1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Bitcode/BitcodeReader.h" 24 #include "llvm/Bitcode/BitcodeWriter.h" 25 #include "llvm/Bitcode/BitcodeWriterPass.h" 26 #include "llvm/CodeGen/RegAllocRegistry.h" 27 #include "llvm/CodeGen/SchedulerRegistry.h" 28 #include "llvm/CodeGen/TargetSubtargetInfo.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/IRPrintingPasses.h" 31 #include "llvm/IR/LegacyPassManager.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSummaryIndex.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/LTO/LTOBackend.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/SubtargetFeature.h" 38 #include "llvm/Passes/PassBuilder.h" 39 #include "llvm/Passes/PassPlugin.h" 40 #include "llvm/Support/BuryPointer.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/MemoryBuffer.h" 43 #include "llvm/Support/PrettyStackTrace.h" 44 #include "llvm/Support/TargetRegistry.h" 45 #include "llvm/Support/Timer.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include "llvm/Transforms/Coroutines.h" 50 #include "llvm/Transforms/IPO.h" 51 #include "llvm/Transforms/IPO/AlwaysInliner.h" 52 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 53 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 54 #include "llvm/Transforms/InstCombine/InstCombine.h" 55 #include "llvm/Transforms/Instrumentation.h" 56 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 57 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 58 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 59 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 60 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 61 #include "llvm/Transforms/ObjCARC.h" 62 #include "llvm/Transforms/Scalar.h" 63 #include "llvm/Transforms/Scalar/GVN.h" 64 #include "llvm/Transforms/Utils.h" 65 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 66 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 67 #include "llvm/Transforms/Utils/SymbolRewriter.h" 68 #include <memory> 69 using namespace clang; 70 using namespace llvm; 71 72 namespace { 73 74 // Default filename used for profile generation. 75 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 76 77 class EmitAssemblyHelper { 78 DiagnosticsEngine &Diags; 79 const HeaderSearchOptions &HSOpts; 80 const CodeGenOptions &CodeGenOpts; 81 const clang::TargetOptions &TargetOpts; 82 const LangOptions &LangOpts; 83 Module *TheModule; 84 85 Timer CodeGenerationTime; 86 87 std::unique_ptr<raw_pwrite_stream> OS; 88 89 TargetIRAnalysis getTargetIRAnalysis() const { 90 if (TM) 91 return TM->getTargetIRAnalysis(); 92 93 return TargetIRAnalysis(); 94 } 95 96 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 97 98 /// Generates the TargetMachine. 99 /// Leaves TM unchanged if it is unable to create the target machine. 100 /// Some of our clang tests specify triples which are not built 101 /// into clang. This is okay because these tests check the generated 102 /// IR, and they require DataLayout which depends on the triple. 103 /// In this case, we allow this method to fail and not report an error. 104 /// When MustCreateTM is used, we print an error if we are unable to load 105 /// the requested target. 106 void CreateTargetMachine(bool MustCreateTM); 107 108 /// Add passes necessary to emit assembly or LLVM IR. 109 /// 110 /// \return True on success. 111 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 112 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 113 114 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 115 std::error_code EC; 116 auto F = llvm::make_unique<llvm::ToolOutputFile>(Path, EC, 117 llvm::sys::fs::F_None); 118 if (EC) { 119 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 120 F.reset(); 121 } 122 return F; 123 } 124 125 public: 126 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 127 const HeaderSearchOptions &HeaderSearchOpts, 128 const CodeGenOptions &CGOpts, 129 const clang::TargetOptions &TOpts, 130 const LangOptions &LOpts, Module *M) 131 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 132 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 133 CodeGenerationTime("codegen", "Code Generation Time") {} 134 135 ~EmitAssemblyHelper() { 136 if (CodeGenOpts.DisableFree) 137 BuryPointer(std::move(TM)); 138 } 139 140 std::unique_ptr<TargetMachine> TM; 141 142 void EmitAssembly(BackendAction Action, 143 std::unique_ptr<raw_pwrite_stream> OS); 144 145 void EmitAssemblyWithNewPassManager(BackendAction Action, 146 std::unique_ptr<raw_pwrite_stream> OS); 147 }; 148 149 // We need this wrapper to access LangOpts and CGOpts from extension functions 150 // that we add to the PassManagerBuilder. 151 class PassManagerBuilderWrapper : public PassManagerBuilder { 152 public: 153 PassManagerBuilderWrapper(const Triple &TargetTriple, 154 const CodeGenOptions &CGOpts, 155 const LangOptions &LangOpts) 156 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 157 LangOpts(LangOpts) {} 158 const Triple &getTargetTriple() const { return TargetTriple; } 159 const CodeGenOptions &getCGOpts() const { return CGOpts; } 160 const LangOptions &getLangOpts() const { return LangOpts; } 161 162 private: 163 const Triple &TargetTriple; 164 const CodeGenOptions &CGOpts; 165 const LangOptions &LangOpts; 166 }; 167 } 168 169 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 170 if (Builder.OptLevel > 0) 171 PM.add(createObjCARCAPElimPass()); 172 } 173 174 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 175 if (Builder.OptLevel > 0) 176 PM.add(createObjCARCExpandPass()); 177 } 178 179 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 180 if (Builder.OptLevel > 0) 181 PM.add(createObjCARCOptPass()); 182 } 183 184 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 185 legacy::PassManagerBase &PM) { 186 PM.add(createAddDiscriminatorsPass()); 187 } 188 189 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 190 legacy::PassManagerBase &PM) { 191 PM.add(createBoundsCheckingLegacyPass()); 192 } 193 194 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 195 legacy::PassManagerBase &PM) { 196 const PassManagerBuilderWrapper &BuilderWrapper = 197 static_cast<const PassManagerBuilderWrapper&>(Builder); 198 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 199 SanitizerCoverageOptions Opts; 200 Opts.CoverageType = 201 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 202 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 203 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 204 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 205 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 206 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 207 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 208 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 209 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 210 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 211 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 212 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 213 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 214 PM.add(createSanitizerCoverageModulePass(Opts)); 215 } 216 217 // Check if ASan should use GC-friendly instrumentation for globals. 