1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/StackSafetyAnalysis.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/IRPrintingPasses.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/ModuleSummaryIndex.h" 35 #include "llvm/IR/PassManager.h" 36 #include "llvm/IR/Verifier.h" 37 #include "llvm/LTO/LTOBackend.h" 38 #include "llvm/MC/MCAsmInfo.h" 39 #include "llvm/MC/SubtargetFeature.h" 40 #include "llvm/Passes/PassBuilder.h" 41 #include "llvm/Passes/PassPlugin.h" 42 #include "llvm/Passes/StandardInstrumentations.h" 43 #include "llvm/Support/BuryPointer.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/MemoryBuffer.h" 46 #include "llvm/Support/PrettyStackTrace.h" 47 #include "llvm/Support/TargetRegistry.h" 48 #include "llvm/Support/TimeProfiler.h" 49 #include "llvm/Support/Timer.h" 50 #include "llvm/Support/ToolOutputFile.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Target/TargetMachine.h" 53 #include "llvm/Target/TargetOptions.h" 54 #include "llvm/Transforms/Coroutines.h" 55 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 56 #include "llvm/Transforms/Coroutines/CoroEarly.h" 57 #include "llvm/Transforms/Coroutines/CoroElide.h" 58 #include "llvm/Transforms/Coroutines/CoroSplit.h" 59 #include "llvm/Transforms/IPO.h" 60 #include "llvm/Transforms/IPO/AlwaysInliner.h" 61 #include "llvm/Transforms/IPO/LowerTypeTests.h" 62 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 63 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 64 #include "llvm/Transforms/InstCombine/InstCombine.h" 65 #include "llvm/Transforms/Instrumentation.h" 66 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 67 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 68 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 69 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 70 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 71 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 72 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 73 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 74 #include "llvm/Transforms/ObjCARC.h" 75 #include "llvm/Transforms/Scalar.h" 76 #include "llvm/Transforms/Scalar/GVN.h" 77 #include "llvm/Transforms/Utils.h" 78 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 79 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 80 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 81 #include "llvm/Transforms/Utils/SymbolRewriter.h" 82 #include "llvm/Transforms/Utils/UniqueInternalLinkageNames.h" 83 #include <memory> 84 using namespace clang; 85 using namespace llvm; 86 87 #define HANDLE_EXTENSION(Ext) \ 88 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 89 #include "llvm/Support/Extension.def" 90 91 namespace { 92 93 // Default filename used for profile generation. 94 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 95 96 class EmitAssemblyHelper { 97 DiagnosticsEngine &Diags; 98 const HeaderSearchOptions &HSOpts; 99 const CodeGenOptions &CodeGenOpts; 100 const clang::TargetOptions &TargetOpts; 101 const LangOptions &LangOpts; 102 Module *TheModule; 103 104 Timer CodeGenerationTime; 105 106 std::unique_ptr<raw_pwrite_stream> OS; 107 108 TargetIRAnalysis getTargetIRAnalysis() const { 109 if (TM) 110 return TM->getTargetIRAnalysis(); 111 112 return TargetIRAnalysis(); 113 } 114 115 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 116 117 /// Generates the TargetMachine. 118 /// Leaves TM unchanged if it is unable to create the target machine. 119 /// Some of our clang tests specify triples which are not built 120 /// into clang. This is okay because these tests check the generated 121 /// IR, and they require DataLayout which depends on the triple. 122 /// In this case, we allow this method to fail and not report an error. 123 /// When MustCreateTM is used, we print an error if we are unable to load 124 /// the requested target. 125 void CreateTargetMachine(bool MustCreateTM); 126 127 /// Add passes necessary to emit assembly or LLVM IR. 128 /// 129 /// \return True on success. 130 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 131 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 132 133 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 134 std::error_code EC; 135 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 136 llvm::sys::fs::OF_None); 137 if (EC) { 138 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 139 F.reset(); 140 } 141 return F; 142 } 143 144 public: 145 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 146 const HeaderSearchOptions &HeaderSearchOpts, 147 const CodeGenOptions &CGOpts, 148 const clang::TargetOptions &TOpts, 149 const LangOptions &LOpts, Module *M) 150 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 151 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 152 CodeGenerationTime("codegen", "Code Generation Time") {} 153 154 ~EmitAssemblyHelper() { 155 if (CodeGenOpts.DisableFree) 156 BuryPointer(std::move(TM)); 157 } 158 159 std::unique_ptr<TargetMachine> TM; 160 161 void EmitAssembly(BackendAction Action, 162 std::unique_ptr<raw_pwrite_stream> OS); 163 164 void EmitAssemblyWithNewPassManager(BackendAction Action, 165 std::unique_ptr<raw_pwrite_stream> OS); 166 }; 167 168 // We need this wrapper to access LangOpts and CGOpts from extension functions 169 // that we add to the PassManagerBuilder. 170 class PassManagerBuilderWrapper : public PassManagerBuilder { 171 public: 172 PassManagerBuilderWrapper(const Triple &TargetTriple, 173 const CodeGenOptions &CGOpts, 174 const LangOptions &LangOpts) 175 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 176 LangOpts(LangOpts) {} 177 const Triple &getTargetTriple() const { return TargetTriple; } 178 const CodeGenOptions &getCGOpts() const { return CGOpts; } 179 const LangOptions &getLangOpts() const { return LangOpts; } 180 181 private: 182 const Triple &TargetTriple; 183 const CodeGenOptions &CGOpts; 184 const LangOptions &LangOpts; 185 }; 186 } 187 188 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 189 if (Builder.OptLevel > 0) 190 PM.add(createObjCARCAPElimPass()); 191 } 192 193 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 194 if (Builder.OptLevel > 0) 195 PM.add(createObjCARCExpandPass()); 196 } 197 198 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 199 if (Builder.OptLevel > 0) 200 PM.add(createObjCARCOptPass()); 201 } 202 203 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 204 legacy::PassManagerBase &PM) { 205 PM.add(createAddDiscriminatorsPass()); 206 } 207 208 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 209 legacy::PassManagerBase &PM) { 210 PM.add(createBoundsCheckingLegacyPass()); 211 } 212 213 static SanitizerCoverageOptions 214 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 215 SanitizerCoverageOptions Opts; 216 Opts.CoverageType = 217 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 218 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 219 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 220 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 221 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 222 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 223 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 224 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 225 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 226 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 227 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 228 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 229 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 230 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 231 return Opts; 232 } 233 234 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 235 legacy::PassManagerBase &PM) { 236 const PassManagerBuilderWrapper &BuilderWrapper = 237 static_cast<const PassManagerBuilderWrapper &>(Builder); 238 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 239 auto Opts = getSancovOptsFromCGOpts(CGOpts); 240 PM.add(createModuleSanitizerCoverageLegacyPassPass( 241 Opts, CGOpts.SanitizeCoverageWhitelistFiles, 242 CGOpts.SanitizeCoverageBlacklistFiles)); 243 } 244 245 // Check if ASan should use GC-friendly instrumentation for globals. 