add(createObjCARCExpandPass()); 177 } 178 179 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 180 if (Builder.OptLevel > 0) 181 PM.add(createObjCARCOptPass()); 182 } 183 184 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 185 legacy::PassManagerBase &PM) { 186 PM.add(createAddDiscriminatorsPass()); 187 } 188 189 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 190 legacy::PassManagerBase &PM) { 191 PM.add(createBoundsCheckingLegacyPass()); 192 } 193 194 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 195 legacy::PassManagerBase &PM) { 196 const PassManagerBuilderWrapper &BuilderWrapper = 197 static_cast<const PassManagerBuilderWrapper&>(Builder); 198 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 199 SanitizerCoverageOptions Opts; 200 Opts.CoverageType = 201 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 202 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 203 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 204 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 205 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 206 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 207 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 208 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 209 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 210 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 211 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 212 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 213 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 214 PM.add(createSanitizerCoverageModulePass(Opts)); 215 } 216 217 // Check if ASan should use GC-friendly instrumentation for globals. 218 // First of all, there is no point if -fdata-sections is off (expect for MachO, 219 // where this is not a factor). Also, on ELF this feature requires an assembler 220 // extension that only works with -integrated-as at the moment. 221 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 222 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 223 return false; 224 switch (T.getObjectFormat()) { 225 case Triple::MachO: 226 case Triple::COFF: 227 return true; 228 case Triple::ELF: 229 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 230 default: 231 return false; 232 } 233 } 234 235 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 236 legacy::PassManagerBase &PM) { 237 const PassManagerBuilderWrapper &BuilderWrapper = 238 static_cast<const PassManagerBuilderWrapper&>(Builder); 239 const Triple &T = BuilderWrapper.getTargetTriple(); 240 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 241 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 242 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 243 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 244 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 245 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 246 UseAfterScope)); 247 PM.add(createModuleAddressSanitizerLegacyPassPass( 248 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator)); 249 } 250 251 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 252 legacy::PassManagerBase &PM) { 253 PM.add(createAddressSanitizerFunctionPass( 254 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 255 PM.add(createModuleAddressSanitizerLegacyPassPass( 256 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 257 /*UseOdrIndicator*/ false)); 258 } 259 260 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 261 legacy::PassManagerBase &PM) { 262 const PassManagerBuilderWrapper &BuilderWrapper = 263 static_cast<const PassManagerBuilderWrapper &>(Builder); 264 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 265 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 266 PM.add(createHWAddressSanitizerPass(/*CompileKernel*/ false, Recover)); 267 } 268 269 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 270 legacy::PassManagerBase &PM) { 271 PM.add(createHWAddressSanitizerPass( 272 /*CompileKernel*/ true, /*Recover*/ true)); 273 } 274 275 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 276 legacy::PassManagerBase &PM, 277 bool CompileKernel) { 278 const PassManagerBuilderWrapper &BuilderWrapper = 279 static_cast<const PassManagerBuilderWrapper&>(Builder); 280 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 281 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 282 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 283 PM.add(createMemorySanitizerLegacyPassPass( 284 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 285 286 // MemorySanitizer inserts complex instrumentation that mostly follows 287 // the logic of the original code, but operates on "shadow" values. 288 // It can benefit from re-running some general purpose optimization passes. 289 if (Builder.OptLevel > 0) { 290 PM.add(createEarlyCSEPass()); 291 PM.add(createReassociatePass()); 292 PM.add(createLICMPass()); 293 PM.add(createGVNPass()); 294 PM.add(createInstructionCombiningPass()); 295 PM.add(createDeadStoreEliminationPass()); 296 } 297 } 298 299 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 300 legacy::PassManagerBase &PM) { 301 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 302 } 303 304 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 305 legacy::PassManagerBase &PM) { 306 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 307 } 308 309 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 310 legacy::PassManagerBase &PM) { 311 PM.add(createThreadSanitizerLegacyPassPass()); 312 } 313 314 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 315 legacy::PassManagerBase &PM) { 316 const PassManagerBuilderWrapper &BuilderWrapper = 317 static_cast<const PassManagerBuilderWrapper&>(Builder); 318 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 319 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 320 } 321 322 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 323 legacy::PassManagerBase &PM) { 324 const PassManagerBuilderWrapper &BuilderWrapper = 325 static_cast<const PassManagerBuilderWrapper&>(Builder); 326 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 327 EfficiencySanitizerOptions Opts; 328 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 329 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 330 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 331 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 332 PM.add(createEfficiencySanitizerPass(Opts)); 333 } 334 335 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 336 const CodeGenOptions &CodeGenOpts) { 337 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 338 if (!CodeGenOpts.SimplifyLibCalls) 339 TLII->disableAllFunctions(); 340 else { 341 // Disable individual libc/libm calls in TargetLibraryInfo. 