1 //===--- TargetInfo.cpp - Information about Target machine ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the TargetInfo and TargetInfoImpl interfaces. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Basic/TargetInfo.h" 14 #include "clang/Basic/AddressSpaces.h" 15 #include "clang/Basic/CharInfo.h" 16 #include "clang/Basic/Diagnostic.h" 17 #include "clang/Basic/LangOptions.h" 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include "llvm/Support/TargetParser.h" 22 #include <cstdlib> 23 using namespace clang; 24 25 static const LangASMap DefaultAddrSpaceMap = {0}; 26 27 // TargetInfo Constructor. 28 TargetInfo::TargetInfo(const llvm::Triple &T) : Triple(T) { 29 // Set defaults. Defaults are set for a 32-bit RISC platform, like PPC or 30 // SPARC. These should be overridden by concrete targets as needed. 31 BigEndian = !T.isLittleEndian(); 32 TLSSupported = true; 33 VLASupported = true; 34 NoAsmVariants = false; 35 HasLegalHalfType = false; 36 HasFloat128 = false; 37 HasIbm128 = false; 38 HasFloat16 = false; 39 HasBFloat16 = false; 40 HasLongDouble = true; 41 HasFPReturn = true; 42 HasStrictFP = false; 43 PointerWidth = PointerAlign = 32; 44 BoolWidth = BoolAlign = 8; 45 IntWidth = IntAlign = 32; 46 LongWidth = LongAlign = 32; 47 LongLongWidth = LongLongAlign = 64; 48 49 // Fixed point default bit widths 50 ShortAccumWidth = ShortAccumAlign = 16; 51 AccumWidth = AccumAlign = 32; 52 LongAccumWidth = LongAccumAlign = 64; 53 ShortFractWidth = ShortFractAlign = 8; 54 FractWidth = FractAlign = 16; 55 LongFractWidth = LongFractAlign = 32; 56 57 // Fixed point default integral and fractional bit sizes 58 // We give the _Accum 1 fewer fractional bits than their corresponding _Fract 59 // types by default to have the same number of fractional bits between _Accum 60 // and _Fract types. 61 PaddingOnUnsignedFixedPoint = false; 62 ShortAccumScale = 7; 63 AccumScale = 15; 64 LongAccumScale = 31; 65 66 SuitableAlign = 64; 67 DefaultAlignForAttributeAligned = 128; 68 MinGlobalAlign = 0; 69 // From the glibc documentation, on GNU systems, malloc guarantees 16-byte 70 // alignment on 64-bit systems and 8-byte alignment on 32-bit systems. See 71 // https://www.gnu.org/software/libc/manual/html_node/Malloc-Examples.html. 72 // This alignment guarantee also applies to Windows and Android. On Darwin 73 // and OpenBSD, the alignment is 16 bytes on both 64-bit and 32-bit systems. 74 if (T.isGNUEnvironment() || T.isWindowsMSVCEnvironment() || T.isAndroid()) 75 NewAlign = Triple.isArch64Bit() ? 128 : Triple.isArch32Bit() ? 64 : 0; 76 else if (T.isOSDarwin() || T.isOSOpenBSD()) 77 NewAlign = 128; 78 else 79 NewAlign = 0; // Infer from basic type alignment. 80 HalfWidth = 16; 81 HalfAlign = 16; 82 FloatWidth = 32; 83 FloatAlign = 32; 84 DoubleWidth = 64; 85 DoubleAlign = 64; 86 LongDoubleWidth = 64; 87 LongDoubleAlign = 64; 88 Float128Align = 128; 89 Ibm128Align = 128; 90 LargeArrayMinWidth = 0; 91 LargeArrayAlign = 0; 92 MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0; 93 MaxVectorAlign = 0; 94 MaxTLSAlign = 0; 95 SimdDefaultAlign = 0; 96 SizeType = UnsignedLong; 97 PtrDiffType = SignedLong; 98 IntMaxType = SignedLongLong; 99 IntPtrType = SignedLong; 100 WCharType = SignedInt; 101 WIntType = SignedInt; 102 Char16Type = UnsignedShort; 