246 // First of all, there is no point if -fdata-sections is off (expect for MachO, 247 // where this is not a factor). Also, on ELF this feature requires an assembler 248 // extension that only works with -integrated-as at the moment. 249 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 250 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 251 return false; 252 switch (T.getObjectFormat()) { 253 case Triple::MachO: 254 case Triple::COFF: 255 return true; 256 case Triple::ELF: 257 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 258 case Triple::XCOFF: 259 llvm::report_fatal_error("ASan not implemented for XCOFF."); 260 case Triple::Wasm: 261 case Triple::UnknownObjectFormat: 262 break; 263 } 264 return false; 265 } 266 267 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 268 legacy::PassManagerBase &PM) { 269 const PassManagerBuilderWrapper &BuilderWrapper = 270 static_cast<const PassManagerBuilderWrapper&>(Builder); 271 const Triple &T = BuilderWrapper.getTargetTriple(); 272 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 273 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 274 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 275 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 276 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 277 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 278 UseAfterScope)); 279 PM.add(createModuleAddressSanitizerLegacyPassPass( 280 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator)); 281 } 282 283 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 284 legacy::PassManagerBase &PM) { 285 PM.add(createAddressSanitizerFunctionPass( 286 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 287 PM.add(createModuleAddressSanitizerLegacyPassPass( 288 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 289 /*UseOdrIndicator*/ false)); 290 } 291 292 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 293 legacy::PassManagerBase &PM) { 294 const PassManagerBuilderWrapper &BuilderWrapper = 295 static_cast<const PassManagerBuilderWrapper &>(Builder); 296 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 297 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 298 PM.add( 299 createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover)); 300 } 301 302 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 303 legacy::PassManagerBase &PM) { 304 PM.add(createHWAddressSanitizerLegacyPassPass( 305 /*CompileKernel*/ true, /*Recover*/ true)); 306 } 307 308 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 309 legacy::PassManagerBase &PM, 310 bool CompileKernel) { 311 const PassManagerBuilderWrapper &BuilderWrapper = 312 static_cast<const PassManagerBuilderWrapper&>(Builder); 313 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 314 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 315 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 316 PM.add(createMemorySanitizerLegacyPassPass( 317 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 318 319 // MemorySanitizer inserts complex instrumentation that mostly follows 320 // the logic of the original code, but operates on "shadow" values. 321 // It can benefit from re-running some general purpose optimization passes. 322 if (Builder.OptLevel > 0) { 323 PM.add(createEarlyCSEPass()); 324 PM.add(createReassociatePass()); 325 PM.add(createLICMPass()); 326 PM.add(createGVNPass()); 327 PM.add(createInstructionCombiningPass()); 328 PM.add(createDeadStoreEliminationPass()); 329 } 330 } 331 332 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 333 legacy::PassManagerBase &PM) { 334 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 335 } 336 337 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 338 legacy::PassManagerBase &PM) { 339 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 340 } 341 342 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 343 legacy::PassManagerBase &PM) { 344 PM.add(createThreadSanitizerLegacyPassPass()); 345 } 346 347 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 348 legacy::PassManagerBase &PM) { 349 const PassManagerBuilderWrapper &BuilderWrapper = 350 static_cast<const PassManagerBuilderWrapper&>(Builder); 351 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 352 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 353 } 354 355 static void addMemTagOptimizationPasses(const PassManagerBuilder &Builder, 356 legacy::PassManagerBase &PM) { 357 PM.add(createStackSafetyGlobalInfoWrapperPass()); 358 } 359 360 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 361 const CodeGenOptions &CodeGenOpts) { 362 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 363 364 switch (CodeGenOpts.getVecLib()) { 365 case CodeGenOptions::Accelerate: 366 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 367 break; 368 case CodeGenOptions::MASSV: 369 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 370 break; 371 case CodeGenOptions::SVML: 372 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 373 break; 374 default: 375 break; 376 } 377 return TLII; 378 } 379 380 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 381 legacy::PassManager *MPM) { 382 llvm::SymbolRewriter::RewriteDescriptorList DL; 383 384 llvm::SymbolRewriter::RewriteMapParser MapParser; 385 for (const auto &MapFile : Opts.RewriteMapFiles) 386 MapParser.parse(MapFile, &DL); 387 388 MPM->add(createRewriteSymbolsPass(DL)); 389 } 390 391 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 392 switch (CodeGenOpts.OptimizationLevel) { 393 default: 394 llvm_unreachable("Invalid optimization level!"); 395 case 0: 396 return CodeGenOpt::None; 397 case 1: 398 return CodeGenOpt::Less; 399 case 2: 400 return CodeGenOpt::Default; // O2/Os/Oz 401 case 3: 402 return CodeGenOpt::Aggressive; 403 } 404 } 405 406 static Optional<llvm::CodeModel::Model> 407 getCodeModel(const CodeGenOptions &CodeGenOpts) { 408 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 409 .Case("tiny", llvm::CodeModel::Tiny) 410 .Case("small", llvm::CodeModel::Small) 411 .Case("kernel", llvm::CodeModel::Kernel) 412 .Case("medium", llvm::CodeModel::Medium) 413 .Case("large", llvm::CodeModel::Large) 414 .Case("default", ~1u) 415 .Default(~0u); 416 assert(CodeModel != ~0u && "invalid code model!"); 417 if (CodeModel == ~1u) 418 return None; 419 return static_cast<llvm::CodeModel::Model>(CodeModel); 420 } 421 422 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 423 if (Action == Backend_EmitObj) 424 return CGFT_ObjectFile; 425 else if (Action == Backend_EmitMCNull) 426 return CGFT_Null; 427 else { 428 assert(Action == Backend_EmitAssembly && "Invalid action!"); 429 return CGFT_AssemblyFile; 430 } 431 } 432 433 static void initTargetOptions(llvm::TargetOptions &Options, 434 const CodeGenOptions &CodeGenOpts, 435 const clang::TargetOptions &TargetOpts, 436 const LangOptions &LangOpts, 437 const HeaderSearchOptions &HSOpts) { 438 Options.ThreadModel = 439 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 440 .Case("posix", llvm::ThreadModel::POSIX) 441 .Case("single", llvm::ThreadModel::Single); 442 443 // Set float ABI type. 444 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 445 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 446 "Invalid Floating Point ABI!"); 447 Options.FloatABIType = 448 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 449 .Case("soft", llvm::FloatABI::Soft) 450 .Case("softfp", llvm::FloatABI::Soft) 451 .Case("hard", llvm::FloatABI::Hard) 452 .Default(llvm::FloatABI::Default); 453 454 // Set FP fusion mode. 455 switch (LangOpts.getDefaultFPContractMode()) { 456 case LangOptions::FPM_Off: 457 // Preserve any contraction performed by the front-end. (Strict performs 458 // splitting of the muladd intrinsic in the backend.) 