218 // First of all, there is no point if -fdata-sections is off (expect for MachO, 219 // where this is not a factor). Also, on ELF this feature requires an assembler 220 // extension that only works with -integrated-as at the moment. 221 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 222 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 223 return false; 224 switch (T.getObjectFormat()) { 225 case Triple::MachO: 226 case Triple::COFF: 227 return true; 228 case Triple::ELF: 229 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 230 default: 231 return false; 232 } 233 } 234 235 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 236 legacy::PassManagerBase &PM) { 237 const PassManagerBuilderWrapper &BuilderWrapper = 238 static_cast<const PassManagerBuilderWrapper&>(Builder); 239 const Triple &T = BuilderWrapper.getTargetTriple(); 240 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 241 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 242 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 243 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 244 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 245 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 246 UseAfterScope)); 247 PM.add(createModuleAddressSanitizerLegacyPassPass( 248 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator)); 249 } 250 251 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 252 legacy::PassManagerBase &PM) { 253 PM.add(createAddressSanitizerFunctionPass( 254 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 255 PM.add(createModuleAddressSanitizerLegacyPassPass( 256 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 257 /*UseOdrIndicator*/ false)); 258 } 259 260 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 261 legacy::PassManagerBase &PM) { 262 const PassManagerBuilderWrapper &BuilderWrapper = 263 static_cast<const PassManagerBuilderWrapper &>(Builder); 264 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 265 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 266 PM.add(createHWAddressSanitizerPass(/*CompileKernel*/ false, Recover)); 267 } 268 269 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 270 legacy::PassManagerBase &PM) { 271 PM.add(createHWAddressSanitizerPass( 272 /*CompileKernel*/ true, /*Recover*/ true)); 273 } 274 275 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 276 legacy::PassManagerBase &PM, 277 bool CompileKernel) { 278 const PassManagerBuilderWrapper &BuilderWrapper = 279 static_cast<const PassManagerBuilderWrapper&>(Builder); 280 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 281 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 282 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 283 PM.add(createMemorySanitizerLegacyPassPass( 284 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 285 286 // MemorySanitizer inserts complex instrumentation that mostly follows 287 // the logic of the original code, but operates on "shadow" values. 288 // It can benefit from re-running some general purpose optimization passes. 289 if (Builder.OptLevel > 0) { 290 PM.add(createEarlyCSEPass()); 291 PM.add(createReassociatePass()); 292 PM.add(createLICMPass()); 293 PM.add(createGVNPass()); 294 PM.add(createInstructionCombiningPass()); 295 PM.add(createDeadStoreEliminationPass()); 296 } 297 } 298 299 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 300 legacy::PassManagerBase &PM) { 301 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 302 } 303 304 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 305 legacy::PassManagerBase &PM) { 306 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 307 } 308 309 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 310 legacy::PassManagerBase &PM) { 311 PM.add(createThreadSanitizerLegacyPassPass()); 312 } 313 314 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 315 legacy::PassManagerBase &PM) { 316 const PassManagerBuilderWrapper &BuilderWrapper = 317 static_cast<const PassManagerBuilderWrapper&>(Builder); 318 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 319 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 320 } 321 322 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 323 const CodeGenOptions &CodeGenOpts) { 324 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 325 if (!CodeGenOpts.SimplifyLibCalls) 326 TLII->disableAllFunctions(); 327 else { 328 // Disable individual libc/libm calls in TargetLibraryInfo. 329 LibFunc F; 330 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 331 if (TLII->getLibFunc(FuncName, F)) 332 TLII->setUnavailable(F); 333 } 334 335 switch (CodeGenOpts.getVecLib()) { 336 case CodeGenOptions::Accelerate: 337 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 338 break; 339 case CodeGenOptions::SVML: 340 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 341 break; 342 default: 343 break; 344 } 345 return TLII; 346 } 347 348 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 349 legacy::PassManager *MPM) { 350 llvm::SymbolRewriter::RewriteDescriptorList DL; 351 352 llvm::SymbolRewriter::RewriteMapParser MapParser; 353 for (const auto &MapFile : Opts.RewriteMapFiles) 354 MapParser.parse(MapFile, &DL); 355 356 MPM->add(createRewriteSymbolsPass(DL)); 357 } 358 359 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 360 switch (CodeGenOpts.OptimizationLevel) { 361 default: 362 llvm_unreachable("Invalid optimization level!"); 363 case 0: 364 return CodeGenOpt::None; 365 case 1: 366 return CodeGenOpt::Less; 367 case 2: 368 return CodeGenOpt::Default; // O2/Os/Oz 369 case 3: 370 return CodeGenOpt::Aggressive; 371 } 372 } 373 374 static Optional<llvm::CodeModel::Model> 375 getCodeModel(const CodeGenOptions &CodeGenOpts) { 376 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 377 .Case("tiny", llvm::CodeModel::Tiny) 378 .Case("small", llvm::CodeModel::Small) 379 .Case("kernel", llvm::CodeModel::Kernel) 380 .Case("medium", llvm::CodeModel::Medium) 381 .Case("large", llvm::CodeModel::Large) 382 .Case("default", ~1u) 383 .Default(~0u); 384 assert(CodeModel != ~0u && "invalid code model!"); 385 if (CodeModel == ~1u) 386 return None; 387 return static_cast<llvm::CodeModel::Model>(CodeModel); 388 } 389 390 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 391 if (Action == Backend_EmitObj) 392 return TargetMachine::CGFT_ObjectFile; 393 else if (Action == Backend_EmitMCNull) 394 return TargetMachine::CGFT_Null; 395 else { 396 assert(Action == Backend_EmitAssembly && "Invalid action!"); 397 return TargetMachine::CGFT_AssemblyFile; 398 } 399 } 400 401 static void initTargetOptions(llvm::TargetOptions &Options, 402 const CodeGenOptions &CodeGenOpts, 403 const clang::TargetOptions &TargetOpts, 404 const LangOptions &LangOpts, 405 const HeaderSearchOptions &HSOpts) { 406 Options.ThreadModel = 407 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 408 .Case("posix", llvm::ThreadModel::POSIX) 409 .Case("single", llvm::ThreadModel::Single); 410 411 // Set float ABI type. 412 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 413 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 414 "Invalid Floating Point ABI!"); 415 Options.FloatABIType = 416 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 417 .Case("soft", llvm::FloatABI::Soft) 418 .Case("softfp", llvm::FloatABI::Soft) 419 .Case("hard", llvm::FloatABI::Hard) 420 .Default(llvm::FloatABI::Default); 421 422 // Set FP fusion mode. 423 switch (LangOpts.getDefaultFPContractMode()) { 424 case LangOptions::FPC_Off: 425 // Preserve any contraction performed by the front-end. (Strict performs 426 // splitting of the muladd intrinsic in the backend.) 