1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/StackSafetyAnalysis.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/Bitcode/BitcodeReader.h" 26 #include "llvm/Bitcode/BitcodeWriter.h" 27 #include "llvm/Bitcode/BitcodeWriterPass.h" 28 #include "llvm/CodeGen/RegAllocRegistry.h" 29 #include "llvm/CodeGen/SchedulerRegistry.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/IRPrintingPasses.h" 33 #include "llvm/IR/LegacyPassManager.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/ModuleSummaryIndex.h" 36 #include "llvm/IR/PassManager.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/LTO/LTOBackend.h" 39 #include "llvm/MC/MCAsmInfo.h" 40 #include "llvm/MC/SubtargetFeature.h" 41 #include "llvm/MC/TargetRegistry.h" 42 #include "llvm/Object/OffloadBinary.h" 43 #include "llvm/Passes/PassBuilder.h" 44 #include "llvm/Passes/PassPlugin.h" 45 #include "llvm/Passes/StandardInstrumentations.h" 46 #include "llvm/Support/BuryPointer.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/MemoryBuffer.h" 49 #include "llvm/Support/PrettyStackTrace.h" 50 #include "llvm/Support/TimeProfiler.h" 51 #include "llvm/Support/Timer.h" 52 #include "llvm/Support/ToolOutputFile.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetMachine.h" 55 #include "llvm/Target/TargetOptions.h" 56 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 57 #include "llvm/Transforms/Coroutines/CoroEarly.h" 58 #include "llvm/Transforms/Coroutines/CoroElide.h" 59 #include "llvm/Transforms/Coroutines/CoroSplit.h" 60 #include "llvm/Transforms/IPO.h" 61 #include "llvm/Transforms/IPO/AlwaysInliner.h" 62 #include "llvm/Transforms/IPO/LowerTypeTests.h" 63 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 64 #include "llvm/Transforms/InstCombine/InstCombine.h" 65 #include "llvm/Transforms/Instrumentation.h" 66 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 67 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" 68 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 69 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 70 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 71 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 72 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 73 #include "llvm/Transforms/Instrumentation/MemProfiler.h" 74 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 75 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 76 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 77 #include "llvm/Transforms/ObjCARC.h" 78 #include "llvm/Transforms/Scalar.h" 79 #include "llvm/Transforms/Scalar/EarlyCSE.h" 80 #include "llvm/Transforms/Scalar/GVN.h" 81 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" 82 #include "llvm/Transforms/Utils.h" 83 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 84 #include "llvm/Transforms/Utils/Debugify.h" 85 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 86 #include "llvm/Transforms/Utils/ModuleUtils.h" 87 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 88 #include "llvm/Transforms/Utils/SymbolRewriter.h" 89 #include <memory> 90 using namespace clang; 91 using namespace llvm; 92 93 #define HANDLE_EXTENSION(Ext) \ 94 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 95 #include "llvm/Support/Extension.def" 96 97 namespace llvm { 98 extern cl::opt<bool> DebugInfoCorrelate; 99 } 100 101 namespace { 102 103 // Default filename used for profile generation. 104 std::string getDefaultProfileGenName() { 105 return DebugInfoCorrelate ? "default_%p.proflite" : "default_%m.profraw"; 106 } 107 108 class EmitAssemblyHelper { 109 DiagnosticsEngine &Diags; 110 const HeaderSearchOptions &HSOpts; 111 const CodeGenOptions &CodeGenOpts; 112 const clang::TargetOptions &TargetOpts; 113 const LangOptions &LangOpts; 114 Module *TheModule; 115 116 Timer CodeGenerationTime; 117 118 std::unique_ptr<raw_pwrite_stream> OS; 119 120 Triple TargetTriple; 121 122 TargetIRAnalysis getTargetIRAnalysis() const { 123 if (TM) 124 return TM->getTargetIRAnalysis(); 125 126 return TargetIRAnalysis(); 127 } 128 129 /// Generates the TargetMachine. 130 /// Leaves TM unchanged if it is unable to create the target machine. 131 /// Some of our clang tests specify triples which are not built 132 /// into clang. This is okay because these tests check the generated 133 /// IR, and they require DataLayout which depends on the triple. 134 /// In this case, we allow this method to fail and not report an error. 135 /// When MustCreateTM is used, we print an error if we are unable to load 136 /// the requested target. 137 void CreateTargetMachine(bool MustCreateTM); 138 139 /// Add passes necessary to emit assembly or LLVM IR. 140 /// 141 /// \return True on success. 142 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 143 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 144 145 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 146 std::error_code EC; 147 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 148 llvm::sys::fs::OF_None); 149 if (EC) { 150 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 151 F.reset(); 152 } 153 return F; 154 } 155 156 void 157 RunOptimizationPipeline(BackendAction Action, 158 std::unique_ptr<raw_pwrite_stream> &OS, 159 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS); 160 void RunCodegenPipeline(BackendAction Action, 161 std::unique_ptr<raw_pwrite_stream> &OS, 162 std::unique_ptr<llvm::ToolOutputFile> &DwoOS); 163 164 /// Check whether we should emit a module summary for regular LTO. 165 /// The module summary should be emitted by default for regular LTO 166 /// except for ld64 targets. 167 /// 168 /// \return True if the module summary should be emitted. 