459 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 460 break; 461 case LangOptions::FPM_On: 462 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 463 break; 464 case LangOptions::FPM_Fast: 465 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 466 break; 467 } 468 469 Options.UseInitArray = CodeGenOpts.UseInitArray; 470 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 471 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 472 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 473 474 // Set EABI version. 475 Options.EABIVersion = TargetOpts.EABIVersion; 476 477 if (LangOpts.SjLjExceptions) 478 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 479 if (LangOpts.SEHExceptions) 480 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 481 if (LangOpts.DWARFExceptions) 482 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 483 if (LangOpts.WasmExceptions) 484 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 485 486 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 487 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 488 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 489 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 490 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 491 Options.FunctionSections = CodeGenOpts.FunctionSections; 492 Options.DataSections = CodeGenOpts.DataSections; 493 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 494 Options.TLSSize = CodeGenOpts.TLSSize; 495 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 496 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 497 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 498 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 499 Options.EmitAddrsig = CodeGenOpts.Addrsig; 500 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 501 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 502 503 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 504 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 505 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 506 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 507 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 508 Options.MCOptions.MCIncrementalLinkerCompatible = 509 CodeGenOpts.IncrementalLinkerCompatible; 510 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 511 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 512 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 513 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 514 Options.MCOptions.ABIName = TargetOpts.ABI; 515 for (const auto &Entry : HSOpts.UserEntries) 516 if (!Entry.IsFramework && 517 (Entry.Group == frontend::IncludeDirGroup::Quoted || 518 Entry.Group == frontend::IncludeDirGroup::Angled || 519 Entry.Group == frontend::IncludeDirGroup::System)) 520 Options.MCOptions.IASSearchPaths.push_back( 521 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 522 } 523 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 524 if (CodeGenOpts.DisableGCov) 525 return None; 526 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 527 return None; 528 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 529 // LLVM's -default-gcov-version flag is set to something invalid. 530 GCOVOptions Options; 531 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 532 Options.EmitData = CodeGenOpts.EmitGcovArcs; 533 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 534 Options.NoRedZone = CodeGenOpts.DisableRedZone; 535 Options.Filter = CodeGenOpts.ProfileFilterFiles; 536 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 537 return Options; 538 } 539 540 static Optional<InstrProfOptions> 541 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 542 const LangOptions &LangOpts) { 543 if (!CodeGenOpts.hasProfileClangInstr()) 544 return None; 545 InstrProfOptions Options; 546 Options.NoRedZone = CodeGenOpts.DisableRedZone; 547 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 548 549 // TODO: Surface the option to emit atomic profile counter increments at 550 // the driver level. 551 Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread); 552 return Options; 553 } 554 555 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 556 legacy::FunctionPassManager &FPM) { 557 // Handle disabling of all LLVM passes, where we want to preserve the 558 // internal module before any optimization. 559 if (CodeGenOpts.DisableLLVMPasses) 560 return; 561 562 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 563 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 564 // are inserted before PMBuilder ones - they'd get the default-constructed 565 // TLI with an unknown target otherwise. 566 Triple TargetTriple(TheModule->getTargetTriple()); 567 std::unique_ptr<TargetLibraryInfoImpl> TLII( 568 createTLII(TargetTriple, CodeGenOpts)); 569 570 // If we reached here with a non-empty index file name, then the index file 571 // was empty and we are not performing ThinLTO backend compilation (used in 572 // testing in a distributed build environment). Drop any the type test 573 // assume sequences inserted for whole program vtables so that codegen doesn't 574 // complain. 575 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 576 MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr, 577 /*ImportSummary=*/nullptr, 578 /*DropTypeTests=*/true)); 579 580 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 581 582 // At O0 and O1 we only run the always inliner which is more efficient. At 583 // higher optimization levels we run the normal inliner. 584 if (CodeGenOpts.OptimizationLevel <= 1) { 585 bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 && 586 !CodeGenOpts.DisableLifetimeMarkers) || 587 LangOpts.Coroutines); 588 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 589 } else { 590 // We do not want to inline hot callsites for SamplePGO module-summary build 591 // because profile annotation will happen again in ThinLTO backend, and we 592 // want the IR of the hot path to match the profile. 593 PMBuilder.Inliner = createFunctionInliningPass( 594 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 595 (!CodeGenOpts.SampleProfileFile.empty() && 596 CodeGenOpts.PrepareForThinLTO)); 597 } 598 599 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 600 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 601 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 602 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 603 604 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 605 // Loop interleaving in the loop vectorizer has historically been set to be 606 // enabled when loop unrolling is enabled. 607 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 608 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 609 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 610 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 611 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 612 613 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 614 615 if (TM) 616 TM->adjustPassManager(PMBuilder); 617 618 if (CodeGenOpts.DebugInfoForProfiling || 619 !CodeGenOpts.SampleProfileFile.empty()) 620 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 621 addAddDiscriminatorsPass); 622 623 // In ObjC ARC mode, add the main ARC optimization passes. 