342 LibFunc F; 343 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 344 if (TLII->getLibFunc(FuncName, F)) 345 TLII->setUnavailable(F); 346 } 347 348 switch (CodeGenOpts.getVecLib()) { 349 case CodeGenOptions::Accelerate: 350 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 351 break; 352 case CodeGenOptions::SVML: 353 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 354 break; 355 default: 356 break; 357 } 358 return TLII; 359 } 360 361 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 362 legacy::PassManager *MPM) { 363 llvm::SymbolRewriter::RewriteDescriptorList DL; 364 365 llvm::SymbolRewriter::RewriteMapParser MapParser; 366 for (const auto &MapFile : Opts.RewriteMapFiles) 367 MapParser.parse(MapFile, &DL); 368 369 MPM->add(createRewriteSymbolsPass(DL)); 370 } 371 372 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 373 switch (CodeGenOpts.OptimizationLevel) { 374 default: 375 llvm_unreachable("Invalid optimization level!"); 376 case 0: 377 return CodeGenOpt::None; 378 case 1: 379 return CodeGenOpt::Less; 380 case 2: 381 return CodeGenOpt::Default; // O2/Os/Oz 382 case 3: 383 return CodeGenOpt::Aggressive; 384 } 385 } 386 387 static Optional<llvm::CodeModel::Model> 388 getCodeModel(const CodeGenOptions &CodeGenOpts) { 389 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 390 .Case("tiny", llvm::CodeModel::Tiny) 391 .Case("small", llvm::CodeModel::Small) 392 .Case("kernel", llvm::CodeModel::Kernel) 393 .Case("medium", llvm::CodeModel::Medium) 394 .Case("large", llvm::CodeModel::Large) 395 .Case("default", ~1u) 396 .Default(~0u); 397 assert(CodeModel != ~0u && "invalid code model!"); 398 if (CodeModel == ~1u) 399 return None; 400 return static_cast<llvm::CodeModel::Model>(CodeModel); 401 } 402 403 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 404 if (Action == Backend_EmitObj) 405 return TargetMachine::CGFT_ObjectFile; 406 else if (Action == Backend_EmitMCNull) 407 return TargetMachine::CGFT_Null; 408 else { 409 assert(Action == Backend_EmitAssembly && "Invalid action!"); 410 return TargetMachine::CGFT_AssemblyFile; 411 } 412 } 413 414 static void initTargetOptions(llvm::TargetOptions &Options, 415 const CodeGenOptions &CodeGenOpts, 416 const clang::TargetOptions &TargetOpts, 417 const LangOptions &LangOpts, 418 const HeaderSearchOptions &HSOpts) { 419 Options.ThreadModel = 420 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 421 .Case("posix", llvm::ThreadModel::POSIX) 422 .Case("single", llvm::ThreadModel::Single); 423 424 // Set float ABI type. 425 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 426 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 427 "Invalid Floating Point ABI!"); 428 Options.FloatABIType = 429 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 430 .Case("soft", llvm::FloatABI::Soft) 431 .Case("softfp", llvm::FloatABI::Soft) 432 .Case("hard", llvm::FloatABI::Hard) 433 .Default(llvm::FloatABI::Default); 434 435 // Set FP fusion mode. 436 switch (LangOpts.getDefaultFPContractMode()) { 437 case LangOptions::FPC_Off: 438 // Preserve any contraction performed by the front-end. (Strict performs 439 // splitting of the muladd intrinsic in the backend.) 440 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 441 break; 442 case LangOptions::FPC_On: 443 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 444 break; 445 case LangOptions::FPC_Fast: 446 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 447 break; 448 } 449 450 Options.UseInitArray = CodeGenOpts.UseInitArray; 451 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 452 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 453 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 454 455 // Set EABI version. 456 Options.EABIVersion = TargetOpts.EABIVersion; 457 458 if (LangOpts.SjLjExceptions) 459 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 460 if (LangOpts.SEHExceptions) 461 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 462 if (LangOpts.DWARFExceptions) 463 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 464 465 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 466 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 467 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 468 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 469 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 470 Options.FunctionSections = CodeGenOpts.FunctionSections; 471 Options.DataSections = CodeGenOpts.DataSections; 472 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 473 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 474 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 475 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 476 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 477 Options.EmitAddrsig = CodeGenOpts.Addrsig; 478 479 if (CodeGenOpts.getSplitDwarfMode() != CodeGenOptions::NoFission) 480 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 481 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 482 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 483 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 484 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 485 Options.MCOptions.MCIncrementalLinkerCompatible = 486 CodeGenOpts.IncrementalLinkerCompatible; 487 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 488 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 489 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 490 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 491 Options.MCOptions.ABIName = TargetOpts.ABI; 492 for (const auto &Entry : HSOpts.UserEntries) 493 if (!Entry.IsFramework && 494 (Entry.Group == frontend::IncludeDirGroup::Quoted || 495 Entry.Group == frontend::IncludeDirGroup::Angled || 496 Entry.Group == frontend::IncludeDirGroup::System)) 497 Options.MCOptions.IASSearchPaths.push_back( 498 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 499 } 500 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 501 if (CodeGenOpts.DisableGCov) 502 return None; 503 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 504 return None; 505 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 506 // LLVM's -default-gcov-version flag is set to something invalid. 