103 Char32Type = UnsignedInt; 104 Int64Type = SignedLongLong; 105 Int16Type = SignedShort; 106 SigAtomicType = SignedInt; 107 ProcessIDType = SignedInt; 108 UseSignedCharForObjCBool = true; 109 UseBitFieldTypeAlignment = true; 110 UseZeroLengthBitfieldAlignment = false; 111 UseLeadingZeroLengthBitfield = true; 112 UseExplicitBitFieldAlignment = true; 113 ZeroLengthBitfieldBoundary = 0; 114 MaxAlignedAttribute = 0; 115 HalfFormat = &llvm::APFloat::IEEEhalf(); 116 FloatFormat = &llvm::APFloat::IEEEsingle(); 117 DoubleFormat = &llvm::APFloat::IEEEdouble(); 118 LongDoubleFormat = &llvm::APFloat::IEEEdouble(); 119 Float128Format = &llvm::APFloat::IEEEquad(); 120 Ibm128Format = &llvm::APFloat::PPCDoubleDouble(); 121 MCountName = "mcount"; 122 UserLabelPrefix = "_"; 123 RegParmMax = 0; 124 SSERegParmMax = 0; 125 HasAlignMac68kSupport = false; 126 HasBuiltinMSVaList = false; 127 IsRenderScriptTarget = false; 128 HasAArch64SVETypes = false; 129 HasRISCVVTypes = false; 130 AllowAMDGPUUnsafeFPAtomics = false; 131 ARMCDECoprocMask = 0; 132 133 // Default to no types using fpret. 134 RealTypeUsesObjCFPRet = 0; 135 136 // Default to not using fp2ret for __Complex long double 137 ComplexLongDoubleUsesFP2Ret = false; 138 139 // Set the C++ ABI based on the triple. 140 TheCXXABI.set(Triple.isKnownWindowsMSVCEnvironment() 141 ? TargetCXXABI::Microsoft 142 : TargetCXXABI::GenericItanium); 143 144 // Default to an empty address space map. 145 AddrSpaceMap = &DefaultAddrSpaceMap; 146 UseAddrSpaceMapMangling = false; 147 148 // Default to an unknown platform name. 149 PlatformName = "unknown"; 150 PlatformMinVersion = VersionTuple(); 151 152 MaxOpenCLWorkGroupSize = 1024; 153 154 MaxBitIntWidth.reset(); 155 156 ProgramAddrSpace = 0; 157 } 158 159 // Out of line virtual dtor for TargetInfo. 160 TargetInfo::~TargetInfo() {} 161 162 void TargetInfo::resetDataLayout(StringRef DL, const char *ULP) { 163 DataLayoutString = DL.str(); 164 UserLabelPrefix = ULP; 165 } 166 167 bool 168 TargetInfo::checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const { 169 Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=branch"; 170 return false; 171 } 172 173 bool 174 TargetInfo::checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const { 175 Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=return"; 176 return false; 177 } 178 179 /// getTypeName - Return the user string for the specified integer type enum. 180 /// For example, SignedShort -> "short". 181 const char *TargetInfo::getTypeName(IntType T) { 182 switch (T) { 183 default: llvm_unreachable("not an integer!"); 184 case SignedChar: return "signed char"; 185 case UnsignedChar: return "unsigned char"; 186 case SignedShort: return "short"; 187 case UnsignedShort: return "unsigned short"; 188 case SignedInt: return "int"; 189 case UnsignedInt: return "unsigned int"; 190 case SignedLong: return "long int"; 191 case UnsignedLong: return "long unsigned int"; 192 case SignedLongLong: return "long long int"; 193 case UnsignedLongLong: return "long long unsigned int"; 194 } 195 } 196 197 /// getTypeConstantSuffix - Return the constant suffix for the specified 198 /// integer type enum. For example, SignedLong -> "L". 