624 if (LangOpts.ObjCAutoRefCount) { 625 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 626 addObjCARCExpandPass); 627 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 628 addObjCARCAPElimPass); 629 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 630 addObjCARCOptPass); 631 } 632 633 if (LangOpts.Coroutines) 634 addCoroutinePassesToExtensionPoints(PMBuilder); 635 636 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 637 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 638 addBoundsCheckingPass); 639 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 640 addBoundsCheckingPass); 641 } 642 643 if (CodeGenOpts.SanitizeCoverageType || 644 CodeGenOpts.SanitizeCoverageIndirectCalls || 645 CodeGenOpts.SanitizeCoverageTraceCmp) { 646 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 647 addSanitizerCoveragePass); 648 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 649 addSanitizerCoveragePass); 650 } 651 652 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 653 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 654 addAddressSanitizerPasses); 655 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 656 addAddressSanitizerPasses); 657 } 658 659 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 660 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 661 addKernelAddressSanitizerPasses); 662 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 663 addKernelAddressSanitizerPasses); 664 } 665 666 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 667 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 668 addHWAddressSanitizerPasses); 669 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 670 addHWAddressSanitizerPasses); 671 } 672 673 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 674 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 675 addKernelHWAddressSanitizerPasses); 676 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 677 addKernelHWAddressSanitizerPasses); 678 } 679 680 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 681 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 682 addMemorySanitizerPass); 683 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 684 addMemorySanitizerPass); 685 } 686 687 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 688 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 689 addKernelMemorySanitizerPass); 690 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 691 addKernelMemorySanitizerPass); 692 } 693 694 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 695 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 696 addThreadSanitizerPass); 697 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 698 addThreadSanitizerPass); 699 } 700 701 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 702 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 703 addDataFlowSanitizerPass); 704 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 705 addDataFlowSanitizerPass); 706 } 707 708 if (LangOpts.Sanitize.has(SanitizerKind::MemTag)) { 709 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 710 addMemTagOptimizationPasses); 711 } 712 713 // Set up the per-function pass manager. 714 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 715 if (CodeGenOpts.VerifyModule) 716 FPM.add(createVerifierPass()); 717 718 // Set up the per-module pass manager. 719 if (!CodeGenOpts.RewriteMapFiles.empty()) 720 addSymbolRewriterPass(CodeGenOpts, &MPM); 721 722 // Add UniqueInternalLinkageNames Pass which renames internal linkage symbols 723 // with unique names. 724 if (CodeGenOpts.UniqueInternalLinkageNames) { 725 MPM.add(createUniqueInternalLinkageNamesPass()); 726 } 727 728 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 729 MPM.add(createGCOVProfilerPass(*Options)); 730 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 731 MPM.add(createStripSymbolsPass(true)); 732 } 733 734 if (Optional<InstrProfOptions> Options = 735 getInstrProfOptions(CodeGenOpts, LangOpts)) 736 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 737 738 bool hasIRInstr = false; 739 if (CodeGenOpts.hasProfileIRInstr()) { 740 PMBuilder.EnablePGOInstrGen = true; 741 hasIRInstr = true; 742 } 743 if (CodeGenOpts.hasProfileCSIRInstr()) { 744 assert(!CodeGenOpts.hasProfileCSIRUse() && 745 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 746 "same time"); 747 assert(!hasIRInstr && 748 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 749 "same time"); 750 PMBuilder.EnablePGOCSInstrGen = true; 751 hasIRInstr = true; 752 } 753 if (hasIRInstr) { 754 if (!CodeGenOpts.InstrProfileOutput.empty()) 755 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 756 else 757 PMBuilder.PGOInstrGen = std::string(DefaultProfileGenName); 758 } 759 if (CodeGenOpts.hasProfileIRUse()) { 760 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 761 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 762 } 763 764 if (!CodeGenOpts.SampleProfileFile.empty()) 765 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 766 767 PMBuilder.populateFunctionPassManager(FPM); 768 PMBuilder.populateModulePassManager(MPM); 769 } 770 771 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 772 SmallVector<const char *, 16> BackendArgs; 773 BackendArgs.push_back("clang"); // Fake program name. 774 if (!CodeGenOpts.DebugPass.empty()) { 775 BackendArgs.push_back("-debug-pass"); 776 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 777 } 778 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 779 BackendArgs.push_back("-limit-float-precision"); 780 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 781 } 782 BackendArgs.push_back(nullptr); 783 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 784 BackendArgs.data()); 785 } 786 787 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 788 // Create the TargetMachine for generating code. 789 std::string Error; 790 std::string Triple = TheModule->getTargetTriple(); 791 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 792 if (!TheTarget) { 793 if (MustCreateTM) 794 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 795 return; 796 } 797 798 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 799 std::string FeaturesStr = 800 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 801 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 802 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 803 804 llvm::TargetOptions Options; 805 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 806 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 807 Options, RM, CM, OptLevel)); 808 } 809 810 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 811 BackendAction Action, 812 raw_pwrite_stream &OS, 813 raw_pwrite_stream *DwoOS) { 814 // Add LibraryInfo. 815 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 816 std::unique_ptr<TargetLibraryInfoImpl> TLII( 817 createTLII(TargetTriple, CodeGenOpts)); 818 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 819 820 // Normal mode, emit a .s or .o file by running the code generator. Note, 821 // this also adds codegenerator level optimization passes. 822 CodeGenFileType CGFT = getCodeGenFileType(Action); 823 824 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 825 // "codegen" passes so that it isn't run multiple times when there is 826 // inlining happening. 