507 GCOVOptions Options; 508 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 509 Options.EmitData = CodeGenOpts.EmitGcovArcs; 510 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 511 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 512 Options.NoRedZone = CodeGenOpts.DisableRedZone; 513 Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData; 514 Options.Filter = CodeGenOpts.ProfileFilterFiles; 515 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 516 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 517 return Options; 518 } 519 520 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 521 legacy::FunctionPassManager &FPM) { 522 // Handle disabling of all LLVM passes, where we want to preserve the 523 // internal module before any optimization. 524 if (CodeGenOpts.DisableLLVMPasses) 525 return; 526 527 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 528 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 529 // are inserted before PMBuilder ones - they'd get the default-constructed 530 // TLI with an unknown target otherwise. 531 Triple TargetTriple(TheModule->getTargetTriple()); 532 std::unique_ptr<TargetLibraryInfoImpl> TLII( 533 createTLII(TargetTriple, CodeGenOpts)); 534 535 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 536 537 // At O0 and O1 we only run the always inliner which is more efficient. At 538 // higher optimization levels we run the normal inliner. 539 if (CodeGenOpts.OptimizationLevel <= 1) { 540 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 541 !CodeGenOpts.DisableLifetimeMarkers); 542 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 543 } else { 544 // We do not want to inline hot callsites for SamplePGO module-summary build 545 // because profile annotation will happen again in ThinLTO backend, and we 546 // want the IR of the hot path to match the profile. 547 PMBuilder.Inliner = createFunctionInliningPass( 548 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 549 (!CodeGenOpts.SampleProfileFile.empty() && 550 CodeGenOpts.PrepareForThinLTO)); 551 } 552 553 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 554 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 555 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 556 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 557 558 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 559 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 560 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 561 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 562 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 563 564 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 565 566 if (TM) 567 TM->adjustPassManager(PMBuilder); 568 569 if (CodeGenOpts.DebugInfoForProfiling || 570 !CodeGenOpts.SampleProfileFile.empty()) 571 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 572 addAddDiscriminatorsPass); 573 574 // In ObjC ARC mode, add the main ARC optimization passes. 575 if (LangOpts.ObjCAutoRefCount) { 576 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 577 addObjCARCExpandPass); 578 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 579 addObjCARCAPElimPass); 580 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 581 addObjCARCOptPass); 582 } 583 584 if (LangOpts.CoroutinesTS) 585 addCoroutinePassesToExtensionPoints(PMBuilder); 586 587 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 588 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 589 addBoundsCheckingPass); 590 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 591 addBoundsCheckingPass); 592 } 593 594 if (CodeGenOpts.SanitizeCoverageType || 595 CodeGenOpts.SanitizeCoverageIndirectCalls || 596 CodeGenOpts.SanitizeCoverageTraceCmp) { 597 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 598 addSanitizerCoveragePass); 599 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 600 addSanitizerCoveragePass); 601 } 602 603 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 604 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 605 addAddressSanitizerPasses); 606 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 607 addAddressSanitizerPasses); 608 } 609 610 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 611 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 612 addKernelAddressSanitizerPasses); 613 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 614 addKernelAddressSanitizerPasses); 615 } 616 617 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 618 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 619 addHWAddressSanitizerPasses); 620 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 621 addHWAddressSanitizerPasses); 622 } 623 624 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 625 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 626 addKernelHWAddressSanitizerPasses); 627 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 628 addKernelHWAddressSanitizerPasses); 629 } 630 631 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 632 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 633 addMemorySanitizerPass); 634 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 635 addMemorySanitizerPass); 636 } 637 638 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 639 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 640 addKernelMemorySanitizerPass); 641 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 642 addKernelMemorySanitizerPass); 643 } 644 645 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 646 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 647 addThreadSanitizerPass); 648 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 649 addThreadSanitizerPass); 650 } 651 652 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 653 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 654 addDataFlowSanitizerPass); 655 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 656 addDataFlowSanitizerPass); 657 } 658 659 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 660 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 661 addEfficiencySanitizerPass); 662 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 663 addEfficiencySanitizerPass); 664 } 665 666 // Set up the per-function pass manager. 