169 bool shouldEmitRegularLTOSummary() const { 170 return CodeGenOpts.PrepareForLTO && !CodeGenOpts.DisableLLVMPasses && 171 TargetTriple.getVendor() != llvm::Triple::Apple; 172 } 173 174 public: 175 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 176 const HeaderSearchOptions &HeaderSearchOpts, 177 const CodeGenOptions &CGOpts, 178 const clang::TargetOptions &TOpts, 179 const LangOptions &LOpts, Module *M) 180 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 181 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 182 CodeGenerationTime("codegen", "Code Generation Time"), 183 TargetTriple(TheModule->getTargetTriple()) {} 184 185 ~EmitAssemblyHelper() { 186 if (CodeGenOpts.DisableFree) 187 BuryPointer(std::move(TM)); 188 } 189 190 std::unique_ptr<TargetMachine> TM; 191 192 // Emit output using the new pass manager for the optimization pipeline. 193 void EmitAssembly(BackendAction Action, 194 std::unique_ptr<raw_pwrite_stream> OS); 195 }; 196 } 197 198 static SanitizerCoverageOptions 199 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 200 SanitizerCoverageOptions Opts; 201 Opts.CoverageType = 202 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 203 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 204 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 205 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 206 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 207 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 208 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 209 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 210 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 211 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 212 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 213 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 214 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 215 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 216 Opts.TraceLoads = CGOpts.SanitizeCoverageTraceLoads; 217 Opts.TraceStores = CGOpts.SanitizeCoverageTraceStores; 218 return Opts; 219 } 220 221 // Check if ASan should use GC-friendly instrumentation for globals. 222 // First of all, there is no point if -fdata-sections is off (expect for MachO, 223 // where this is not a factor). Also, on ELF this feature requires an assembler 224 // extension that only works with -integrated-as at the moment. 225 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 226 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 227 return false; 228 switch (T.getObjectFormat()) { 229 case Triple::MachO: 230 case Triple::COFF: 231 return true; 232 case Triple::ELF: 233 return !CGOpts.DisableIntegratedAS; 234 case Triple::GOFF: 235 llvm::report_fatal_error("ASan not implemented for GOFF"); 236 case Triple::XCOFF: 237 llvm::report_fatal_error("ASan not implemented for XCOFF."); 238 case Triple::Wasm: 239 case Triple::DXContainer: 240 case Triple::SPIRV: 241 case Triple::UnknownObjectFormat: 242 break; 243 } 244 return false; 245 } 246 247 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 248 const CodeGenOptions &CodeGenOpts) { 249 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 250 251 switch (CodeGenOpts.getVecLib()) { 252 case CodeGenOptions::Accelerate: 253 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 254 break; 255 case CodeGenOptions::LIBMVEC: 256 switch(TargetTriple.getArch()) { 257 default: 258 break; 259 case llvm::Triple::x86_64: 260 TLII->addVectorizableFunctionsFromVecLib 261 (TargetLibraryInfoImpl::LIBMVEC_X86); 262 break; 263 } 264 break; 265 case CodeGenOptions::MASSV: 266 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 267 break; 268 case CodeGenOptions::SVML: 269 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 270 break; 271 case CodeGenOptions::Darwin_libsystem_m: 272 TLII->addVectorizableFunctionsFromVecLib( 273 TargetLibraryInfoImpl::DarwinLibSystemM); 274 break; 275 default: 276 break; 277 } 278 return TLII; 279 } 280 281 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 282 switch (CodeGenOpts.OptimizationLevel) { 283 default: 284 llvm_unreachable("Invalid optimization level!"); 285 case 0: 286 return CodeGenOpt::None; 287 case 1: 288 return CodeGenOpt::Less; 289 case 2: 290 return CodeGenOpt::Default; // O2/Os/Oz 291 case 3: 292 return CodeGenOpt::Aggressive; 293 } 294 } 295 296 static Optional<llvm::CodeModel::Model> 297 getCodeModel(const CodeGenOptions &CodeGenOpts) { 298 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 299 .Case("tiny", llvm::CodeModel::Tiny) 300 .Case("small", llvm::CodeModel::Small) 301 .Case("kernel", llvm::CodeModel::Kernel) 302 .Case("medium", llvm::CodeModel::Medium) 303 .Case("large", llvm::CodeModel::Large) 304 .Case("default", ~1u) 305 .Default(~0u); 306 assert(CodeModel != ~0u && "invalid code model!"); 307 if (CodeModel == ~1u) 308 return None; 309 return static_cast<llvm::CodeModel::Model>(CodeModel); 310 } 311 312 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 313 if (Action == Backend_EmitObj) 314 return CGFT_ObjectFile; 315 else if (Action == Backend_EmitMCNull) 316 return CGFT_Null; 317 else { 318 assert(Action == Backend_EmitAssembly && "Invalid action!"); 319 return CGFT_AssemblyFile; 320 } 321 } 322 323 static bool actionRequiresCodeGen(BackendAction Action) { 324 return Action != Backend_EmitNothing && Action != Backend_EmitBC && 325 Action != Backend_EmitLL; 326 } 327 328 static bool initTargetOptions(DiagnosticsEngine &Diags, 329 llvm::TargetOptions &Options, 330 const CodeGenOptions &CodeGenOpts, 331 const clang::TargetOptions &TargetOpts, 332 const LangOptions &LangOpts, 333 const HeaderSearchOptions &HSOpts) { 334 switch (LangOpts.getThreadModel()) { 335 case LangOptions::ThreadModelKind::POSIX: 336 Options.ThreadModel = llvm::ThreadModel::POSIX; 337 break; 338 case LangOptions::ThreadModelKind::Single: 339 Options.ThreadModel = llvm::ThreadModel::Single; 340 break; 341 } 342 343 // Set float ABI type. 344 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 345 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 346 "Invalid Floating Point ABI!"); 347 Options.FloatABIType = 348 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 349 .Case("soft", llvm::FloatABI::Soft) 350 .Case("softfp", llvm::FloatABI::Soft) 351 .Case("hard", llvm::FloatABI::Hard) 352 .Default(llvm::FloatABI::Default); 353 354 // Set FP fusion mode. 355 switch (LangOpts.getDefaultFPContractMode()) { 356 case LangOptions::FPM_Off: 357 // Preserve any contraction performed by the front-end. (Strict performs 358 // splitting of the muladd intrinsic in the backend.) 