199 const char *TargetInfo::getTypeConstantSuffix(IntType T) const { 200 switch (T) { 201 default: llvm_unreachable("not an integer!"); 202 case SignedChar: 203 case SignedShort: 204 case SignedInt: return ""; 205 case SignedLong: return "L"; 206 case SignedLongLong: return "LL"; 207 case UnsignedChar: 208 if (getCharWidth() < getIntWidth()) 209 return ""; 210 LLVM_FALLTHROUGH; 211 case UnsignedShort: 212 if (getShortWidth() < getIntWidth()) 213 return ""; 214 LLVM_FALLTHROUGH; 215 case UnsignedInt: return "U"; 216 case UnsignedLong: return "UL"; 217 case UnsignedLongLong: return "ULL"; 218 } 219 } 220 221 /// getTypeFormatModifier - Return the printf format modifier for the 222 /// specified integer type enum. For example, SignedLong -> "l". 223 224 const char *TargetInfo::getTypeFormatModifier(IntType T) { 225 switch (T) { 226 default: llvm_unreachable("not an integer!"); 227 case SignedChar: 228 case UnsignedChar: return "hh"; 229 case SignedShort: 230 case UnsignedShort: return "h"; 231 case SignedInt: 232 case UnsignedInt: return ""; 233 case SignedLong: 234 case UnsignedLong: return "l"; 235 case SignedLongLong: 236 case UnsignedLongLong: return "ll"; 237 } 238 } 239 240 /// getTypeWidth - Return the width (in bits) of the specified integer type 241 /// enum. For example, SignedInt -> getIntWidth(). 242 unsigned TargetInfo::getTypeWidth(IntType T) const { 243 switch (T) { 244 default: llvm_unreachable("not an integer!"); 245 case SignedChar: 246 case UnsignedChar: return getCharWidth(); 247 case SignedShort: 248 case UnsignedShort: return getShortWidth(); 249 case SignedInt: 250 case UnsignedInt: return getIntWidth(); 251 case SignedLong: 252 case UnsignedLong: return getLongWidth(); 253 case SignedLongLong: 254 case UnsignedLongLong: return getLongLongWidth(); 255 }; 256 } 257 258 TargetInfo::IntType TargetInfo::getIntTypeByWidth( 259 unsigned BitWidth, bool IsSigned) const { 260 if (getCharWidth() == BitWidth) 261 return IsSigned ? SignedChar : UnsignedChar; 262 if (getShortWidth() == BitWidth) 263 return IsSigned ? SignedShort : UnsignedShort; 264 if (getIntWidth() == BitWidth) 265 return IsSigned ? SignedInt : UnsignedInt; 266 if (getLongWidth() == BitWidth) 267 return IsSigned ? SignedLong : UnsignedLong; 268 if (getLongLongWidth() == BitWidth) 269 return IsSigned ? SignedLongLong : UnsignedLongLong; 270 return NoInt; 271 } 272 273 TargetInfo::IntType TargetInfo::getLeastIntTypeByWidth(unsigned BitWidth, 274 bool IsSigned) const { 275 if (getCharWidth() >= BitWidth) 276 return IsSigned ? SignedChar : UnsignedChar; 277 if (getShortWidth() >= BitWidth) 278 return IsSigned ? SignedShort : UnsignedShort; 279 if (getIntWidth() >= BitWidth) 280 return IsSigned ? SignedInt : UnsignedInt; 281 if (getLongWidth() >= BitWidth) 282 return IsSigned ? SignedLong : UnsignedLong; 283 if (getLongLongWidth() >= BitWidth) 284 return IsSigned ? SignedLongLong : UnsignedLongLong; 285 return NoInt; 286 } 287 288 FloatModeKind TargetInfo::getRealTypeByWidth(unsigned BitWidth, 289 FloatModeKind ExplicitType) const { 290 if (getFloatWidth() == BitWidth) 291 return FloatModeKind::Float; 292 if (getDoubleWidth() == BitWidth) 293 return FloatModeKind::Double; 294 295 switch (BitWidth) { 296 case 96: 297 if (&getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended()) 298 return FloatModeKind::LongDouble; 299 break; 