667 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 668 if (CodeGenOpts.VerifyModule) 669 FPM.add(createVerifierPass()); 670 671 // Set up the per-module pass manager. 672 if (!CodeGenOpts.RewriteMapFiles.empty()) 673 addSymbolRewriterPass(CodeGenOpts, &MPM); 674 675 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 676 MPM.add(createGCOVProfilerPass(*Options)); 677 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 678 MPM.add(createStripSymbolsPass(true)); 679 } 680 681 if (CodeGenOpts.hasProfileClangInstr()) { 682 InstrProfOptions Options; 683 Options.NoRedZone = CodeGenOpts.DisableRedZone; 684 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 685 686 // TODO: Surface the option to emit atomic profile counter increments at 687 // the driver level. 688 Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread); 689 690 MPM.add(createInstrProfilingLegacyPass(Options)); 691 } 692 if (CodeGenOpts.hasProfileIRInstr()) { 693 PMBuilder.EnablePGOInstrGen = true; 694 if (!CodeGenOpts.InstrProfileOutput.empty()) 695 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 696 else 697 PMBuilder.PGOInstrGen = DefaultProfileGenName; 698 } 699 if (CodeGenOpts.hasProfileIRUse()) 700 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 701 702 if (!CodeGenOpts.SampleProfileFile.empty()) 703 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 704 705 PMBuilder.populateFunctionPassManager(FPM); 706 PMBuilder.populateModulePassManager(MPM); 707 } 708 709 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 710 SmallVector<const char *, 16> BackendArgs; 711 BackendArgs.push_back("clang"); // Fake program name. 712 if (!CodeGenOpts.DebugPass.empty()) { 713 BackendArgs.push_back("-debug-pass"); 714 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 715 } 716 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 717 BackendArgs.push_back("-limit-float-precision"); 718 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 719 } 720 BackendArgs.push_back(nullptr); 721 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 722 BackendArgs.data()); 723 } 724 725 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 726 // Create the TargetMachine for generating code. 727 std::string Error; 728 std::string Triple = TheModule->getTargetTriple(); 729 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 730 if (!TheTarget) { 731 if (MustCreateTM) 732 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 733 return; 734 } 735 736 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 737 std::string FeaturesStr = 738 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 739 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 740 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 741 742 llvm::TargetOptions Options; 743 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 744 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 745 Options, RM, CM, OptLevel)); 746 } 747 748 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 749 BackendAction Action, 750 raw_pwrite_stream &OS, 751 raw_pwrite_stream *DwoOS) { 752 // Add LibraryInfo. 753 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 754 std::unique_ptr<TargetLibraryInfoImpl> TLII( 755 createTLII(TargetTriple, CodeGenOpts)); 756 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 757 758 // Normal mode, emit a .s or .o file by running the code generator. Note, 759 // this also adds codegenerator level optimization passes. 760 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 761 762 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 763 // "codegen" passes so that it isn't run multiple times when there is 764 // inlining happening. 765 if (CodeGenOpts.OptimizationLevel > 0) 766 CodeGenPasses.add(createObjCARCContractPass()); 767 768 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 769 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 770 Diags.Report(diag::err_fe_unable_to_interface_with_target); 771 return false; 772 } 773 774 return true; 775 } 776 777 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 778 std::unique_ptr<raw_pwrite_stream> OS) { 779 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 780 781 setCommandLineOpts(CodeGenOpts); 782 783 bool UsesCodeGen = (Action != Backend_EmitNothing && 784 Action != Backend_EmitBC && 785 Action != Backend_EmitLL); 786 CreateTargetMachine(UsesCodeGen); 787 788 if (UsesCodeGen && !TM) 789 return; 790 if (TM) 791 TheModule->setDataLayout(TM->createDataLayout()); 792 793 legacy::PassManager PerModulePasses; 794 PerModulePasses.add( 795 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 796 797 legacy::FunctionPassManager PerFunctionPasses(TheModule); 798 PerFunctionPasses.add( 799 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 800 801 CreatePasses(PerModulePasses, PerFunctionPasses); 802 803 legacy::PassManager CodeGenPasses; 804 CodeGenPasses.add( 805 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 806 807 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 808 809 switch (Action) { 810 case Backend_EmitNothing: 811 break; 812 813 case Backend_EmitBC: 814 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 815 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 816 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 817 if (!ThinLinkOS) 818 return; 819 } 820 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 821 CodeGenOpts.EnableSplitLTOUnit); 822 PerModulePasses.add(createWriteThinLTOBitcodePass( 823 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 824 } else { 825 // Emit a module summary by default for Regular LTO except for ld64 