359 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 360 break; 361 case LangOptions::FPM_On: 362 case LangOptions::FPM_FastHonorPragmas: 363 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 364 break; 365 case LangOptions::FPM_Fast: 366 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 367 break; 368 } 369 370 Options.BinutilsVersion = 371 llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion); 372 Options.UseInitArray = CodeGenOpts.UseInitArray; 373 Options.LowerGlobalDtorsViaCxaAtExit = 374 CodeGenOpts.RegisterGlobalDtorsWithAtExit; 375 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 376 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 377 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 378 379 // Set EABI version. 380 Options.EABIVersion = TargetOpts.EABIVersion; 381 382 if (LangOpts.hasSjLjExceptions()) 383 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 384 if (LangOpts.hasSEHExceptions()) 385 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 386 if (LangOpts.hasDWARFExceptions()) 387 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 388 if (LangOpts.hasWasmExceptions()) 389 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 390 391 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 392 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 393 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 394 Options.UnsafeFPMath = LangOpts.UnsafeFPMath; 395 Options.ApproxFuncFPMath = LangOpts.ApproxFunc; 396 397 Options.BBSections = 398 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 399 .Case("all", llvm::BasicBlockSection::All) 400 .Case("labels", llvm::BasicBlockSection::Labels) 401 .StartsWith("list=", llvm::BasicBlockSection::List) 402 .Case("none", llvm::BasicBlockSection::None) 403 .Default(llvm::BasicBlockSection::None); 404 405 if (Options.BBSections == llvm::BasicBlockSection::List) { 406 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 407 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 408 if (!MBOrErr) { 409 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 410 << MBOrErr.getError().message(); 411 return false; 412 } 413 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 414 } 415 416 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions; 417 Options.FunctionSections = CodeGenOpts.FunctionSections; 418 Options.DataSections = CodeGenOpts.DataSections; 419 Options.IgnoreXCOFFVisibility = LangOpts.IgnoreXCOFFVisibility; 420 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 421 Options.UniqueBasicBlockSectionNames = 422 CodeGenOpts.UniqueBasicBlockSectionNames; 423 Options.TLSSize = CodeGenOpts.TLSSize; 424 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 425 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 426 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 427 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 428 Options.StackUsageOutput = CodeGenOpts.StackUsageOutput; 429 Options.EmitAddrsig = CodeGenOpts.Addrsig; 430 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 431 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 432 Options.EnableAIXExtendedAltivecABI = CodeGenOpts.EnableAIXExtendedAltivecABI; 433 Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex; 434 Options.LoopAlignment = CodeGenOpts.LoopAlignment; 435 Options.DebugStrictDwarf = CodeGenOpts.DebugStrictDwarf; 436 Options.ObjectFilenameForDebug = CodeGenOpts.ObjectFilenameForDebug; 437 Options.Hotpatch = CodeGenOpts.HotPatch; 438 Options.JMCInstrument = CodeGenOpts.JMCInstrument; 439 440 switch (CodeGenOpts.getSwiftAsyncFramePointer()) { 441 case CodeGenOptions::SwiftAsyncFramePointerKind::Auto: 442 Options.SwiftAsyncFramePointer = 443 SwiftAsyncFramePointerMode::DeploymentBased; 444 break; 445 446 case CodeGenOptions::SwiftAsyncFramePointerKind::Always: 447 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Always; 448 break; 449 450 case CodeGenOptions::SwiftAsyncFramePointerKind::Never: 451 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Never; 452 break; 453 } 454 455 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 456 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 457 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 458 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 459 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 460 Options.MCOptions.MCIncrementalLinkerCompatible = 461 CodeGenOpts.IncrementalLinkerCompatible; 462 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 463 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 464 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 465 Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64; 466 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 467 Options.MCOptions.ABIName = TargetOpts.ABI; 468 for (const auto &Entry : HSOpts.UserEntries) 469 if (!Entry.IsFramework && 470 (Entry.Group == frontend::IncludeDirGroup::Quoted || 471 Entry.Group == frontend::IncludeDirGroup::Angled || 472 Entry.Group == frontend::IncludeDirGroup::System)) 473 Options.MCOptions.IASSearchPaths.push_back( 474 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 475 Options.MCOptions.Argv0 = CodeGenOpts.Argv0; 476 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; 477 Options.MisExpect = CodeGenOpts.MisExpect; 478 479 return true; 480 } 481 482 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts, 483 const LangOptions &LangOpts) { 484 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 485 return None; 486 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 487 // LLVM's -default-gcov-version flag is set to something invalid. 