427 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 428 break; 429 case LangOptions::FPC_On: 430 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 431 break; 432 case LangOptions::FPC_Fast: 433 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 434 break; 435 } 436 437 Options.UseInitArray = CodeGenOpts.UseInitArray; 438 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 439 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 440 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 441 442 // Set EABI version. 443 Options.EABIVersion = TargetOpts.EABIVersion; 444 445 if (LangOpts.SjLjExceptions) 446 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 447 if (LangOpts.SEHExceptions) 448 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 449 if (LangOpts.DWARFExceptions) 450 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 451 452 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 453 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 454 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 455 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 456 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 457 Options.FunctionSections = CodeGenOpts.FunctionSections; 458 Options.DataSections = CodeGenOpts.DataSections; 459 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 460 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 461 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 462 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 463 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 464 Options.EmitAddrsig = CodeGenOpts.Addrsig; 465 466 if (CodeGenOpts.getSplitDwarfMode() != CodeGenOptions::NoFission) 467 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 468 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 469 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 470 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 471 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 472 Options.MCOptions.MCIncrementalLinkerCompatible = 473 CodeGenOpts.IncrementalLinkerCompatible; 474 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 475 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 476 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 477 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 478 Options.MCOptions.ABIName = TargetOpts.ABI; 479 for (const auto &Entry : HSOpts.UserEntries) 480 if (!Entry.IsFramework && 481 (Entry.Group == frontend::IncludeDirGroup::Quoted || 482 Entry.Group == frontend::IncludeDirGroup::Angled || 483 Entry.Group == frontend::IncludeDirGroup::System)) 484 Options.MCOptions.IASSearchPaths.push_back( 485 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 486 } 487 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 488 if (CodeGenOpts.DisableGCov) 489 return None; 490 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 491 return None; 492 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 493 // LLVM's -default-gcov-version flag is set to something invalid. 494 GCOVOptions Options; 495 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 496 Options.EmitData = CodeGenOpts.EmitGcovArcs; 497 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 498 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 499 Options.NoRedZone = CodeGenOpts.DisableRedZone; 500 Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData; 501 Options.Filter = CodeGenOpts.ProfileFilterFiles; 502 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 503 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 504 return Options; 505 } 506 507 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 508 legacy::FunctionPassManager &FPM) { 509 // Handle disabling of all LLVM passes, where we want to preserve the 510 // internal module before any optimization. 511 if (CodeGenOpts.DisableLLVMPasses) 512 return; 513 514 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 515 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 516 // are inserted before PMBuilder ones - they'd get the default-constructed 517 // TLI with an unknown target otherwise. 518 Triple TargetTriple(TheModule->getTargetTriple()); 519 std::unique_ptr<TargetLibraryInfoImpl> TLII( 520 createTLII(TargetTriple, CodeGenOpts)); 521 522 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 523 524 // At O0 and O1 we only run the always inliner which is more efficient. At 525 // higher optimization levels we run the normal inliner. 526 if (CodeGenOpts.OptimizationLevel <= 1) { 527 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 528 !CodeGenOpts.DisableLifetimeMarkers); 529 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 530 } else { 531 // We do not want to inline hot callsites for SamplePGO module-summary build 532 // because profile annotation will happen again in ThinLTO backend, and we 533 // want the IR of the hot path to match the profile. 534 PMBuilder.Inliner = createFunctionInliningPass( 535 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 536 (!CodeGenOpts.SampleProfileFile.empty() && 537 CodeGenOpts.PrepareForThinLTO)); 538 } 539 540 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 541 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 542 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 543 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 544 545 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 546 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 547 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 548 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 549 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 550 551 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 552 553 if (TM) 554 TM->adjustPassManager(PMBuilder); 555 556 if (CodeGenOpts.DebugInfoForProfiling || 557 !CodeGenOpts.SampleProfileFile.empty()) 558 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 559 addAddDiscriminatorsPass); 560 561 // In ObjC ARC mode, add the main ARC optimization passes. 