827 if (CodeGenOpts.OptimizationLevel > 0) 828 CodeGenPasses.add(createObjCARCContractPass()); 829 830 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 831 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 832 Diags.Report(diag::err_fe_unable_to_interface_with_target); 833 return false; 834 } 835 836 return true; 837 } 838 839 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 840 std::unique_ptr<raw_pwrite_stream> OS) { 841 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 842 843 setCommandLineOpts(CodeGenOpts); 844 845 bool UsesCodeGen = (Action != Backend_EmitNothing && 846 Action != Backend_EmitBC && 847 Action != Backend_EmitLL); 848 CreateTargetMachine(UsesCodeGen); 849 850 if (UsesCodeGen && !TM) 851 return; 852 if (TM) 853 TheModule->setDataLayout(TM->createDataLayout()); 854 855 legacy::PassManager PerModulePasses; 856 PerModulePasses.add( 857 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 858 859 legacy::FunctionPassManager PerFunctionPasses(TheModule); 860 PerFunctionPasses.add( 861 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 862 863 CreatePasses(PerModulePasses, PerFunctionPasses); 864 865 legacy::PassManager CodeGenPasses; 866 CodeGenPasses.add( 867 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 868 869 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 870 871 switch (Action) { 872 case Backend_EmitNothing: 873 break; 874 875 case Backend_EmitBC: 876 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 877 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 878 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 879 if (!ThinLinkOS) 880 return; 881 } 882 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 883 CodeGenOpts.EnableSplitLTOUnit); 884 PerModulePasses.add(createWriteThinLTOBitcodePass( 885 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 886 } else { 887 // Emit a module summary by default for Regular LTO except for ld64 888 // targets 889 bool EmitLTOSummary = 890 (CodeGenOpts.PrepareForLTO && 891 !CodeGenOpts.DisableLLVMPasses && 892 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 893 llvm::Triple::Apple); 894 if (EmitLTOSummary) { 895 if (!TheModule->getModuleFlag("ThinLTO")) 896 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 897 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 898 uint32_t(1)); 899 } 900 901 PerModulePasses.add(createBitcodeWriterPass( 902 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 903 } 904 break; 905 906 case Backend_EmitLL: 907 PerModulePasses.add( 908 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 909 break; 910 911 default: 912 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 913 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 914 if (!DwoOS) 915 return; 916 } 917 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 918 DwoOS ? &DwoOS->os() : nullptr)) 919 return; 920 } 921 922 // Before executing passes, print the final values of the LLVM options. 923 cl::PrintOptionValues(); 924 925 // Run passes. For now we do all passes at once, but eventually we 926 // would like to have the option of streaming code generation. 927 928 { 929 PrettyStackTraceString CrashInfo("Per-function optimization"); 930 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 931 932 PerFunctionPasses.doInitialization(); 933 for (Function &F : *TheModule) 934 if (!F.isDeclaration()) 935 PerFunctionPasses.run(F); 936 PerFunctionPasses.doFinalization(); 937 } 938 939 { 940 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 941 llvm::TimeTraceScope TimeScope("PerModulePasses"); 942 PerModulePasses.run(*TheModule); 943 } 944 945 { 946 PrettyStackTraceString CrashInfo("Code generation"); 947 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 948 CodeGenPasses.run(*TheModule); 949 } 950 951 if (ThinLinkOS) 952 ThinLinkOS->keep(); 953 if (DwoOS) 954 DwoOS->keep(); 955 } 956 957 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 958 switch (Opts.OptimizationLevel) { 959 default: 960 llvm_unreachable("Invalid optimization level!"); 961 962 case 1: 963 return PassBuilder::OptimizationLevel::O1; 964 965 case 2: 966 switch (Opts.OptimizeSize) { 967 default: 968 llvm_unreachable("Invalid optimization level for size!"); 969 970 case 0: 971 return PassBuilder::OptimizationLevel::O2; 972 973 case 1: 974 return PassBuilder::OptimizationLevel::Os; 975 976 case 2: 977 return PassBuilder::OptimizationLevel::Oz; 978 } 979 980 case 3: 981 return PassBuilder::OptimizationLevel::O3; 982 } 983 } 984 985 static void addCoroutinePassesAtO0(ModulePassManager &MPM, 986 const LangOptions &LangOpts, 987 const CodeGenOptions &CodeGenOpts) { 988 if (!LangOpts.Coroutines) 989 return; 990 991 MPM.addPass(createModuleToFunctionPassAdaptor(CoroEarlyPass())); 992 993 CGSCCPassManager CGPM(CodeGenOpts.DebugPassManager); 994 CGPM.addPass(CoroSplitPass()); 995 CGPM.addPass(createCGSCCToFunctionPassAdaptor(CoroElidePass())); 996 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM))); 997 998 MPM.addPass(createModuleToFunctionPassAdaptor(CoroCleanupPass())); 999 } 1000 1001 static void addSanitizersAtO0(ModulePassManager &MPM, 1002 const Triple &TargetTriple, 1003 const LangOptions &LangOpts, 1004 const CodeGenOptions &CodeGenOpts) { 1005 if (CodeGenOpts.SanitizeCoverageType || 1006 CodeGenOpts.SanitizeCoverageIndirectCalls || 1007 CodeGenOpts.SanitizeCoverageTraceCmp) { 1008 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1009 MPM.addPass(ModuleSanitizerCoveragePass( 1010 SancovOpts, CodeGenOpts.SanitizeCoverageWhitelistFiles, 1011 CodeGenOpts.SanitizeCoverageBlacklistFiles)); 1012 } 1013 1014 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1015 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1016 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1017 MPM.addPass(createModuleToFunctionPassAdaptor(AddressSanitizerPass( 1018 CompileKernel, Recover, CodeGenOpts.SanitizeAddressUseAfterScope))); 1019 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1020 MPM.addPass( 1021 ModuleAddressSanitizerPass(CompileKernel, Recover, ModuleUseAfterScope, 1022 CodeGenOpts.SanitizeAddressUseOdrIndicator)); 1023 }; 1024 1025 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1026 ASanPass(SanitizerKind::Address, /*CompileKernel=*/false); 1027 } 1028 1029 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 1030 ASanPass(SanitizerKind::KernelAddress, /*CompileKernel=*/true); 1031 } 1032 1033 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 1034 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Memory); 1035 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1036 MPM.addPass(MemorySanitizerPass({TrackOrigins, Recover, false})); 1037 MPM.addPass(createModuleToFunctionPassAdaptor( 1038 MemorySanitizerPass({TrackOrigins, Recover, false}))); 1039 } 1040 1041 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 1042 MPM.addPass(createModuleToFunctionPassAdaptor( 1043 MemorySanitizerPass({0, false, /*Kernel=*/true}))); 1044 } 1045 1046 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1047 MPM.addPass(ThreadSanitizerPass()); 1048 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1049 } 1050 } 1051 1052 /// A clean version of `EmitAssembly` that uses the new pass manager. 1053 /// 1054 /// Not all features are currently supported in this system, but where 1055 /// necessary it falls back to the legacy pass manager to at least provide 1056 /// basic functionality. 1057 /// 1058 /// This API is planned to have its functionality finished and then to replace 1059 /// `EmitAssembly` at some point in the future when the default switches. 1060 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 1061 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 1062 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 1063 setCommandLineOpts(CodeGenOpts); 1064 1065 bool RequiresCodeGen = (Action != Backend_EmitNothing && 1066 Action != Backend_EmitBC && 1067 Action != Backend_EmitLL); 1068 CreateTargetMachine(RequiresCodeGen); 1069 1070 if (RequiresCodeGen && !TM) 1071 return; 1072 if (TM) 1073 TheModule->setDataLayout(TM->createDataLayout()); 1074 1075 Optional<PGOOptions> PGOOpt; 1076 1077 if (CodeGenOpts.hasProfileIRInstr()) 1078 // -fprofile-generate. 