488 GCOVOptions Options; 489 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 490 Options.EmitData = CodeGenOpts.EmitGcovArcs; 491 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 492 Options.NoRedZone = CodeGenOpts.DisableRedZone; 493 Options.Filter = CodeGenOpts.ProfileFilterFiles; 494 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 495 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 496 return Options; 497 } 498 499 static Optional<InstrProfOptions> 500 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 501 const LangOptions &LangOpts) { 502 if (!CodeGenOpts.hasProfileClangInstr()) 503 return None; 504 InstrProfOptions Options; 505 Options.NoRedZone = CodeGenOpts.DisableRedZone; 506 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 507 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 508 return Options; 509 } 510 511 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 512 SmallVector<const char *, 16> BackendArgs; 513 BackendArgs.push_back("clang"); // Fake program name. 514 if (!CodeGenOpts.DebugPass.empty()) { 515 BackendArgs.push_back("-debug-pass"); 516 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 517 } 518 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 519 BackendArgs.push_back("-limit-float-precision"); 520 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 521 } 522 // Check for the default "clang" invocation that won't set any cl::opt values. 523 // Skip trying to parse the command line invocation to avoid the issues 524 // described below. 525 if (BackendArgs.size() == 1) 526 return; 527 BackendArgs.push_back(nullptr); 528 // FIXME: The command line parser below is not thread-safe and shares a global 529 // state, so this call might crash or overwrite the options of another Clang 530 // instance in the same process. 531 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 532 BackendArgs.data()); 533 } 534 535 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 536 // Create the TargetMachine for generating code. 537 std::string Error; 538 std::string Triple = TheModule->getTargetTriple(); 539 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 540 if (!TheTarget) { 541 if (MustCreateTM) 542 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 543 return; 544 } 545 546 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 547 std::string FeaturesStr = 548 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 549 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 550 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 551 552 llvm::TargetOptions Options; 553 if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, 554 HSOpts)) 555 return; 556 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 557 Options, RM, CM, OptLevel)); 558 } 559 560 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 561 BackendAction Action, 562 raw_pwrite_stream &OS, 563 raw_pwrite_stream *DwoOS) { 564 // Add LibraryInfo. 565 std::unique_ptr<TargetLibraryInfoImpl> TLII( 566 createTLII(TargetTriple, CodeGenOpts)); 567 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 568 569 // Normal mode, emit a .s or .o file by running the code generator. Note, 570 // this also adds codegenerator level optimization passes. 571 CodeGenFileType CGFT = getCodeGenFileType(Action); 572 573 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 574 // "codegen" passes so that it isn't run multiple times when there is 575 // inlining happening. 576 if (CodeGenOpts.OptimizationLevel > 0) 577 CodeGenPasses.add(createObjCARCContractPass()); 578 579 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 580 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 581 Diags.Report(diag::err_fe_unable_to_interface_with_target); 582 return false; 583 } 584 585 return true; 586 } 587 588 static OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 589 switch (Opts.OptimizationLevel) { 590 default: 591 llvm_unreachable("Invalid optimization level!"); 592 593 case 0: 594 return OptimizationLevel::O0; 595 596 case 1: 597 return OptimizationLevel::O1; 598 599 case 2: 600 switch (Opts.OptimizeSize) { 601 default: 602 llvm_unreachable("Invalid optimization level for size!"); 603 604 case 0: 605 return OptimizationLevel::O2; 606 607 case 1: 608 return OptimizationLevel::Os; 609 610 case 2: 611 return OptimizationLevel::Oz; 612 } 613 614 case 3: 615 return OptimizationLevel::O3; 616 } 617 } 618 619 static void addSanitizers(const Triple &TargetTriple, 620 const CodeGenOptions &CodeGenOpts, 621 const LangOptions &LangOpts, PassBuilder &PB) { 622 PB.registerOptimizerLastEPCallback([&](ModulePassManager &MPM, 623 OptimizationLevel Level) { 624 if (CodeGenOpts.hasSanitizeCoverage()) { 625 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 626 MPM.addPass(ModuleSanitizerCoveragePass( 627 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 628 CodeGenOpts.SanitizeCoverageIgnorelistFiles)); 629 } 630 631 auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) { 632 if (LangOpts.Sanitize.has(Mask)) { 633 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 634 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 635 636 MemorySanitizerOptions options(TrackOrigins, Recover, CompileKernel, 637 CodeGenOpts.SanitizeMemoryParamRetval); 638 MPM.addPass(ModuleMemorySanitizerPass(options)); 639 FunctionPassManager FPM; 640 FPM.addPass(MemorySanitizerPass(options)); 641 if (Level != OptimizationLevel::O0) { 642 // MemorySanitizer inserts complex instrumentation that mostly 643 // follows the logic of the original code, but operates on 644 // "shadow" values. It can benefit from re-running some 645 // general purpose optimization passes. 