562 if (LangOpts.ObjCAutoRefCount) { 563 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 564 addObjCARCExpandPass); 565 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 566 addObjCARCAPElimPass); 567 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 568 addObjCARCOptPass); 569 } 570 571 if (LangOpts.Coroutines) 572 addCoroutinePassesToExtensionPoints(PMBuilder); 573 574 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 575 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 576 addBoundsCheckingPass); 577 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 578 addBoundsCheckingPass); 579 } 580 581 if (CodeGenOpts.SanitizeCoverageType || 582 CodeGenOpts.SanitizeCoverageIndirectCalls || 583 CodeGenOpts.SanitizeCoverageTraceCmp) { 584 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 585 addSanitizerCoveragePass); 586 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 587 addSanitizerCoveragePass); 588 } 589 590 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 591 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 592 addAddressSanitizerPasses); 593 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 594 addAddressSanitizerPasses); 595 } 596 597 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 598 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 599 addKernelAddressSanitizerPasses); 600 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 601 addKernelAddressSanitizerPasses); 602 } 603 604 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 605 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 606 addHWAddressSanitizerPasses); 607 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 608 addHWAddressSanitizerPasses); 609 } 610 611 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 612 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 613 addKernelHWAddressSanitizerPasses); 614 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 615 addKernelHWAddressSanitizerPasses); 616 } 617 618 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 619 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 620 addMemorySanitizerPass); 621 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 622 addMemorySanitizerPass); 623 } 624 625 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 626 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 627 addKernelMemorySanitizerPass); 628 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 629 addKernelMemorySanitizerPass); 630 } 631 632 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 633 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 634 addThreadSanitizerPass); 635 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 636 addThreadSanitizerPass); 637 } 638 639 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 640 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 641 addDataFlowSanitizerPass); 642 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 643 addDataFlowSanitizerPass); 644 } 645 646 // Set up the per-function pass manager. 647 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 648 if (CodeGenOpts.VerifyModule) 649 FPM.add(createVerifierPass()); 650 651 // Set up the per-module pass manager. 652 if (!CodeGenOpts.RewriteMapFiles.empty()) 653 addSymbolRewriterPass(CodeGenOpts, &MPM); 654 655 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 656 MPM.add(createGCOVProfilerPass(*Options)); 657 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 658 MPM.add(createStripSymbolsPass(true)); 659 } 660 661 if (CodeGenOpts.hasProfileClangInstr()) { 662 InstrProfOptions Options; 663 Options.NoRedZone = CodeGenOpts.DisableRedZone; 664 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 665 666 // TODO: Surface the option to emit atomic profile counter increments at 667 // the driver level. 668 Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread); 669 670 MPM.add(createInstrProfilingLegacyPass(Options, false)); 671 } 672 bool hasIRInstr = false; 673 if (CodeGenOpts.hasProfileIRInstr()) { 674 PMBuilder.EnablePGOInstrGen = true; 675 hasIRInstr = true; 676 } 677 if (CodeGenOpts.hasProfileCSIRInstr()) { 678 assert(!CodeGenOpts.hasProfileCSIRUse() && 679 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 680 "same time"); 681 assert(!hasIRInstr && 682 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 683 "same time"); 684 PMBuilder.EnablePGOCSInstrGen = true; 685 hasIRInstr = true; 686 } 687 if (hasIRInstr) { 688 if (!CodeGenOpts.InstrProfileOutput.empty()) 689 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 690 else 691 PMBuilder.PGOInstrGen = DefaultProfileGenName; 692 } 693 if (CodeGenOpts.hasProfileIRUse()) { 694 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 695 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 696 } 697 698 if (!CodeGenOpts.SampleProfileFile.empty()) 699 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 700 701 PMBuilder.populateFunctionPassManager(FPM); 702 PMBuilder.populateModulePassManager(MPM); 703 } 704 705 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 706 SmallVector<const char *, 16> BackendArgs; 707 BackendArgs.push_back("clang"); // Fake program name. 708 if (!CodeGenOpts.DebugPass.empty()) { 709 BackendArgs.push_back("-debug-pass"); 710 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 711 } 712 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 713 BackendArgs.push_back("-limit-float-precision"); 714 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 715 } 716 BackendArgs.push_back(nullptr); 717 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 718 BackendArgs.data()); 719 } 720 721 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 722 // Create the TargetMachine for generating code. 723 std::string Error; 724 std::string Triple = TheModule->getTargetTriple(); 725 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 726 if (!TheTarget) { 727 if (MustCreateTM) 728 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 729 return; 730 } 731 732 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 733 std::string FeaturesStr = 734 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 735 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 736 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 737 738 llvm::TargetOptions Options; 739 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 740 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 741 Options, RM, CM, OptLevel)); 742 } 743 744 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 745 BackendAction Action, 746 raw_pwrite_stream &OS, 747 raw_pwrite_stream *DwoOS) { 748 // Add LibraryInfo. 749 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 750 std::unique_ptr<TargetLibraryInfoImpl> TLII( 751 createTLII(TargetTriple, CodeGenOpts)); 752 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 753 754 // Normal mode, emit a .s or .o file by running the code generator. Note, 755 // this also adds codegenerator level optimization passes. 756 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 757 758 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 759 // "codegen" passes so that it isn't run multiple times when there is 760 // inlining happening. 