826 // targets 827 bool EmitLTOSummary = 828 (CodeGenOpts.PrepareForLTO && 829 !CodeGenOpts.DisableLLVMPasses && 830 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 831 llvm::Triple::Apple); 832 if (EmitLTOSummary) { 833 if (!TheModule->getModuleFlag("ThinLTO")) 834 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 835 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 836 CodeGenOpts.EnableSplitLTOUnit); 837 } 838 839 PerModulePasses.add(createBitcodeWriterPass( 840 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 841 } 842 break; 843 844 case Backend_EmitLL: 845 PerModulePasses.add( 846 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 847 break; 848 849 default: 850 if (!CodeGenOpts.SplitDwarfFile.empty() && 851 (CodeGenOpts.getSplitDwarfMode() == CodeGenOptions::SplitFileFission)) { 852 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfFile); 853 if (!DwoOS) 854 return; 855 } 856 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 857 DwoOS ? &DwoOS->os() : nullptr)) 858 return; 859 } 860 861 // Before executing passes, print the final values of the LLVM options. 862 cl::PrintOptionValues(); 863 864 // Run passes. For now we do all passes at once, but eventually we 865 // would like to have the option of streaming code generation. 866 867 { 868 PrettyStackTraceString CrashInfo("Per-function optimization"); 869 870 PerFunctionPasses.doInitialization(); 871 for (Function &F : *TheModule) 872 if (!F.isDeclaration()) 873 PerFunctionPasses.run(F); 874 PerFunctionPasses.doFinalization(); 875 } 876 877 { 878 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 879 PerModulePasses.run(*TheModule); 880 } 881 882 { 883 PrettyStackTraceString CrashInfo("Code generation"); 884 CodeGenPasses.run(*TheModule); 885 } 886 887 if (ThinLinkOS) 888 ThinLinkOS->keep(); 889 if (DwoOS) 890 DwoOS->keep(); 891 } 892 893 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 894 switch (Opts.OptimizationLevel) { 895 default: 896 llvm_unreachable("Invalid optimization level!"); 897 898 case 1: 899 return PassBuilder::O1; 900 901 case 2: 902 switch (Opts.OptimizeSize) { 903 default: 904 llvm_unreachable("Invalid optimization level for size!"); 905 906 case 0: 907 return PassBuilder::O2; 908 909 case 1: 910 return PassBuilder::Os; 911 912 case 2: 913 return PassBuilder::Oz; 914 } 915 916 case 3: 917 return PassBuilder::O3; 918 } 919 } 920 921 void addSanitizersAtO0(ModulePassManager &MPM, const Triple &TargetTriple, 922 const LangOptions &LangOpts, 923 const CodeGenOptions &CodeGenOpts) { 924 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 925 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 926 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address); 927 MPM.addPass(createModuleToFunctionPassAdaptor( 928 AddressSanitizerPass(/*CompileKernel=*/false, Recover, 929 CodeGenOpts.SanitizeAddressUseAfterScope))); 930 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 931 MPM.addPass(ModuleAddressSanitizerPass( 932 /*CompileKernel=*/false, Recover, ModuleUseAfterScope, 933 CodeGenOpts.SanitizeAddressUseOdrIndicator)); 934 } 935 } 936 937 /// A clean version of `EmitAssembly` that uses the new pass manager. 938 /// 939 /// Not all features are currently supported in this system, but where 940 /// necessary it falls back to the legacy pass manager to at least provide 941 /// basic functionality. 942 /// 943 /// This API is planned to have its functionality finished and then to replace 944 /// `EmitAssembly` at some point in the future when the default switches. 945 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 946 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 947 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 948 setCommandLineOpts(CodeGenOpts); 949 950 // The new pass manager always makes a target machine available to passes 951 // during construction. 952 CreateTargetMachine(/*MustCreateTM*/ true); 953 if (!TM) 954 // This will already be diagnosed, just bail. 955 return; 956 TheModule->setDataLayout(TM->createDataLayout()); 957 958 Optional<PGOOptions> PGOOpt; 959 960 if (CodeGenOpts.hasProfileIRInstr()) 961 // -fprofile-generate. 962 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 963 ? DefaultProfileGenName 964 : CodeGenOpts.InstrProfileOutput, 965 "", "", "", true, 966 CodeGenOpts.DebugInfoForProfiling); 967 else if (CodeGenOpts.hasProfileIRUse()) 968 // -fprofile-use. 969 PGOOpt = PGOOptions("", CodeGenOpts.ProfileInstrumentUsePath, "", 970 CodeGenOpts.ProfileRemappingFile, false, 971 CodeGenOpts.DebugInfoForProfiling); 972 else if (!CodeGenOpts.SampleProfileFile.empty()) 973 // -fprofile-sample-use 974 PGOOpt = PGOOptions("", "", CodeGenOpts.SampleProfileFile, 975 CodeGenOpts.ProfileRemappingFile, false, 976 CodeGenOpts.DebugInfoForProfiling); 977 else if (CodeGenOpts.DebugInfoForProfiling) 978 // -fdebug-info-for-profiling 979 PGOOpt = PGOOptions("", "", "", "", false, true); 980 981 PassBuilder PB(TM.get(), PGOOpt); 982 983 // Attempt to load pass plugins and register their callbacks with PB. 984 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 985 auto PassPlugin = PassPlugin::Load(PluginFN); 986 if (PassPlugin) { 987 PassPlugin->registerPassBuilderCallbacks(PB); 988 } else { 989 Diags.Report(diag::err_fe_unable_to_load_plugin) 990 << PluginFN << toString(PassPlugin.takeError()); 991 } 992 } 993 994 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 995 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 996 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 997 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 998 999 // Register the AA manager first so that our version is the one used. 1000 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1001 1002 // Register the target library analysis directly and give it a customized 1003 // preset TLI. 1004 Triple TargetTriple(TheModule->getTargetTriple()); 1005 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1006 createTLII(TargetTriple, CodeGenOpts)); 1007 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1008 MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1009 1010 // Register all the basic analyses with the managers. 