646 FPM.addPass(EarlyCSEPass()); 647 // TODO: Consider add more passes like in 648 // addGeneralOptsForMemorySanitizer. EarlyCSEPass makes visible 649 // difference on size. It's not clear if the rest is still 650 // usefull. InstCombinePass breakes 651 // compiler-rt/test/msan/select_origin.cpp. 652 } 653 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 654 } 655 }; 656 MSanPass(SanitizerKind::Memory, false); 657 MSanPass(SanitizerKind::KernelMemory, true); 658 659 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 660 MPM.addPass(ModuleThreadSanitizerPass()); 661 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 662 } 663 664 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 665 if (LangOpts.Sanitize.has(Mask)) { 666 bool UseGlobalGC = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 667 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 668 llvm::AsanDtorKind DestructorKind = 669 CodeGenOpts.getSanitizeAddressDtor(); 670 AddressSanitizerOptions Opts; 671 Opts.CompileKernel = CompileKernel; 672 Opts.Recover = CodeGenOpts.SanitizeRecover.has(Mask); 673 Opts.UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 674 Opts.UseAfterReturn = CodeGenOpts.getSanitizeAddressUseAfterReturn(); 675 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 676 MPM.addPass(ModuleAddressSanitizerPass( 677 Opts, UseGlobalGC, UseOdrIndicator, DestructorKind)); 678 } 679 }; 680 ASanPass(SanitizerKind::Address, false); 681 ASanPass(SanitizerKind::KernelAddress, true); 682 683 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 684 if (LangOpts.Sanitize.has(Mask)) { 685 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 686 MPM.addPass(HWAddressSanitizerPass( 687 {CompileKernel, Recover, 688 /*DisableOptimization=*/CodeGenOpts.OptimizationLevel == 0})); 689 } 690 }; 691 HWASanPass(SanitizerKind::HWAddress, false); 692 HWASanPass(SanitizerKind::KernelHWAddress, true); 693 694 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 695 MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles)); 696 } 697 }); 698 } 699 700 void EmitAssemblyHelper::RunOptimizationPipeline( 701 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 702 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS) { 703 Optional<PGOOptions> PGOOpt; 704 705 if (CodeGenOpts.hasProfileIRInstr()) 706 // -fprofile-generate. 707 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 708 ? getDefaultProfileGenName() 709 : CodeGenOpts.InstrProfileOutput, 710 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 711 CodeGenOpts.DebugInfoForProfiling); 712 else if (CodeGenOpts.hasProfileIRUse()) { 713 // -fprofile-use. 714 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 715 : PGOOptions::NoCSAction; 716 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 717 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 718 CSAction, CodeGenOpts.DebugInfoForProfiling); 719 } else if (!CodeGenOpts.SampleProfileFile.empty()) 720 // -fprofile-sample-use 721 PGOOpt = PGOOptions( 722 CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile, 723 PGOOptions::SampleUse, PGOOptions::NoCSAction, 724 CodeGenOpts.DebugInfoForProfiling, CodeGenOpts.PseudoProbeForProfiling); 725 else if (CodeGenOpts.PseudoProbeForProfiling) 726 // -fpseudo-probe-for-profiling 727 PGOOpt = 728 PGOOptions("", "", "", PGOOptions::NoAction, PGOOptions::NoCSAction, 729 CodeGenOpts.DebugInfoForProfiling, true); 730 else if (CodeGenOpts.DebugInfoForProfiling) 731 // -fdebug-info-for-profiling 732 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 733 PGOOptions::NoCSAction, true); 734 735 // Check to see if we want to generate a CS profile. 736 if (CodeGenOpts.hasProfileCSIRInstr()) { 737 assert(!CodeGenOpts.hasProfileCSIRUse() && 738 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 739 "the same time"); 740 if (PGOOpt.hasValue()) { 741 assert(PGOOpt->Action != PGOOptions::IRInstr && 742 PGOOpt->Action != PGOOptions::SampleUse && 743 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 744 " pass"); 745 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 746 ? getDefaultProfileGenName() 747 : CodeGenOpts.InstrProfileOutput; 748 PGOOpt->CSAction = PGOOptions::CSIRInstr; 749 } else 750 PGOOpt = PGOOptions("", 751 CodeGenOpts.InstrProfileOutput.empty() 752 ? getDefaultProfileGenName() 753 : CodeGenOpts.InstrProfileOutput, 754 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 755 CodeGenOpts.DebugInfoForProfiling); 756 } 757 if (TM) 758 TM->setPGOOption(PGOOpt); 759 760 PipelineTuningOptions PTO; 761 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 762 // For historical reasons, loop interleaving is set to mirror setting for loop 763 // unrolling. 764 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 765 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 766 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 767 PTO.MergeFunctions = CodeGenOpts.MergeFunctions; 768 // Only enable CGProfilePass when using integrated assembler, since 769 // non-integrated assemblers don't recognize .cgprofile section. 