761 if (CodeGenOpts.OptimizationLevel > 0) 762 CodeGenPasses.add(createObjCARCContractPass()); 763 764 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 765 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 766 Diags.Report(diag::err_fe_unable_to_interface_with_target); 767 return false; 768 } 769 770 return true; 771 } 772 773 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 774 std::unique_ptr<raw_pwrite_stream> OS) { 775 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 776 777 setCommandLineOpts(CodeGenOpts); 778 779 bool UsesCodeGen = (Action != Backend_EmitNothing && 780 Action != Backend_EmitBC && 781 Action != Backend_EmitLL); 782 CreateTargetMachine(UsesCodeGen); 783 784 if (UsesCodeGen && !TM) 785 return; 786 if (TM) 787 TheModule->setDataLayout(TM->createDataLayout()); 788 789 legacy::PassManager PerModulePasses; 790 PerModulePasses.add( 791 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 792 793 legacy::FunctionPassManager PerFunctionPasses(TheModule); 794 PerFunctionPasses.add( 795 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 796 797 CreatePasses(PerModulePasses, PerFunctionPasses); 798 799 legacy::PassManager CodeGenPasses; 800 CodeGenPasses.add( 801 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 802 803 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 804 805 switch (Action) { 806 case Backend_EmitNothing: 807 break; 808 809 case Backend_EmitBC: 810 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 811 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 812 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 813 if (!ThinLinkOS) 814 return; 815 } 816 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 817 CodeGenOpts.EnableSplitLTOUnit); 818 PerModulePasses.add(createWriteThinLTOBitcodePass( 819 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 820 } else { 821 // Emit a module summary by default for Regular LTO except for ld64 822 // targets 823 bool EmitLTOSummary = 824 (CodeGenOpts.PrepareForLTO && 825 !CodeGenOpts.DisableLLVMPasses && 826 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 827 llvm::Triple::Apple); 828 if (EmitLTOSummary) { 829 if (!TheModule->getModuleFlag("ThinLTO")) 830 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 831 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 832 CodeGenOpts.EnableSplitLTOUnit); 833 } 834 835 PerModulePasses.add(createBitcodeWriterPass( 836 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 837 } 838 break; 839 840 case Backend_EmitLL: 841 PerModulePasses.add( 842 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 843 break; 844 845 default: 846 if (!CodeGenOpts.SplitDwarfFile.empty() && 847 (CodeGenOpts.getSplitDwarfMode() == CodeGenOptions::SplitFileFission)) { 848 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfFile); 849 if (!DwoOS) 850 return; 851 } 852 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 853 DwoOS ? &DwoOS->os() : nullptr)) 854 return; 855 } 856 857 // Before executing passes, print the final values of the LLVM options. 858 cl::PrintOptionValues(); 859 860 // Run passes. For now we do all passes at once, but eventually we 861 // would like to have the option of streaming code generation. 862 863 { 864 PrettyStackTraceString CrashInfo("Per-function optimization"); 865 866 PerFunctionPasses.doInitialization(); 867 for (Function &F : *TheModule) 868 if (!F.isDeclaration()) 869 PerFunctionPasses.run(F); 870 PerFunctionPasses.doFinalization(); 871 } 872 873 { 874 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 875 PerModulePasses.run(*TheModule); 876 } 877 878 { 879 PrettyStackTraceString CrashInfo("Code generation"); 880 CodeGenPasses.run(*TheModule); 881 } 882 883 if (ThinLinkOS) 884 ThinLinkOS->keep(); 885 if (DwoOS) 886 DwoOS->keep(); 887 } 888 889 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 890 switch (Opts.OptimizationLevel) { 891 default: 892 llvm_unreachable("Invalid optimization level!"); 893 894 case 1: 895 return PassBuilder::O1; 896 897 case 2: 898 switch (Opts.OptimizeSize) { 899 default: 900 llvm_unreachable("Invalid optimization level for size!"); 901 902 case 0: 903 return PassBuilder::O2; 904 905 case 1: 906 return PassBuilder::Os; 907 908 case 2: 909 return PassBuilder::Oz; 910 } 911 912 case 3: 913 return PassBuilder::O3; 914 } 915 } 916 917 static void addSanitizersAtO0(ModulePassManager &MPM, 918 const Triple &TargetTriple, 919 const LangOptions &LangOpts, 920 const CodeGenOptions &CodeGenOpts) { 921 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 922 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 923 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address); 924 MPM.addPass(createModuleToFunctionPassAdaptor( 925 AddressSanitizerPass(/*CompileKernel=*/false, Recover, 926 CodeGenOpts.SanitizeAddressUseAfterScope))); 927 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 928 MPM.addPass(ModuleAddressSanitizerPass( 929 /*CompileKernel=*/false, Recover, ModuleUseAfterScope, 930 CodeGenOpts.SanitizeAddressUseOdrIndicator)); 931 } 932 933 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 934 MPM.addPass(createModuleToFunctionPassAdaptor(MemorySanitizerPass({}))); 935 } 936 937 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 938 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 939 } 940 } 941 942 /// A clean version of `EmitAssembly` that uses the new pass manager. 943 /// 944 /// Not all features are currently supported in this system, but where 945 /// necessary it falls back to the legacy pass manager to at least provide 946 /// basic functionality. 947 /// 948 /// This API is planned to have its functionality finished and then to replace 949 /// `EmitAssembly` at some point in the future when the default switches. 950 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 951 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 952 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 953 setCommandLineOpts(CodeGenOpts); 954 955 // The new pass manager always makes a target machine available to passes 956 // during construction. 957 CreateTargetMachine(/*MustCreateTM*/ true); 958 if (!TM) 959 // This will already be diagnosed, just bail. 960 return; 961 TheModule->setDataLayout(TM->createDataLayout()); 962 963 Optional<PGOOptions> PGOOpt; 964 965 if (CodeGenOpts.hasProfileIRInstr()) 966 // -fprofile-generate. 967 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 968 ? DefaultProfileGenName 969 : CodeGenOpts.InstrProfileOutput, 970 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 971 CodeGenOpts.DebugInfoForProfiling); 972 else if (CodeGenOpts.hasProfileIRUse()) { 973 // -fprofile-use. 974 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 975 : PGOOptions::NoCSAction; 976 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 977 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 978 CSAction, CodeGenOpts.DebugInfoForProfiling); 979 } else if (!CodeGenOpts.SampleProfileFile.empty()) 980 // -fprofile-sample-use 981 PGOOpt = 982 PGOOptions(CodeGenOpts.SampleProfileFile, "", 983 CodeGenOpts.ProfileRemappingFile, PGOOptions::SampleUse, 984 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling); 985 else if (CodeGenOpts.DebugInfoForProfiling) 986 // -fdebug-info-for-profiling 987 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 988 PGOOptions::NoCSAction, true); 989 990 // Check to see if we want to generate a CS profile. 