1079 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1080 ? std::string(DefaultProfileGenName) 1081 : CodeGenOpts.InstrProfileOutput, 1082 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1083 CodeGenOpts.DebugInfoForProfiling); 1084 else if (CodeGenOpts.hasProfileIRUse()) { 1085 // -fprofile-use. 1086 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1087 : PGOOptions::NoCSAction; 1088 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1089 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1090 CSAction, CodeGenOpts.DebugInfoForProfiling); 1091 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1092 // -fprofile-sample-use 1093 PGOOpt = 1094 PGOOptions(CodeGenOpts.SampleProfileFile, "", 1095 CodeGenOpts.ProfileRemappingFile, PGOOptions::SampleUse, 1096 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling); 1097 else if (CodeGenOpts.DebugInfoForProfiling) 1098 // -fdebug-info-for-profiling 1099 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1100 PGOOptions::NoCSAction, true); 1101 1102 // Check to see if we want to generate a CS profile. 1103 if (CodeGenOpts.hasProfileCSIRInstr()) { 1104 assert(!CodeGenOpts.hasProfileCSIRUse() && 1105 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1106 "the same time"); 1107 if (PGOOpt.hasValue()) { 1108 assert(PGOOpt->Action != PGOOptions::IRInstr && 1109 PGOOpt->Action != PGOOptions::SampleUse && 1110 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1111 " pass"); 1112 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1113 ? std::string(DefaultProfileGenName) 1114 : CodeGenOpts.InstrProfileOutput; 1115 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1116 } else 1117 PGOOpt = PGOOptions("", 1118 CodeGenOpts.InstrProfileOutput.empty() 1119 ? std::string(DefaultProfileGenName) 1120 : CodeGenOpts.InstrProfileOutput, 1121 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1122 CodeGenOpts.DebugInfoForProfiling); 1123 } 1124 1125 PipelineTuningOptions PTO; 1126 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1127 // For historical reasons, loop interleaving is set to mirror setting for loop 1128 // unrolling. 1129 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1130 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1131 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1132 PTO.CallGraphProfile = CodeGenOpts.CallGraphProfile; 1133 PTO.Coroutines = LangOpts.Coroutines; 1134 1135 PassInstrumentationCallbacks PIC; 1136 StandardInstrumentations SI; 1137 SI.registerCallbacks(PIC); 1138 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 1139 1140 // Attempt to load pass plugins and register their callbacks with PB. 1141 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1142 auto PassPlugin = PassPlugin::Load(PluginFN); 1143 if (PassPlugin) { 1144 PassPlugin->registerPassBuilderCallbacks(PB); 1145 } else { 1146 Diags.Report(diag::err_fe_unable_to_load_plugin) 1147 << PluginFN << toString(PassPlugin.takeError()); 1148 } 1149 } 1150 #define HANDLE_EXTENSION(Ext) \ 1151 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 1152 #include "llvm/Support/Extension.def" 1153 1154 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 1155 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 1156 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 1157 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 1158 1159 // Register the AA manager first so that our version is the one used. 1160 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1161 1162 // Register the target library analysis directly and give it a customized 1163 // preset TLI. 1164 Triple TargetTriple(TheModule->getTargetTriple()); 1165 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1166 createTLII(TargetTriple, CodeGenOpts)); 1167 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1168 1169 // Register all the basic analyses with the managers. 1170 PB.registerModuleAnalyses(MAM); 1171 PB.registerCGSCCAnalyses(CGAM); 1172 PB.registerFunctionAnalyses(FAM); 1173 PB.registerLoopAnalyses(LAM); 1174 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1175 1176 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 1177 1178 if (!CodeGenOpts.DisableLLVMPasses) { 1179 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1180 bool IsLTO = CodeGenOpts.PrepareForLTO; 1181 1182 if (CodeGenOpts.OptimizationLevel == 0) { 1183 // If we reached here with a non-empty index file name, then the index 1184 // file was empty and we are not performing ThinLTO backend compilation 1185 // (used in testing in a distributed build environment). Drop any the type 1186 // test assume sequences inserted for whole program vtables so that 1187 // codegen doesn't complain. 1188 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 1189 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1190 /*ImportSummary=*/nullptr, 1191 /*DropTypeTests=*/true)); 1192 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1193 MPM.addPass(GCOVProfilerPass(*Options)); 1194 if (Optional<InstrProfOptions> Options = 1195 getInstrProfOptions(CodeGenOpts, LangOpts)) 1196 MPM.addPass(InstrProfiling(*Options, false)); 1197 1198 // Build a minimal pipeline based on the semantics required by Clang, 1199 // which is just that always inlining occurs. Further, disable generating 1200 // lifetime intrinsics to avoid enabling further optimizations during 1201 // code generation. 1202 // However, we need to insert lifetime intrinsics to avoid invalid access 1203 // caused by multithreaded coroutines. 1204 MPM.addPass( 1205 AlwaysInlinerPass(/*InsertLifetimeIntrinsics=*/LangOpts.Coroutines)); 1206 1207 // At -O0, we can still do PGO. Add all the requested passes for 1208 // instrumentation PGO, if requested. 1209 if (PGOOpt && (PGOOpt->Action == PGOOptions::IRInstr || 1210 PGOOpt->Action == PGOOptions::IRUse)) 1211 PB.addPGOInstrPassesForO0( 1212 MPM, CodeGenOpts.DebugPassManager, 1213 /* RunProfileGen */ (PGOOpt->Action == PGOOptions::IRInstr), 1214 /* IsCS */ false, PGOOpt->ProfileFile, 1215 PGOOpt->ProfileRemappingFile); 1216 1217 // At -O0 we directly run necessary sanitizer passes. 1218 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1219 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 1220 1221 // Add UniqueInternalLinkageNames Pass which renames internal linkage 1222 // symbols with unique names. 1223 if (CodeGenOpts.UniqueInternalLinkageNames) { 1224 MPM.addPass(UniqueInternalLinkageNamesPass()); 1225 } 1226 1227 // Lastly, add semantically necessary passes for LTO. 1228 if (IsLTO || IsThinLTO) { 1229 MPM.addPass(CanonicalizeAliasesPass()); 1230 MPM.addPass(NameAnonGlobalPass()); 1231 } 1232 } else { 1233 // Map our optimization levels into one of the distinct levels used to 1234 // configure the pipeline. 1235 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1236 1237 // If we reached here with a non-empty index file name, then the index 1238 // file was empty and we are not performing ThinLTO backend compilation 1239 // (used in testing in a distributed build environment). Drop any the type 1240 // test assume sequences inserted for whole program vtables so that 1241 // codegen doesn't complain. 1242 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 1243 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1244 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1245 /*ImportSummary=*/nullptr, 1246 /*DropTypeTests=*/true)); 1247 }); 1248 1249 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1250 MPM.addPass(createModuleToFunctionPassAdaptor( 1251 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1252 }); 1253 1254 // Register callbacks to schedule sanitizer passes at the appropriate part of 1255 // the pipeline. 