1011 PB.registerModuleAnalyses(MAM); 1012 PB.registerCGSCCAnalyses(CGAM); 1013 PB.registerFunctionAnalyses(FAM); 1014 PB.registerLoopAnalyses(LAM); 1015 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1016 1017 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 1018 1019 if (!CodeGenOpts.DisableLLVMPasses) { 1020 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1021 bool IsLTO = CodeGenOpts.PrepareForLTO; 1022 1023 if (CodeGenOpts.OptimizationLevel == 0) { 1024 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1025 MPM.addPass(GCOVProfilerPass(*Options)); 1026 1027 // Build a minimal pipeline based on the semantics required by Clang, 1028 // which is just that always inlining occurs. 1029 MPM.addPass(AlwaysInlinerPass()); 1030 1031 // At -O0 we directly run necessary sanitizer passes. 1032 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1033 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 1034 1035 // Lastly, add semantically necessary passes for LTO. 1036 if (IsLTO || IsThinLTO) { 1037 MPM.addPass(CanonicalizeAliasesPass()); 1038 MPM.addPass(NameAnonGlobalPass()); 1039 } 1040 } else { 1041 // Map our optimization levels into one of the distinct levels used to 1042 // configure the pipeline. 1043 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1044 1045 // Register callbacks to schedule sanitizer passes at the appropriate part of 1046 // the pipeline. 1047 // FIXME: either handle asan/the remaining sanitizers or error out 1048 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1049 PB.registerScalarOptimizerLateEPCallback( 1050 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1051 FPM.addPass(BoundsCheckingPass()); 1052 }); 1053 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 1054 PB.registerOptimizerLastEPCallback( 1055 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1056 FPM.addPass(MemorySanitizerPass({})); 1057 }); 1058 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) 1059 PB.registerOptimizerLastEPCallback( 1060 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1061 FPM.addPass(ThreadSanitizerPass()); 1062 }); 1063 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1064 PB.registerPipelineStartEPCallback([&](ModulePassManager &MPM) { 1065 MPM.addPass( 1066 RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1067 }); 1068 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address); 1069 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1070 PB.registerOptimizerLastEPCallback( 1071 [Recover, UseAfterScope](FunctionPassManager &FPM, 1072 PassBuilder::OptimizationLevel Level) { 1073 FPM.addPass(AddressSanitizerPass( 1074 /*CompileKernel=*/false, Recover, UseAfterScope)); 1075 }); 1076 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1077 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1078 PB.registerPipelineStartEPCallback( 1079 [Recover, ModuleUseAfterScope, 1080 UseOdrIndicator](ModulePassManager &MPM) { 1081 MPM.addPass(ModuleAddressSanitizerPass( 1082 /*CompileKernel=*/false, Recover, ModuleUseAfterScope, 1083 UseOdrIndicator)); 1084 }); 1085 } 1086 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1087 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1088 MPM.addPass(GCOVProfilerPass(*Options)); 1089 }); 1090 1091 if (IsThinLTO) { 1092 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 1093 Level, CodeGenOpts.DebugPassManager); 1094 MPM.addPass(CanonicalizeAliasesPass()); 1095 MPM.addPass(NameAnonGlobalPass()); 1096 } else if (IsLTO) { 1097 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 1098 CodeGenOpts.DebugPassManager); 1099 MPM.addPass(CanonicalizeAliasesPass()); 1100 MPM.addPass(NameAnonGlobalPass()); 1101 } else { 1102 MPM = PB.buildPerModuleDefaultPipeline(Level, 1103 CodeGenOpts.DebugPassManager); 1104 } 1105 } 1106 1107 if (CodeGenOpts.OptimizationLevel == 0) 1108 addSanitizersAtO0(MPM, TargetTriple, LangOpts, CodeGenOpts); 1109 } 1110 1111 // FIXME: We still use the legacy pass manager to do code generation. We 1112 // create that pass manager here and use it as needed below. 1113 legacy::PassManager CodeGenPasses; 1114 bool NeedCodeGen = false; 1115 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1116 1117 // Append any output we need to the pass manager. 1118 switch (Action) { 1119 case Backend_EmitNothing: 1120 break; 1121 1122 case Backend_EmitBC: 1123 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1124 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1125 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1126 if (!ThinLinkOS) 1127 return; 1128 } 1129 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1130 CodeGenOpts.EnableSplitLTOUnit); 1131 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1132 : nullptr)); 1133 } else { 1134 // Emit a module summary by default for Regular LTO except for ld64 1135 // targets 1136 bool EmitLTOSummary = 1137 (CodeGenOpts.PrepareForLTO && 1138 !CodeGenOpts.DisableLLVMPasses && 1139 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1140 llvm::Triple::Apple); 1141 if (EmitLTOSummary) { 1142 if (!TheModule->getModuleFlag("ThinLTO")) 1143 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1144 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1145 CodeGenOpts.EnableSplitLTOUnit); 1146 } 1147 MPM.addPass( 1148 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1149 } 1150 break; 1151 1152 case Backend_EmitLL: 1153 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1154 break; 1155 1156 case Backend_EmitAssembly: 1157 case Backend_EmitMCNull: 1158 case Backend_EmitObj: 1159 NeedCodeGen = true; 1160 CodeGenPasses.add( 1161 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1162 if (!CodeGenOpts.SplitDwarfFile.empty()) { 1163 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfFile); 1164 if (!DwoOS) 1165 return; 1166 } 1167 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1168 DwoOS ? &DwoOS->os() : nullptr)) 1169 // FIXME: Should we handle this error differently? 1170 return; 1171 break; 1172 } 1173 1174 // Before executing passes, print the final values of the LLVM options. 1175 cl::PrintOptionValues(); 1176 1177 // Now that we have all of the passes ready, run them. 1178 { 1179 PrettyStackTraceString CrashInfo("Optimizer"); 1180 MPM.run(*TheModule, MAM); 1181 } 1182 1183 // Now if needed, run the legacy PM for codegen. 