991 if (CodeGenOpts.hasProfileCSIRInstr()) { 992 assert(!CodeGenOpts.hasProfileCSIRUse() && 993 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 994 "the same time"); 995 if (PGOOpt.hasValue()) { 996 assert(PGOOpt->Action != PGOOptions::IRInstr && 997 PGOOpt->Action != PGOOptions::SampleUse && 998 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 999 " pass"); 1000 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1001 ? DefaultProfileGenName 1002 : CodeGenOpts.InstrProfileOutput; 1003 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1004 } else 1005 PGOOpt = PGOOptions("", 1006 CodeGenOpts.InstrProfileOutput.empty() 1007 ? DefaultProfileGenName 1008 : CodeGenOpts.InstrProfileOutput, 1009 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1010 CodeGenOpts.DebugInfoForProfiling); 1011 } 1012 1013 PassBuilder PB(TM.get(), PGOOpt); 1014 1015 // Attempt to load pass plugins and register their callbacks with PB. 1016 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1017 auto PassPlugin = PassPlugin::Load(PluginFN); 1018 if (PassPlugin) { 1019 PassPlugin->registerPassBuilderCallbacks(PB); 1020 } else { 1021 Diags.Report(diag::err_fe_unable_to_load_plugin) 1022 << PluginFN << toString(PassPlugin.takeError()); 1023 } 1024 } 1025 1026 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 1027 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 1028 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 1029 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 1030 1031 // Register the AA manager first so that our version is the one used. 1032 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1033 1034 // Register the target library analysis directly and give it a customized 1035 // preset TLI. 1036 Triple TargetTriple(TheModule->getTargetTriple()); 1037 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1038 createTLII(TargetTriple, CodeGenOpts)); 1039 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1040 MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1041 1042 // Register all the basic analyses with the managers. 1043 PB.registerModuleAnalyses(MAM); 1044 PB.registerCGSCCAnalyses(CGAM); 1045 PB.registerFunctionAnalyses(FAM); 1046 PB.registerLoopAnalyses(LAM); 1047 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1048 1049 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 1050 1051 if (!CodeGenOpts.DisableLLVMPasses) { 1052 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1053 bool IsLTO = CodeGenOpts.PrepareForLTO; 1054 1055 if (CodeGenOpts.OptimizationLevel == 0) { 1056 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1057 MPM.addPass(GCOVProfilerPass(*Options)); 1058 1059 // Build a minimal pipeline based on the semantics required by Clang, 1060 // which is just that always inlining occurs. 1061 MPM.addPass(AlwaysInlinerPass()); 1062 1063 // At -O0 we directly run necessary sanitizer passes. 1064 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1065 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 1066 1067 // Lastly, add semantically necessary passes for LTO. 1068 if (IsLTO || IsThinLTO) { 1069 MPM.addPass(CanonicalizeAliasesPass()); 1070 MPM.addPass(NameAnonGlobalPass()); 1071 } 1072 } else { 1073 // Map our optimization levels into one of the distinct levels used to 1074 // configure the pipeline. 1075 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1076 1077 // Register callbacks to schedule sanitizer passes at the appropriate part of 1078 // the pipeline. 1079 // FIXME: either handle asan/the remaining sanitizers or error out 1080 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1081 PB.registerScalarOptimizerLateEPCallback( 1082 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1083 FPM.addPass(BoundsCheckingPass()); 1084 }); 1085 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 1086 PB.registerOptimizerLastEPCallback( 1087 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1088 FPM.addPass(MemorySanitizerPass({})); 1089 }); 1090 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) 1091 PB.registerOptimizerLastEPCallback( 1092 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1093 FPM.addPass(ThreadSanitizerPass()); 1094 }); 1095 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1096 PB.registerPipelineStartEPCallback([&](ModulePassManager &MPM) { 1097 MPM.addPass( 1098 RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1099 }); 1100 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address); 1101 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1102 PB.registerOptimizerLastEPCallback( 1103 [Recover, UseAfterScope](FunctionPassManager &FPM, 1104 PassBuilder::OptimizationLevel Level) { 1105 FPM.addPass(AddressSanitizerPass( 1106 /*CompileKernel=*/false, Recover, UseAfterScope)); 1107 }); 1108 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1109 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1110 PB.registerPipelineStartEPCallback( 1111 [Recover, ModuleUseAfterScope, 1112 UseOdrIndicator](ModulePassManager &MPM) { 1113 MPM.addPass(ModuleAddressSanitizerPass( 1114 /*CompileKernel=*/false, Recover, ModuleUseAfterScope, 1115 UseOdrIndicator)); 1116 }); 1117 } 1118 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1119 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1120 MPM.addPass(GCOVProfilerPass(*Options)); 1121 }); 1122 1123 if (IsThinLTO) { 1124 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 1125 Level, CodeGenOpts.DebugPassManager); 1126 MPM.addPass(CanonicalizeAliasesPass()); 1127 MPM.addPass(NameAnonGlobalPass()); 1128 } else if (IsLTO) { 1129 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 1130 CodeGenOpts.DebugPassManager); 1131 MPM.addPass(CanonicalizeAliasesPass()); 1132 MPM.addPass(NameAnonGlobalPass()); 1133 } else { 1134 MPM = PB.buildPerModuleDefaultPipeline(Level, 1135 CodeGenOpts.DebugPassManager); 1136 } 1137 } 1138 1139 if (CodeGenOpts.OptimizationLevel == 0) 1140 addSanitizersAtO0(MPM, TargetTriple, LangOpts, CodeGenOpts); 1141 } 1142 1143 // FIXME: We still use the legacy pass manager to do code generation. We 1144 // create that pass manager here and use it as needed below. 1145 legacy::PassManager CodeGenPasses; 1146 bool NeedCodeGen = false; 1147 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1148 1149 // Append any output we need to the pass manager. 