770 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 771 772 LoopAnalysisManager LAM; 773 FunctionAnalysisManager FAM; 774 CGSCCAnalysisManager CGAM; 775 ModuleAnalysisManager MAM; 776 777 bool DebugPassStructure = CodeGenOpts.DebugPass == "Structure"; 778 PassInstrumentationCallbacks PIC; 779 PrintPassOptions PrintPassOpts; 780 PrintPassOpts.Indent = DebugPassStructure; 781 PrintPassOpts.SkipAnalyses = DebugPassStructure; 782 StandardInstrumentations SI(CodeGenOpts.DebugPassManager || 783 DebugPassStructure, 784 /*VerifyEach*/ false, PrintPassOpts); 785 SI.registerCallbacks(PIC, &FAM); 786 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 787 788 // Attempt to load pass plugins and register their callbacks with PB. 789 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 790 auto PassPlugin = PassPlugin::Load(PluginFN); 791 if (PassPlugin) { 792 PassPlugin->registerPassBuilderCallbacks(PB); 793 } else { 794 Diags.Report(diag::err_fe_unable_to_load_plugin) 795 << PluginFN << toString(PassPlugin.takeError()); 796 } 797 } 798 #define HANDLE_EXTENSION(Ext) \ 799 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 800 #include "llvm/Support/Extension.def" 801 802 // Register the target library analysis directly and give it a customized 803 // preset TLI. 804 std::unique_ptr<TargetLibraryInfoImpl> TLII( 805 createTLII(TargetTriple, CodeGenOpts)); 806 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 807 808 // Register all the basic analyses with the managers. 809 PB.registerModuleAnalyses(MAM); 810 PB.registerCGSCCAnalyses(CGAM); 811 PB.registerFunctionAnalyses(FAM); 812 PB.registerLoopAnalyses(LAM); 813 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 814 815 ModulePassManager MPM; 816 817 if (!CodeGenOpts.DisableLLVMPasses) { 818 // Map our optimization levels into one of the distinct levels used to 819 // configure the pipeline. 820 OptimizationLevel Level = mapToLevel(CodeGenOpts); 821 822 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 823 bool IsLTO = CodeGenOpts.PrepareForLTO; 824 825 if (LangOpts.ObjCAutoRefCount) { 826 PB.registerPipelineStartEPCallback( 827 [](ModulePassManager &MPM, OptimizationLevel Level) { 828 if (Level != OptimizationLevel::O0) 829 MPM.addPass( 830 createModuleToFunctionPassAdaptor(ObjCARCExpandPass())); 831 }); 832 PB.registerPipelineEarlySimplificationEPCallback( 833 [](ModulePassManager &MPM, OptimizationLevel Level) { 834 if (Level != OptimizationLevel::O0) 835 MPM.addPass(ObjCARCAPElimPass()); 836 }); 837 PB.registerScalarOptimizerLateEPCallback( 838 [](FunctionPassManager &FPM, OptimizationLevel Level) { 839 if (Level != OptimizationLevel::O0) 840 FPM.addPass(ObjCARCOptPass()); 841 }); 842 } 843 844 // If we reached here with a non-empty index file name, then the index 845 // file was empty and we are not performing ThinLTO backend compilation 846 // (used in testing in a distributed build environment). 847 bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty(); 848 // If so drop any the type test assume sequences inserted for whole program 849 // vtables so that codegen doesn't complain. 850 if (IsThinLTOPostLink) 851 PB.registerPipelineStartEPCallback( 852 [](ModulePassManager &MPM, OptimizationLevel Level) { 853 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 854 /*ImportSummary=*/nullptr, 855 /*DropTypeTests=*/true)); 856 }); 857 858 if (CodeGenOpts.InstrumentFunctions || 859 CodeGenOpts.InstrumentFunctionEntryBare || 860 CodeGenOpts.InstrumentFunctionsAfterInlining || 861 CodeGenOpts.InstrumentForProfiling) { 862 PB.registerPipelineStartEPCallback( 863 [](ModulePassManager &MPM, OptimizationLevel Level) { 864 MPM.addPass(createModuleToFunctionPassAdaptor( 865 EntryExitInstrumenterPass(/*PostInlining=*/false))); 866 }); 867 PB.registerOptimizerLastEPCallback( 868 [](ModulePassManager &MPM, OptimizationLevel Level) { 869 MPM.addPass(createModuleToFunctionPassAdaptor( 870 EntryExitInstrumenterPass(/*PostInlining=*/true))); 871 }); 872 } 873 874 // Register callbacks to schedule sanitizer passes at the appropriate part 875 // of the pipeline. 876 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 877 PB.registerScalarOptimizerLateEPCallback( 878 [](FunctionPassManager &FPM, OptimizationLevel Level) { 879 FPM.addPass(BoundsCheckingPass()); 880 }); 881 882 // Don't add sanitizers if we are here from ThinLTO PostLink. That already 883 // done on PreLink stage. 884 if (!IsThinLTOPostLink) 885 addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB); 886 887 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) 888 PB.registerPipelineStartEPCallback( 889 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 890 MPM.addPass(GCOVProfilerPass(*Options)); 891 }); 892 if (Optional<InstrProfOptions> Options = 893 getInstrProfOptions(CodeGenOpts, LangOpts)) 894 PB.registerPipelineStartEPCallback( 895 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 896 MPM.addPass(InstrProfiling(*Options, false)); 897 }); 898 899 if (CodeGenOpts.OptimizationLevel == 0) { 900 MPM = PB.buildO0DefaultPipeline(Level, IsLTO || IsThinLTO); 901 } else if (IsThinLTO) { 902 MPM = PB.buildThinLTOPreLinkDefaultPipeline(Level); 903 } else if (IsLTO) { 904 MPM = PB.buildLTOPreLinkDefaultPipeline(Level); 905 } else { 906 MPM = PB.buildPerModuleDefaultPipeline(Level); 907 } 908 909 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 910 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass())); 911 MPM.addPass(ModuleMemProfilerPass()); 912 } 913 } 914 915 // Add a verifier pass if requested. We don't have to do this if the action 916 // requires code generation because there will already be a verifier pass in 917 // the code-generation pipeline. 