1184 if (NeedCodeGen) { 1185 PrettyStackTraceString CrashInfo("Code generation"); 1186 CodeGenPasses.run(*TheModule); 1187 } 1188 1189 if (ThinLinkOS) 1190 ThinLinkOS->keep(); 1191 if (DwoOS) 1192 DwoOS->keep(); 1193 } 1194 1195 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1196 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1197 if (!BMsOrErr) 1198 return BMsOrErr.takeError(); 1199 1200 // The bitcode file may contain multiple modules, we want the one that is 1201 // marked as being the ThinLTO module. 1202 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1203 return *Bm; 1204 1205 return make_error<StringError>("Could not find module summary", 1206 inconvertibleErrorCode()); 1207 } 1208 1209 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1210 for (BitcodeModule &BM : BMs) { 1211 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1212 if (LTOInfo && LTOInfo->IsThinLTO) 1213 return &BM; 1214 } 1215 return nullptr; 1216 } 1217 1218 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1219 const HeaderSearchOptions &HeaderOpts, 1220 const CodeGenOptions &CGOpts, 1221 const clang::TargetOptions &TOpts, 1222 const LangOptions &LOpts, 1223 std::unique_ptr<raw_pwrite_stream> OS, 1224 std::string SampleProfile, 1225 std::string ProfileRemapping, 1226 BackendAction Action) { 1227 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1228 ModuleToDefinedGVSummaries; 1229 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1230 1231 setCommandLineOpts(CGOpts); 1232 1233 // We can simply import the values mentioned in the combined index, since 1234 // we should only invoke this using the individual indexes written out 1235 // via a WriteIndexesThinBackend. 1236 FunctionImporter::ImportMapTy ImportList; 1237 for (auto &GlobalList : *CombinedIndex) { 1238 // Ignore entries for undefined references. 1239 if (GlobalList.second.SummaryList.empty()) 1240 continue; 1241 1242 auto GUID = GlobalList.first; 1243 for (auto &Summary : GlobalList.second.SummaryList) { 1244 // Skip the summaries for the importing module. These are included to 1245 // e.g. record required linkage changes. 1246 if (Summary->modulePath() == M->getModuleIdentifier()) 1247 continue; 1248 // Add an entry to provoke importing by thinBackend. 1249 ImportList[Summary->modulePath()].insert(GUID); 1250 } 1251 } 1252 1253 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1254 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1255 1256 for (auto &I : ImportList) { 1257 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1258 llvm::MemoryBuffer::getFile(I.first()); 1259 if (!MBOrErr) { 1260 errs() << "Error loading imported file '" << I.first() 1261 << "': " << MBOrErr.getError().message() << "\n"; 1262 return; 1263 } 1264 1265 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1266 if (!BMOrErr) { 1267 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1268 errs() << "Error loading imported file '" << I.first() 1269 << "': " << EIB.message() << '\n'; 1270 }); 1271 return; 1272 } 1273 ModuleMap.insert({I.first(), *BMOrErr}); 1274 1275 OwnedImports.push_back(std::move(*MBOrErr)); 1276 } 1277 auto AddStream = [&](size_t Task) { 1278 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 1279 }; 1280 lto::Config Conf; 1281 if (CGOpts.SaveTempsFilePrefix != "") { 1282 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1283 /* UseInputModulePath */ false)) { 1284 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1285 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1286 << '\n'; 1287 }); 1288 } 1289 } 1290 Conf.CPU = TOpts.CPU; 1291 Conf.CodeModel = getCodeModel(CGOpts); 1292 Conf.MAttrs = TOpts.Features; 1293 Conf.RelocModel = CGOpts.RelocationModel; 1294 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1295 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1296 Conf.SampleProfile = std::move(SampleProfile); 1297 Conf.ProfileRemapping = std::move(ProfileRemapping); 1298 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1299 Conf.DebugPassManager = CGOpts.DebugPassManager; 1300 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1301 Conf.RemarksFilename = CGOpts.OptRecordFile; 1302 Conf.DwoPath = CGOpts.SplitDwarfFile; 1303 switch (Action) { 1304 case Backend_EmitNothing: 1305 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1306 return false; 1307 }; 1308 break; 1309 case Backend_EmitLL: 1310 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1311 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1312 return false; 1313 }; 1314 break; 1315 case Backend_EmitBC: 1316 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1317 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1318 return false; 1319 }; 1320 break; 1321 default: 1322 Conf.CGFileType = getCodeGenFileType(Action); 1323 break; 1324 } 1325 if (Error E = thinBackend( 1326 Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1327 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1328 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1329 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1330 }); 1331 } 1332 } 1333 1334 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1335 const HeaderSearchOptions &HeaderOpts, 1336 const CodeGenOptions &CGOpts, 1337 const clang::TargetOptions &TOpts, 1338 const LangOptions &LOpts, 1339 const llvm::DataLayout &TDesc, Module *M, 1340 BackendAction Action, 1341 std::unique_ptr<raw_pwrite_stream> OS) { 1342 std::unique_ptr<llvm::Module> EmptyModule; 1343 if (!CGOpts.ThinLTOIndexFile.empty()) { 1344 // If we are performing a ThinLTO importing compile, load the function index 1345 // into memory and pass it into runThinLTOBackend, which will run the 1346 // function importer and invoke LTO passes. 1347 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1348 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1349 /*IgnoreEmptyThinLTOIndexFile*/true); 1350 if (!IndexOrErr) { 1351 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1352 "Error loading index file '" + 1353 CGOpts.ThinLTOIndexFile + "': "); 1354 return; 1355 } 1356 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1357 // A null CombinedIndex means we should skip ThinLTO compilation 1358 // (LLVM will optionally ignore empty index files, returning null instead 1359 // of an error). 