300 case 128: 301 // The caller explicitly asked for an IEEE compliant type but we still 302 // have to check if the target supports it. 303 if (ExplicitType == FloatModeKind::Float128) 304 return hasFloat128Type() ? FloatModeKind::Float128 305 : FloatModeKind::NoFloat; 306 if (ExplicitType == FloatModeKind::Ibm128) 307 return hasIbm128Type() ? FloatModeKind::Ibm128 308 : FloatModeKind::NoFloat; 309 if (&getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble() || 310 &getLongDoubleFormat() == &llvm::APFloat::IEEEquad()) 311 return FloatModeKind::LongDouble; 312 if (hasFloat128Type()) 313 return FloatModeKind::Float128; 314 break; 315 } 316 317 return FloatModeKind::NoFloat; 318 } 319 320 /// getTypeAlign - Return the alignment (in bits) of the specified integer type 321 /// enum. For example, SignedInt -> getIntAlign(). 322 unsigned TargetInfo::getTypeAlign(IntType T) const { 323 switch (T) { 324 default: llvm_unreachable("not an integer!"); 325 case SignedChar: 326 case UnsignedChar: return getCharAlign(); 327 case SignedShort: 328 case UnsignedShort: return getShortAlign(); 329 case SignedInt: 330 case UnsignedInt: return getIntAlign(); 331 case SignedLong: 332 case UnsignedLong: return getLongAlign(); 333 case SignedLongLong: 334 case UnsignedLongLong: return getLongLongAlign(); 335 }; 336 } 337 338 /// isTypeSigned - Return whether an integer types is signed. Returns true if 339 /// the type is signed; false otherwise. 340 bool TargetInfo::isTypeSigned(IntType T) { 341 switch (T) { 342 default: llvm_unreachable("not an integer!"); 343 case SignedChar: 344 case SignedShort: 345 case SignedInt: 346 case SignedLong: 347 case SignedLongLong: 348 return true; 349 case UnsignedChar: 350 case UnsignedShort: 351 case UnsignedInt: 352 case UnsignedLong: 353 case UnsignedLongLong: 354 return false; 355 }; 356 } 357 358 /// adjust - Set forced language options. 359 /// Apply changes to the target information with respect to certain 360 /// language options which change the target configuration and adjust 361 /// the language based on the target options where applicable. 362 void TargetInfo::adjust(DiagnosticsEngine &Diags, LangOptions &Opts) { 363 if (Opts.NoBitFieldTypeAlign) 364 UseBitFieldTypeAlignment = false; 365 366 switch (Opts.WCharSize) { 367 default: llvm_unreachable("invalid wchar_t width"); 368 case 0: break; 369 case 1: WCharType = Opts.WCharIsSigned ? SignedChar : UnsignedChar; break; 370 case 2: WCharType = Opts.WCharIsSigned ? SignedShort : UnsignedShort; break; 371 case 4: WCharType = Opts.WCharIsSigned ? SignedInt : UnsignedInt; break; 372 } 373 374 if (Opts.AlignDouble) { 375 DoubleAlign = LongLongAlign = 64; 376 LongDoubleAlign = 64; 377 } 378 379 if (Opts.OpenCL) { 380 // OpenCL C requires specific widths for types, irrespective of 381 // what these normally are for the target. 382 // We also define long long and long double here, although the 383 // OpenCL standard only mentions these as "reserved". 384 IntWidth = IntAlign = 32; 385 LongWidth = LongAlign = 64; 386 LongLongWidth = LongLongAlign = 128; 387 HalfWidth = HalfAlign = 16; 388 FloatWidth = FloatAlign = 32; 389 390 // Embedded 32-bit targets (OpenCL EP) might have double C type 391 // defined as float. Let's not override this as it might lead 392 // to generating illegal code that uses 64bit doubles. 