918 if (!actionRequiresCodeGen(Action) && CodeGenOpts.VerifyModule) 919 MPM.addPass(VerifierPass()); 920 921 switch (Action) { 922 case Backend_EmitBC: 923 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 924 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 925 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 926 if (!ThinLinkOS) 927 return; 928 } 929 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 930 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 931 CodeGenOpts.EnableSplitLTOUnit); 932 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 933 : nullptr)); 934 } else { 935 // Emit a module summary by default for Regular LTO except for ld64 936 // targets 937 bool EmitLTOSummary = shouldEmitRegularLTOSummary(); 938 if (EmitLTOSummary) { 939 if (!TheModule->getModuleFlag("ThinLTO")) 940 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 941 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 942 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 943 uint32_t(1)); 944 } 945 MPM.addPass( 946 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 947 } 948 break; 949 950 case Backend_EmitLL: 951 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 952 break; 953 954 default: 955 break; 956 } 957 958 // Now that we have all of the passes ready, run them. 959 { 960 PrettyStackTraceString CrashInfo("Optimizer"); 961 llvm::TimeTraceScope TimeScope("Optimizer"); 962 MPM.run(*TheModule, MAM); 963 } 964 } 965 966 void EmitAssemblyHelper::RunCodegenPipeline( 967 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 968 std::unique_ptr<llvm::ToolOutputFile> &DwoOS) { 969 // We still use the legacy PM to run the codegen pipeline since the new PM 970 // does not work with the codegen pipeline. 971 // FIXME: make the new PM work with the codegen pipeline. 972 legacy::PassManager CodeGenPasses; 973 974 // Append any output we need to the pass manager. 975 switch (Action) { 976 case Backend_EmitAssembly: 977 case Backend_EmitMCNull: 978 case Backend_EmitObj: 979 CodeGenPasses.add( 980 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 981 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 982 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 983 if (!DwoOS) 984 return; 985 } 986 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 987 DwoOS ? &DwoOS->os() : nullptr)) 988 // FIXME: Should we handle this error differently? 989 return; 990 break; 991 default: 992 return; 993 } 994 995 { 996 PrettyStackTraceString CrashInfo("Code generation"); 997 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 998 CodeGenPasses.run(*TheModule); 999 } 1000 } 1001 1002 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 1003 std::unique_ptr<raw_pwrite_stream> OS) { 1004 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 1005 setCommandLineOpts(CodeGenOpts); 1006 1007 bool RequiresCodeGen = actionRequiresCodeGen(Action); 1008 CreateTargetMachine(RequiresCodeGen); 1009 1010 if (RequiresCodeGen && !TM) 1011 return; 1012 if (TM) 1013 TheModule->setDataLayout(TM->createDataLayout()); 1014 1015 // Before executing passes, print the final values of the LLVM options. 1016 cl::PrintOptionValues(); 1017 1018 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1019 RunOptimizationPipeline(Action, OS, ThinLinkOS); 1020 RunCodegenPipeline(Action, OS, DwoOS); 1021 1022 if (ThinLinkOS) 1023 ThinLinkOS->keep(); 1024 if (DwoOS) 1025 DwoOS->keep(); 1026 } 1027 1028 static void runThinLTOBackend( 1029 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M, 1030 const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, 1031 const clang::TargetOptions &TOpts, const LangOptions &LOpts, 1032 std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile, 1033 std::string ProfileRemapping, BackendAction Action) { 1034 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1035 ModuleToDefinedGVSummaries; 1036 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1037 1038 setCommandLineOpts(CGOpts); 1039 1040 // We can simply import the values mentioned in the combined index, since 1041 // we should only invoke this using the individual indexes written out 1042 // via a WriteIndexesThinBackend. 1043 FunctionImporter::ImportMapTy ImportList; 1044 if (!lto::initImportList(*M, *CombinedIndex, ImportList)) 1045 return; 1046 1047 auto AddStream = [&](size_t Task) { 1048 return std::make_unique<CachedFileStream>(std::move(OS), 1049 CGOpts.ObjectFilenameForDebug); 1050 }; 1051 lto::Config Conf; 1052 if (CGOpts.SaveTempsFilePrefix != "") { 1053 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1054 /* UseInputModulePath */ false)) { 1055 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1056 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1057 << '\n'; 1058 }); 1059 } 1060 } 1061 Conf.CPU = TOpts.CPU; 1062 Conf.CodeModel = getCodeModel(CGOpts); 1063 Conf.MAttrs = TOpts.Features; 1064 Conf.RelocModel = CGOpts.RelocationModel; 1065 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1066 Conf.OptLevel = CGOpts.OptimizationLevel; 1067 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1068 Conf.SampleProfile = std::move(SampleProfile); 1069 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1070 // For historical reasons, loop interleaving is set to mirror setting for loop 1071 // unrolling. 1072 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1073 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1074 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1075 // Only enable CGProfilePass when using integrated assembler, since 1076 // non-integrated assemblers don't recognize .cgprofile section. 1077 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1078 1079 // Context sensitive profile. 