1150 switch (Action) { 1151 case Backend_EmitNothing: 1152 break; 1153 1154 case Backend_EmitBC: 1155 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1156 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1157 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1158 if (!ThinLinkOS) 1159 return; 1160 } 1161 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1162 CodeGenOpts.EnableSplitLTOUnit); 1163 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1164 : nullptr)); 1165 } else { 1166 // Emit a module summary by default for Regular LTO except for ld64 1167 // targets 1168 bool EmitLTOSummary = 1169 (CodeGenOpts.PrepareForLTO && 1170 !CodeGenOpts.DisableLLVMPasses && 1171 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1172 llvm::Triple::Apple); 1173 if (EmitLTOSummary) { 1174 if (!TheModule->getModuleFlag("ThinLTO")) 1175 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1176 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1177 CodeGenOpts.EnableSplitLTOUnit); 1178 } 1179 MPM.addPass( 1180 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1181 } 1182 break; 1183 1184 case Backend_EmitLL: 1185 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1186 break; 1187 1188 case Backend_EmitAssembly: 1189 case Backend_EmitMCNull: 1190 case Backend_EmitObj: 1191 NeedCodeGen = true; 1192 CodeGenPasses.add( 1193 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1194 if (!CodeGenOpts.SplitDwarfFile.empty()) { 1195 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfFile); 1196 if (!DwoOS) 1197 return; 1198 } 1199 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1200 DwoOS ? &DwoOS->os() : nullptr)) 1201 // FIXME: Should we handle this error differently? 1202 return; 1203 break; 1204 } 1205 1206 // Before executing passes, print the final values of the LLVM options. 1207 cl::PrintOptionValues(); 1208 1209 // Now that we have all of the passes ready, run them. 1210 { 1211 PrettyStackTraceString CrashInfo("Optimizer"); 1212 MPM.run(*TheModule, MAM); 1213 } 1214 1215 // Now if needed, run the legacy PM for codegen. 1216 if (NeedCodeGen) { 1217 PrettyStackTraceString CrashInfo("Code generation"); 1218 CodeGenPasses.run(*TheModule); 1219 } 1220 1221 if (ThinLinkOS) 1222 ThinLinkOS->keep(); 1223 if (DwoOS) 1224 DwoOS->keep(); 1225 } 1226 1227 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1228 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1229 if (!BMsOrErr) 1230 return BMsOrErr.takeError(); 1231 1232 // The bitcode file may contain multiple modules, we want the one that is 1233 // marked as being the ThinLTO module. 1234 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1235 return *Bm; 1236 1237 return make_error<StringError>("Could not find module summary", 1238 inconvertibleErrorCode()); 1239 } 1240 1241 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1242 for (BitcodeModule &BM : BMs) { 1243 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1244 if (LTOInfo && LTOInfo->IsThinLTO) 1245 return &BM; 1246 } 1247 return nullptr; 1248 } 1249 1250 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1251 const HeaderSearchOptions &HeaderOpts, 1252 const CodeGenOptions &CGOpts, 1253 const clang::TargetOptions &TOpts, 1254 const LangOptions &LOpts, 1255 std::unique_ptr<raw_pwrite_stream> OS, 1256 std::string SampleProfile, 1257 std::string ProfileRemapping, 1258 BackendAction Action) { 1259 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1260 ModuleToDefinedGVSummaries; 1261 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1262 1263 setCommandLineOpts(CGOpts); 1264 1265 // We can simply import the values mentioned in the combined index, since 1266 // we should only invoke this using the individual indexes written out 1267 // via a WriteIndexesThinBackend. 1268 FunctionImporter::ImportMapTy ImportList; 1269 for (auto &GlobalList : *CombinedIndex) { 1270 // Ignore entries for undefined references. 1271 if (GlobalList.second.SummaryList.empty()) 1272 continue; 1273 1274 auto GUID = GlobalList.first; 1275 for (auto &Summary : GlobalList.second.SummaryList) { 1276 // Skip the summaries for the importing module. These are included to 1277 // e.g. record required linkage changes. 1278 if (Summary->modulePath() == M->getModuleIdentifier()) 1279 continue; 1280 // Add an entry to provoke importing by thinBackend. 1281 ImportList[Summary->modulePath()].insert(GUID); 1282 } 1283 } 1284 1285 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1286 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1287 1288 for (auto &I : ImportList) { 1289 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1290 llvm::MemoryBuffer::getFile(I.first()); 1291 if (!MBOrErr) { 1292 errs() << "Error loading imported file '" << I.first() 1293 << "': " << MBOrErr.getError().message() << "\n"; 1294 return; 1295 } 1296 1297 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1298 if (!BMOrErr) { 1299 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1300 errs() << "Error loading imported file '" << I.first() 1301 << "': " << EIB.message() << '\n'; 1302 }); 1303 return; 1304 } 1305 ModuleMap.insert({I.first(), *BMOrErr}); 1306 1307 OwnedImports.push_back(std::move(*MBOrErr)); 1308 } 1309 auto AddStream = [&](size_t Task) { 1310 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 1311 }; 1312 lto::Config Conf; 1313 if (CGOpts.SaveTempsFilePrefix != "") { 1314 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1315 /* UseInputModulePath */ false)) { 1316 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1317 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1318 << '\n'; 1319 }); 1320 } 1321 } 1322 Conf.CPU = TOpts.CPU; 1323 Conf.CodeModel = getCodeModel(CGOpts); 1324 Conf.MAttrs = TOpts.Features; 1325 Conf.RelocModel = CGOpts.RelocationModel; 1326 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1327 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1328 Conf.SampleProfile = std::move(SampleProfile); 1329 1330 // Context sensitive profile. 1331 if (CGOpts.hasProfileCSIRInstr()) { 1332 Conf.RunCSIRInstr = true; 1333 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1334 } else if (CGOpts.hasProfileCSIRUse()) { 1335 Conf.RunCSIRInstr = false; 1336 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1337 } 1338 1339 Conf.ProfileRemapping = std::move(ProfileRemapping); 1340 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1341 Conf.DebugPassManager = CGOpts.DebugPassManager; 1342 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1343 Conf.RemarksFilename = CGOpts.OptRecordFile; 1344 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1345 Conf.DwoPath = CGOpts.SplitDwarfFile; 1346 switch (Action) { 1347 case Backend_EmitNothing: 1348 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1349 return false; 1350 }; 1351 break; 1352 case Backend_EmitLL: 1353 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1354 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1355 return false; 1356 }; 1357 break; 1358 case Backend_EmitBC: 1359 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1360 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1361 return false; 1362 }; 1363 break; 1364 default: 1365 Conf.CGFileType = getCodeGenFileType(Action); 1366 break; 1367 } 1368 if (Error E = thinBackend( 1369 Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1370 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1371 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1372 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1373 }); 1374 } 1375 } 1376 1377 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1378 const HeaderSearchOptions &HeaderOpts, 1379 const CodeGenOptions &CGOpts, 1380 const clang::TargetOptions &TOpts, 1381 const LangOptions &LOpts, 1382 const llvm::DataLayout &TDesc, Module *M, 1383 BackendAction Action, 1384 std::unique_ptr<raw_pwrite_stream> OS) { 1385 std::unique_ptr<llvm::Module> EmptyModule; 1386 if (!CGOpts.ThinLTOIndexFile.empty()) { 1387 // If we are performing a ThinLTO importing compile, load the function index 1388 // into memory and pass it into runThinLTOBackend, which will run the 1389 // function importer and invoke LTO passes. 