1256 // FIXME: either handle asan/the remaining sanitizers or error out 1257 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1258 PB.registerScalarOptimizerLateEPCallback( 1259 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1260 FPM.addPass(BoundsCheckingPass()); 1261 }); 1262 1263 if (CodeGenOpts.SanitizeCoverageType || 1264 CodeGenOpts.SanitizeCoverageIndirectCalls || 1265 CodeGenOpts.SanitizeCoverageTraceCmp) { 1266 PB.registerOptimizerLastEPCallback( 1267 [this](ModulePassManager &MPM, 1268 PassBuilder::OptimizationLevel Level) { 1269 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1270 MPM.addPass(ModuleSanitizerCoveragePass( 1271 SancovOpts, CodeGenOpts.SanitizeCoverageWhitelistFiles, 1272 CodeGenOpts.SanitizeCoverageBlacklistFiles)); 1273 }); 1274 } 1275 1276 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 1277 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1278 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Memory); 1279 PB.registerPipelineStartEPCallback( 1280 [TrackOrigins, Recover](ModulePassManager &MPM) { 1281 MPM.addPass(MemorySanitizerPass({TrackOrigins, Recover, false})); 1282 }); 1283 PB.registerOptimizerLastEPCallback( 1284 [TrackOrigins, Recover](ModulePassManager &MPM, 1285 PassBuilder::OptimizationLevel Level) { 1286 MPM.addPass(createModuleToFunctionPassAdaptor( 1287 MemorySanitizerPass({TrackOrigins, Recover, false}))); 1288 }); 1289 } 1290 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1291 PB.registerPipelineStartEPCallback( 1292 [](ModulePassManager &MPM) { MPM.addPass(ThreadSanitizerPass()); }); 1293 PB.registerOptimizerLastEPCallback( 1294 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1295 MPM.addPass( 1296 createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1297 }); 1298 } 1299 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1300 PB.registerPipelineStartEPCallback([&](ModulePassManager &MPM) { 1301 MPM.addPass( 1302 RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1303 }); 1304 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address); 1305 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1306 PB.registerOptimizerLastEPCallback( 1307 [Recover, UseAfterScope](ModulePassManager &MPM, 1308 PassBuilder::OptimizationLevel Level) { 1309 MPM.addPass( 1310 createModuleToFunctionPassAdaptor(AddressSanitizerPass( 1311 /*CompileKernel=*/false, Recover, UseAfterScope))); 1312 }); 1313 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1314 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1315 PB.registerPipelineStartEPCallback( 1316 [Recover, ModuleUseAfterScope, 1317 UseOdrIndicator](ModulePassManager &MPM) { 1318 MPM.addPass(ModuleAddressSanitizerPass( 1319 /*CompileKernel=*/false, Recover, ModuleUseAfterScope, 1320 UseOdrIndicator)); 1321 }); 1322 } 1323 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1324 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1325 MPM.addPass(GCOVProfilerPass(*Options)); 1326 }); 1327 if (Optional<InstrProfOptions> Options = 1328 getInstrProfOptions(CodeGenOpts, LangOpts)) 1329 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1330 MPM.addPass(InstrProfiling(*Options, false)); 1331 }); 1332 1333 // Add UniqueInternalLinkageNames Pass which renames internal linkage 1334 // symbols with unique names. 1335 if (CodeGenOpts.UniqueInternalLinkageNames) { 1336 MPM.addPass(UniqueInternalLinkageNamesPass()); 1337 } 1338 1339 if (IsThinLTO) { 1340 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 1341 Level, CodeGenOpts.DebugPassManager); 1342 MPM.addPass(CanonicalizeAliasesPass()); 1343 MPM.addPass(NameAnonGlobalPass()); 1344 } else if (IsLTO) { 1345 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 1346 CodeGenOpts.DebugPassManager); 1347 MPM.addPass(CanonicalizeAliasesPass()); 1348 MPM.addPass(NameAnonGlobalPass()); 1349 } else { 1350 MPM = PB.buildPerModuleDefaultPipeline(Level, 1351 CodeGenOpts.DebugPassManager); 1352 } 1353 } 1354 1355 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 1356 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 1357 MPM.addPass(HWAddressSanitizerPass( 1358 /*CompileKernel=*/false, Recover)); 1359 } 1360 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 1361 MPM.addPass(HWAddressSanitizerPass( 1362 /*CompileKernel=*/true, /*Recover=*/true)); 1363 } 1364 1365 if (CodeGenOpts.OptimizationLevel > 0 && 1366 LangOpts.Sanitize.has(SanitizerKind::MemTag)) { 1367 MPM.addPass(StackSafetyGlobalAnnotatorPass()); 1368 } 1369 1370 if (CodeGenOpts.OptimizationLevel == 0) { 1371 addCoroutinePassesAtO0(MPM, LangOpts, CodeGenOpts); 1372 addSanitizersAtO0(MPM, TargetTriple, LangOpts, CodeGenOpts); 1373 } 1374 } 1375 1376 // FIXME: We still use the legacy pass manager to do code generation. We 1377 // create that pass manager here and use it as needed below. 1378 legacy::PassManager CodeGenPasses; 1379 bool NeedCodeGen = false; 1380 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1381 1382 // Append any output we need to the pass manager. 1383 switch (Action) { 1384 case Backend_EmitNothing: 1385 break; 1386 1387 case Backend_EmitBC: 1388 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1389 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1390 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1391 if (!ThinLinkOS) 1392 return; 1393 } 1394 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1395 CodeGenOpts.EnableSplitLTOUnit); 1396 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1397 : nullptr)); 1398 } else { 1399 // Emit a module summary by default for Regular LTO except for ld64 1400 // targets 1401 bool EmitLTOSummary = 1402 (CodeGenOpts.PrepareForLTO && 1403 !CodeGenOpts.DisableLLVMPasses && 1404 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1405 llvm::Triple::Apple); 1406 if (EmitLTOSummary) { 1407 if (!TheModule->getModuleFlag("ThinLTO")) 1408 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1409 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1410 uint32_t(1)); 1411 } 1412 MPM.addPass( 1413 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1414 } 1415 break; 1416 1417 case Backend_EmitLL: 1418 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1419 break; 1420 1421 case Backend_EmitAssembly: 1422 case Backend_EmitMCNull: 1423 case Backend_EmitObj: 1424 NeedCodeGen = true; 1425 CodeGenPasses.add( 1426 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1427 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1428 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1429 if (!DwoOS) 1430 return; 1431 } 1432 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1433 DwoOS ? &DwoOS->os() : nullptr)) 1434 // FIXME: Should we handle this error differently? 1435 return; 1436 break; 1437 } 1438 1439 // Before executing passes, print the final values of the LLVM options. 1440 cl::PrintOptionValues(); 1441 1442 // Now that we have all of the passes ready, run them. 1443 { 1444 PrettyStackTraceString CrashInfo("Optimizer"); 1445 MPM.run(*TheModule, MAM); 1446 } 1447 1448 // Now if needed, run the legacy PM for codegen. 1449 if (NeedCodeGen) { 1450 PrettyStackTraceString CrashInfo("Code generation"); 1451 CodeGenPasses.run(*TheModule); 1452 } 1453 1454 if (ThinLinkOS) 1455 ThinLinkOS->keep(); 1456 if (DwoOS) 1457 DwoOS->keep(); 1458 } 1459 1460 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1461 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1462 if (!BMsOrErr) 1463 return BMsOrErr.takeError(); 1464 1465 // The bitcode file may contain multiple modules, we want the one that is 1466 // marked as being the ThinLTO module. 1467 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1468 return *Bm; 1469 1470 return make_error<StringError>("Could not find module summary", 1471 inconvertibleErrorCode()); 1472 } 1473 1474 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1475 for (BitcodeModule &BM : BMs) { 1476 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1477 if (LTOInfo && LTOInfo->IsThinLTO) 1478 return &BM; 1479 } 1480 return nullptr; 1481 } 1482 1483 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1484 const HeaderSearchOptions &HeaderOpts, 1485 const CodeGenOptions &CGOpts, 1486 const clang::TargetOptions &TOpts, 1487 const LangOptions &LOpts, 1488 std::unique_ptr<raw_pwrite_stream> OS, 1489 std::string SampleProfile, 1490 std::string ProfileRemapping, 1491 BackendAction Action) { 1492 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1493 ModuleToDefinedGVSummaries; 1494 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1495 1496 setCommandLineOpts(CGOpts); 1497 1498 // We can simply import the values mentioned in the combined index, since 1499 // we should only invoke this using the individual indexes written out 1500 // via a WriteIndexesThinBackend. 