1080 if (CGOpts.hasProfileCSIRInstr()) { 1081 Conf.RunCSIRInstr = true; 1082 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1083 } else if (CGOpts.hasProfileCSIRUse()) { 1084 Conf.RunCSIRInstr = false; 1085 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1086 } 1087 1088 Conf.ProfileRemapping = std::move(ProfileRemapping); 1089 Conf.DebugPassManager = CGOpts.DebugPassManager; 1090 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1091 Conf.RemarksFilename = CGOpts.OptRecordFile; 1092 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1093 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1094 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1095 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1096 switch (Action) { 1097 case Backend_EmitNothing: 1098 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1099 return false; 1100 }; 1101 break; 1102 case Backend_EmitLL: 1103 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1104 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1105 return false; 1106 }; 1107 break; 1108 case Backend_EmitBC: 1109 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1110 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1111 return false; 1112 }; 1113 break; 1114 default: 1115 Conf.CGFileType = getCodeGenFileType(Action); 1116 break; 1117 } 1118 if (Error E = 1119 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1120 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], 1121 /* ModuleMap */ nullptr, CGOpts.CmdArgs)) { 1122 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1123 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1124 }); 1125 } 1126 } 1127 1128 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1129 const HeaderSearchOptions &HeaderOpts, 1130 const CodeGenOptions &CGOpts, 1131 const clang::TargetOptions &TOpts, 1132 const LangOptions &LOpts, 1133 StringRef TDesc, Module *M, 1134 BackendAction Action, 1135 std::unique_ptr<raw_pwrite_stream> OS) { 1136 1137 llvm::TimeTraceScope TimeScope("Backend"); 1138 1139 std::unique_ptr<llvm::Module> EmptyModule; 1140 if (!CGOpts.ThinLTOIndexFile.empty()) { 1141 // If we are performing a ThinLTO importing compile, load the function index 1142 // into memory and pass it into runThinLTOBackend, which will run the 1143 // function importer and invoke LTO passes. 1144 std::unique_ptr<ModuleSummaryIndex> CombinedIndex; 1145 if (Error E = llvm::getModuleSummaryIndexForFile( 1146 CGOpts.ThinLTOIndexFile, 1147 /*IgnoreEmptyThinLTOIndexFile*/ true) 1148 .moveInto(CombinedIndex)) { 1149 logAllUnhandledErrors(std::move(E), errs(), 1150 "Error loading index file '" + 1151 CGOpts.ThinLTOIndexFile + "': "); 1152 return; 1153 } 1154 1155 // A null CombinedIndex means we should skip ThinLTO compilation 1156 // (LLVM will optionally ignore empty index files, returning null instead 1157 // of an error). 1158 if (CombinedIndex) { 1159 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1160 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, 1161 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, 1162 CGOpts.ProfileRemappingFile, Action); 1163 return; 1164 } 1165 // Distributed indexing detected that nothing from the module is needed 1166 // for the final linking. So we can skip the compilation. We sill need to 1167 // output an empty object file to make sure that a linker does not fail 1168 // trying to read it. Also for some features, like CFI, we must skip 1169 // the compilation as CombinedIndex does not contain all required 1170 // information. 1171 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1172 EmptyModule->setTargetTriple(M->getTargetTriple()); 1173 M = EmptyModule.get(); 1174 } 1175 } 1176 1177 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1178 AsmHelper.EmitAssembly(Action, std::move(OS)); 1179 1180 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1181 // DataLayout. 1182 if (AsmHelper.TM) { 1183 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1184 if (DLDesc != TDesc) { 1185 unsigned DiagID = Diags.getCustomDiagID( 1186 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1187 "expected target description '%1'"); 1188 Diags.Report(DiagID) << DLDesc << TDesc; 1189 } 1190 } 1191 } 1192 1193 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1194 // __LLVM,__bitcode section. 1195 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1196 llvm::MemoryBufferRef Buf) { 1197 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1198 return; 1199 llvm::embedBitcodeInModule( 1200 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1201 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1202 CGOpts.CmdArgs); 1203 } 1204 1205 void clang::EmbedObject(llvm::Module *M, const CodeGenOptions &CGOpts, 1206 DiagnosticsEngine &Diags) { 1207 if (CGOpts.OffloadObjects.empty()) 1208 return; 1209 1210 for (StringRef OffloadObject : CGOpts.OffloadObjects) { 1211 SmallVector<StringRef, 4> ObjectFields; 1212 OffloadObject.split(ObjectFields, ','); 1213 1214 if (ObjectFields.size() != 4) { 1215 auto DiagID = Diags.getCustomDiagID( 1216 DiagnosticsEngine::Error, "Expected at least four arguments '%0'"); 1217 Diags.Report(DiagID) << OffloadObject; 1218 return; 1219 } 1220 1221 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> ObjectOrErr = 1222 llvm::MemoryBuffer::getFileOrSTDIN(ObjectFields[0]); 1223 if (std::error_code EC = ObjectOrErr.getError()) { 1224 auto DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 1225 "could not open '%0' for embedding"); 1226 Diags.Report(DiagID) << ObjectFields[0]; 1227 return; 1228 } 1229 1230 OffloadBinary::OffloadingImage Image{}; 1231 Image.TheImageKind = getImageKind(ObjectFields[0].rsplit(".").second); 1232 Image.TheOffloadKind = getOffloadKind(ObjectFields[1]); 1233 Image.StringData = {{"triple", ObjectFields[2]}, {"arch", ObjectFields[3]}}; 1234 Image.Image = **ObjectOrErr; 1235 1236 std::unique_ptr<MemoryBuffer> OffloadBuffer = OffloadBinary::write(Image); 1237 llvm::embedBufferInModule(*M, *OffloadBuffer, ".llvm.offloading", 1238 Align(OffloadBinary::getAlignment())); 1239 } 1240 } 1241