1390 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1391 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1392 /*IgnoreEmptyThinLTOIndexFile*/true); 1393 if (!IndexOrErr) { 1394 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1395 "Error loading index file '" + 1396 CGOpts.ThinLTOIndexFile + "': "); 1397 return; 1398 } 1399 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1400 // A null CombinedIndex means we should skip ThinLTO compilation 1401 // (LLVM will optionally ignore empty index files, returning null instead 1402 // of an error). 1403 if (CombinedIndex) { 1404 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1405 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1406 LOpts, std::move(OS), CGOpts.SampleProfileFile, 1407 CGOpts.ProfileRemappingFile, Action); 1408 return; 1409 } 1410 // Distributed indexing detected that nothing from the module is needed 1411 // for the final linking. So we can skip the compilation. We sill need to 1412 // output an empty object file to make sure that a linker does not fail 1413 // trying to read it. Also for some features, like CFI, we must skip 1414 // the compilation as CombinedIndex does not contain all required 1415 // information. 1416 EmptyModule = llvm::make_unique<llvm::Module>("empty", M->getContext()); 1417 EmptyModule->setTargetTriple(M->getTargetTriple()); 1418 M = EmptyModule.get(); 1419 } 1420 } 1421 1422 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1423 1424 if (CGOpts.ExperimentalNewPassManager) 1425 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1426 else 1427 AsmHelper.EmitAssembly(Action, std::move(OS)); 1428 1429 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1430 // DataLayout. 1431 if (AsmHelper.TM) { 1432 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1433 if (DLDesc != TDesc.getStringRepresentation()) { 1434 unsigned DiagID = Diags.getCustomDiagID( 1435 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1436 "expected target description '%1'"); 1437 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1438 } 1439 } 1440 } 1441 1442 static const char* getSectionNameForBitcode(const Triple &T) { 1443 switch (T.getObjectFormat()) { 1444 case Triple::MachO: 1445 return "__LLVM,__bitcode"; 1446 case Triple::COFF: 1447 case Triple::ELF: 1448 case Triple::Wasm: 1449 case Triple::UnknownObjectFormat: 1450 return ".llvmbc"; 1451 case Triple::XCOFF: 1452 llvm_unreachable("XCOFF is not yet implemented"); 1453 break; 1454 } 1455 llvm_unreachable("Unimplemented ObjectFormatType"); 1456 } 1457 1458 static const char* getSectionNameForCommandline(const Triple &T) { 1459 switch (T.getObjectFormat()) { 1460 case Triple::MachO: 1461 return "__LLVM,__cmdline"; 1462 case Triple::COFF: 1463 case Triple::ELF: 1464 case Triple::Wasm: 1465 case Triple::UnknownObjectFormat: 1466 return ".llvmcmd"; 1467 case Triple::XCOFF: 1468 llvm_unreachable("XCOFF is not yet implemented"); 1469 break; 1470 } 1471 llvm_unreachable("Unimplemented ObjectFormatType"); 1472 } 1473 1474 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1475 // __LLVM,__bitcode section. 1476 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1477 llvm::MemoryBufferRef Buf) { 1478 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1479 return; 1480 1481 // Save llvm.compiler.used and remote it. 1482 SmallVector<Constant*, 2> UsedArray; 1483 SmallPtrSet<GlobalValue*, 4> UsedGlobals; 1484 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1485 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1486 for (auto *GV : UsedGlobals) { 1487 if (GV->getName() != "llvm.embedded.module" && 1488 GV->getName() != "llvm.cmdline") 1489 UsedArray.push_back( 1490 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1491 } 1492 if (Used) 1493 Used->eraseFromParent(); 1494 1495 // Embed the bitcode for the llvm module. 1496 std::string Data; 1497 ArrayRef<uint8_t> ModuleData; 1498 Triple T(M->getTargetTriple()); 1499 // Create a constant that contains the bitcode. 1500 // In case of embedding a marker, ignore the input Buf and use the empty 1501 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1502 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1503 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1504 (const unsigned char *)Buf.getBufferEnd())) { 1505 // If the input is LLVM Assembly, bitcode is produced by serializing 1506 // the module. Use-lists order need to be perserved in this case. 1507 llvm::raw_string_ostream OS(Data); 1508 llvm::WriteBitcodeToFile(*M, OS, /* ShouldPreserveUseListOrder */ true); 1509 ModuleData = 1510 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1511 } else 1512 // If the input is LLVM bitcode, write the input byte stream directly. 1513 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1514 Buf.getBufferSize()); 1515 } 1516 llvm::Constant *ModuleConstant = 1517 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1518 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1519 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1520 ModuleConstant); 1521 GV->setSection(getSectionNameForBitcode(T)); 1522 UsedArray.push_back( 1523 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1524 if (llvm::GlobalVariable *Old = 1525 M->getGlobalVariable("llvm.embedded.module", true)) { 1526 assert(Old->hasOneUse() && 1527 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1528 GV->takeName(Old); 1529 Old->eraseFromParent(); 1530 } else { 1531 GV->setName("llvm.embedded.module"); 1532 } 1533 1534 // Skip if only bitcode needs to be embedded. 1535 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1536 // Embed command-line options. 1537 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1538 CGOpts.CmdArgs.size()); 1539 llvm::Constant *CmdConstant = 1540 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1541 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1542 llvm::GlobalValue::PrivateLinkage, 1543 CmdConstant); 1544 GV->setSection(getSectionNameForCommandline(T)); 1545 UsedArray.push_back( 1546 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1547 if (llvm::GlobalVariable *Old = 1548 M->getGlobalVariable("llvm.cmdline", true)) { 1549 assert(Old->hasOneUse() && 1550 "llvm.cmdline can only be used once in llvm.compiler.used"); 1551 GV->takeName(Old); 1552 Old->eraseFromParent(); 1553 } else { 1554 GV->setName("llvm.cmdline"); 1555 } 1556 } 1557 1558 if (UsedArray.empty()) 1559 return; 1560 1561 // Recreate llvm.compiler.used. 1562 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1563 auto *NewUsed = new GlobalVariable( 1564 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1565 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1566 NewUsed->setSection("llvm.metadata"); 1567 } 1568