1501 FunctionImporter::ImportMapTy ImportList; 1502 for (auto &GlobalList : *CombinedIndex) { 1503 // Ignore entries for undefined references. 1504 if (GlobalList.second.SummaryList.empty()) 1505 continue; 1506 1507 auto GUID = GlobalList.first; 1508 for (auto &Summary : GlobalList.second.SummaryList) { 1509 // Skip the summaries for the importing module. These are included to 1510 // e.g. record required linkage changes. 1511 if (Summary->modulePath() == M->getModuleIdentifier()) 1512 continue; 1513 // Add an entry to provoke importing by thinBackend. 1514 ImportList[Summary->modulePath()].insert(GUID); 1515 } 1516 } 1517 1518 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1519 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1520 1521 for (auto &I : ImportList) { 1522 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1523 llvm::MemoryBuffer::getFile(I.first()); 1524 if (!MBOrErr) { 1525 errs() << "Error loading imported file '" << I.first() 1526 << "': " << MBOrErr.getError().message() << "\n"; 1527 return; 1528 } 1529 1530 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1531 if (!BMOrErr) { 1532 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1533 errs() << "Error loading imported file '" << I.first() 1534 << "': " << EIB.message() << '\n'; 1535 }); 1536 return; 1537 } 1538 ModuleMap.insert({I.first(), *BMOrErr}); 1539 1540 OwnedImports.push_back(std::move(*MBOrErr)); 1541 } 1542 auto AddStream = [&](size_t Task) { 1543 return std::make_unique<lto::NativeObjectStream>(std::move(OS)); 1544 }; 1545 lto::Config Conf; 1546 if (CGOpts.SaveTempsFilePrefix != "") { 1547 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1548 /* UseInputModulePath */ false)) { 1549 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1550 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1551 << '\n'; 1552 }); 1553 } 1554 } 1555 Conf.CPU = TOpts.CPU; 1556 Conf.CodeModel = getCodeModel(CGOpts); 1557 Conf.MAttrs = TOpts.Features; 1558 Conf.RelocModel = CGOpts.RelocationModel; 1559 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1560 Conf.OptLevel = CGOpts.OptimizationLevel; 1561 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1562 Conf.SampleProfile = std::move(SampleProfile); 1563 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1564 // For historical reasons, loop interleaving is set to mirror setting for loop 1565 // unrolling. 1566 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1567 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1568 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1569 Conf.PTO.CallGraphProfile = CGOpts.CallGraphProfile; 1570 1571 // Context sensitive profile. 1572 if (CGOpts.hasProfileCSIRInstr()) { 1573 Conf.RunCSIRInstr = true; 1574 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1575 } else if (CGOpts.hasProfileCSIRUse()) { 1576 Conf.RunCSIRInstr = false; 1577 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1578 } 1579 1580 Conf.ProfileRemapping = std::move(ProfileRemapping); 1581 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1582 Conf.DebugPassManager = CGOpts.DebugPassManager; 1583 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1584 Conf.RemarksFilename = CGOpts.OptRecordFile; 1585 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1586 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1587 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1588 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1589 switch (Action) { 1590 case Backend_EmitNothing: 1591 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1592 return false; 1593 }; 1594 break; 1595 case Backend_EmitLL: 1596 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1597 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1598 return false; 1599 }; 1600 break; 1601 case Backend_EmitBC: 1602 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1603 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1604 return false; 1605 }; 1606 break; 1607 default: 1608 Conf.CGFileType = getCodeGenFileType(Action); 1609 break; 1610 } 1611 if (Error E = thinBackend( 1612 Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1613 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1614 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1615 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1616 }); 1617 } 1618 } 1619 1620 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1621 const HeaderSearchOptions &HeaderOpts, 1622 const CodeGenOptions &CGOpts, 1623 const clang::TargetOptions &TOpts, 1624 const LangOptions &LOpts, 1625 const llvm::DataLayout &TDesc, Module *M, 1626 BackendAction Action, 1627 std::unique_ptr<raw_pwrite_stream> OS) { 1628 1629 llvm::TimeTraceScope TimeScope("Backend"); 1630 1631 std::unique_ptr<llvm::Module> EmptyModule; 1632 if (!CGOpts.ThinLTOIndexFile.empty()) { 1633 // If we are performing a ThinLTO importing compile, load the function index 1634 // into memory and pass it into runThinLTOBackend, which will run the 1635 // function importer and invoke LTO passes. 1636 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1637 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1638 /*IgnoreEmptyThinLTOIndexFile*/true); 1639 if (!IndexOrErr) { 1640 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1641 "Error loading index file '" + 1642 CGOpts.ThinLTOIndexFile + "': "); 1643 return; 1644 } 1645 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1646 // A null CombinedIndex means we should skip ThinLTO compilation 1647 // (LLVM will optionally ignore empty index files, returning null instead 1648 // of an error). 1649 if (CombinedIndex) { 1650 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1651 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1652 LOpts, std::move(OS), CGOpts.SampleProfileFile, 1653 CGOpts.ProfileRemappingFile, Action); 1654 return; 1655 } 1656 // Distributed indexing detected that nothing from the module is needed 1657 // for the final linking. So we can skip the compilation. We sill need to 1658 // output an empty object file to make sure that a linker does not fail 1659 // trying to read it. Also for some features, like CFI, we must skip 1660 // the compilation as CombinedIndex does not contain all required 1661 // information. 1662 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1663 EmptyModule->setTargetTriple(M->getTargetTriple()); 1664 M = EmptyModule.get(); 1665 } 1666 } 1667 1668 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1669 1670 if (CGOpts.ExperimentalNewPassManager) 1671 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1672 else 1673 AsmHelper.EmitAssembly(Action, std::move(OS)); 1674 1675 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1676 // DataLayout. 1677 if (AsmHelper.TM) { 1678 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1679 if (DLDesc != TDesc.getStringRepresentation()) { 1680 unsigned DiagID = Diags.getCustomDiagID( 1681 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1682 "expected target description '%1'"); 1683 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1684 } 1685 } 1686 } 1687 1688 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1689 // __LLVM,__bitcode section. 1690 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1691 llvm::MemoryBufferRef Buf) { 1692 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1693 return; 1694 llvm::EmbedBitcodeInModule( 1695 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1696 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1697 &CGOpts.CmdArgs); 1698 } 1699