1360 if (CombinedIndex) { 1361 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1362 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1363 LOpts, std::move(OS), CGOpts.SampleProfileFile, 1364 CGOpts.ProfileRemappingFile, Action); 1365 return; 1366 } 1367 // Distributed indexing detected that nothing from the module is needed 1368 // for the final linking. So we can skip the compilation. We sill need to 1369 // output an empty object file to make sure that a linker does not fail 1370 // trying to read it. Also for some features, like CFI, we must skip 1371 // the compilation as CombinedIndex does not contain all required 1372 // information. 1373 EmptyModule = llvm::make_unique<llvm::Module>("empty", M->getContext()); 1374 EmptyModule->setTargetTriple(M->getTargetTriple()); 1375 M = EmptyModule.get(); 1376 } 1377 } 1378 1379 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1380 1381 if (CGOpts.ExperimentalNewPassManager) 1382 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1383 else 1384 AsmHelper.EmitAssembly(Action, std::move(OS)); 1385 1386 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1387 // DataLayout. 1388 if (AsmHelper.TM) { 1389 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1390 if (DLDesc != TDesc.getStringRepresentation()) { 1391 unsigned DiagID = Diags.getCustomDiagID( 1392 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1393 "expected target description '%1'"); 1394 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1395 } 1396 } 1397 } 1398 1399 static const char* getSectionNameForBitcode(const Triple &T) { 1400 switch (T.getObjectFormat()) { 1401 case Triple::MachO: 1402 return "__LLVM,__bitcode"; 1403 case Triple::COFF: 1404 case Triple::ELF: 1405 case Triple::Wasm: 1406 case Triple::UnknownObjectFormat: 1407 return ".llvmbc"; 1408 } 1409 llvm_unreachable("Unimplemented ObjectFormatType"); 1410 } 1411 1412 static const char* getSectionNameForCommandline(const Triple &T) { 1413 switch (T.getObjectFormat()) { 1414 case Triple::MachO: 1415 return "__LLVM,__cmdline"; 1416 case Triple::COFF: 1417 case Triple::ELF: 1418 case Triple::Wasm: 1419 case Triple::UnknownObjectFormat: 1420 return ".llvmcmd"; 1421 } 1422 llvm_unreachable("Unimplemented ObjectFormatType"); 1423 } 1424 1425 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1426 // __LLVM,__bitcode section. 1427 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1428 llvm::MemoryBufferRef Buf) { 1429 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1430 return; 1431 1432 // Save llvm.compiler.used and remote it. 1433 SmallVector<Constant*, 2> UsedArray; 1434 SmallPtrSet<GlobalValue*, 4> UsedGlobals; 1435 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1436 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1437 for (auto *GV : UsedGlobals) { 1438 if (GV->getName() != "llvm.embedded.module" && 1439 GV->getName() != "llvm.cmdline") 1440 UsedArray.push_back( 1441 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1442 } 1443 if (Used) 1444 Used->eraseFromParent(); 1445 1446 // Embed the bitcode for the llvm module. 1447 std::string Data; 1448 ArrayRef<uint8_t> ModuleData; 1449 Triple T(M->getTargetTriple()); 1450 // Create a constant that contains the bitcode. 1451 // In case of embedding a marker, ignore the input Buf and use the empty 1452 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1453 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1454 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1455 (const unsigned char *)Buf.getBufferEnd())) { 1456 // If the input is LLVM Assembly, bitcode is produced by serializing 1457 // the module. Use-lists order need to be perserved in this case. 1458 llvm::raw_string_ostream OS(Data); 1459 llvm::WriteBitcodeToFile(*M, OS, /* ShouldPreserveUseListOrder */ true); 1460 ModuleData = 1461 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1462 } else 1463 // If the input is LLVM bitcode, write the input byte stream directly. 1464 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1465 Buf.getBufferSize()); 1466 } 1467 llvm::Constant *ModuleConstant = 1468 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1469 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1470 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1471 ModuleConstant); 1472 GV->setSection(getSectionNameForBitcode(T)); 1473 UsedArray.push_back( 1474 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1475 if (llvm::GlobalVariable *Old = 1476 M->getGlobalVariable("llvm.embedded.module", true)) { 1477 assert(Old->hasOneUse() && 1478 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1479 GV->takeName(Old); 1480 Old->eraseFromParent(); 1481 } else { 1482 GV->setName("llvm.embedded.module"); 1483 } 1484 1485 // Skip if only bitcode needs to be embedded. 1486 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1487 // Embed command-line options. 1488 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1489 CGOpts.CmdArgs.size()); 1490 llvm::Constant *CmdConstant = 1491 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1492 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1493 llvm::GlobalValue::PrivateLinkage, 1494 CmdConstant); 1495 GV->setSection(getSectionNameForCommandline(T)); 1496 UsedArray.push_back( 1497 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1498 if (llvm::GlobalVariable *Old = 1499 M->getGlobalVariable("llvm.cmdline", true)) { 1500 assert(Old->hasOneUse() && 1501 "llvm.cmdline can only be used once in llvm.compiler.used"); 1502 GV->takeName(Old); 1503 Old->eraseFromParent(); 1504 } else { 1505 GV->setName("llvm.cmdline"); 1506 } 1507 } 1508 1509 if (UsedArray.empty()) 1510 return; 1511 1512 // Recreate llvm.compiler.used. 1513 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1514 auto *NewUsed = new GlobalVariable( 1515 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1516 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1517 NewUsed->setSection("llvm.metadata"); 1518 } 1519