393 if (DoubleWidth != FloatWidth) { 394 DoubleWidth = DoubleAlign = 64; 395 DoubleFormat = &llvm::APFloat::IEEEdouble(); 396 } 397 LongDoubleWidth = LongDoubleAlign = 128; 398 399 unsigned MaxPointerWidth = getMaxPointerWidth(); 400 assert(MaxPointerWidth == 32 || MaxPointerWidth == 64); 401 bool Is32BitArch = MaxPointerWidth == 32; 402 SizeType = Is32BitArch ? UnsignedInt : UnsignedLong; 403 PtrDiffType = Is32BitArch ? SignedInt : SignedLong; 404 IntPtrType = Is32BitArch ? SignedInt : SignedLong; 405 406 IntMaxType = SignedLongLong; 407 Int64Type = SignedLong; 408 409 HalfFormat = &llvm::APFloat::IEEEhalf(); 410 FloatFormat = &llvm::APFloat::IEEEsingle(); 411 LongDoubleFormat = &llvm::APFloat::IEEEquad(); 412 413 // OpenCL C v3.0 s6.7.5 - The generic address space requires support for 414 // OpenCL C 2.0 or OpenCL C 3.0 with the __opencl_c_generic_address_space 415 // feature 416 // OpenCL C v3.0 s6.2.1 - OpenCL pipes require support of OpenCL C 2.0 417 // or later and __opencl_c_pipes feature 418 // FIXME: These language options are also defined in setLangDefaults() 419 // for OpenCL C 2.0 but with no access to target capabilities. Target 420 // should be immutable once created and thus these language options need 421 // to be defined only once. 422 if (Opts.getOpenCLCompatibleVersion() == 300) { 423 const auto &OpenCLFeaturesMap = getSupportedOpenCLOpts(); 424 Opts.OpenCLGenericAddressSpace = hasFeatureEnabled( 425 OpenCLFeaturesMap, "__opencl_c_generic_address_space"); 426 Opts.OpenCLPipes = 427 hasFeatureEnabled(OpenCLFeaturesMap, "__opencl_c_pipes"); 428 Opts.Blocks = 429 hasFeatureEnabled(OpenCLFeaturesMap, "__opencl_c_device_enqueue"); 430 } 431 } 432 433 if (Opts.DoubleSize) { 434 if (Opts.DoubleSize == 32) { 435 DoubleWidth = 32; 436 LongDoubleWidth = 32; 437 DoubleFormat = &llvm::APFloat::IEEEsingle(); 438 LongDoubleFormat = &llvm::APFloat::IEEEsingle(); 439 } else if (Opts.DoubleSize == 64) { 440 DoubleWidth = 64; 441 LongDoubleWidth = 64; 442 DoubleFormat = &llvm::APFloat::IEEEdouble(); 443 LongDoubleFormat = &llvm::APFloat::IEEEdouble(); 444 } 445 } 446 447 if (Opts.LongDoubleSize) { 448 if (Opts.LongDoubleSize == DoubleWidth) { 449 LongDoubleWidth = DoubleWidth; 450 LongDoubleAlign = DoubleAlign; 451 LongDoubleFormat = DoubleFormat; 452 } else if (Opts.LongDoubleSize == 128) { 453 LongDoubleWidth = LongDoubleAlign = 128; 454 LongDoubleFormat = &llvm::APFloat::IEEEquad(); 455 } else if (Opts.LongDoubleSize == 80) { 456 LongDoubleFormat = &llvm::APFloat::x87DoubleExtended(); 457 if (getTriple().isWindowsMSVCEnvironment()) { 458 LongDoubleWidth = 128; 459 LongDoubleAlign = 128; 460 } else { // Linux 461 if (getTriple().getArch() == llvm::Triple::x86) { 462 LongDoubleWidth = 96; 463 LongDoubleAlign = 32; 464 } else { 465 LongDoubleWidth = 128; 466 LongDoubleAlign = 128; 467 } 468 } 469 } 470 } 471 472 if (Opts.NewAlignOverride) 473 NewAlign = Opts.NewAlignOverride * getCharWidth(); 474 475 // Each unsigned fixed point type has the same number of fractional bits as 476 // its corresponding signed type. 477 PaddingOnUnsignedFixedPoint |= Opts.PaddingOnUnsignedFixedPoint; 478 CheckFixedPointBits(); 479 480 if (Opts.ProtectParens && !checkArithmeticFenceSupported()) { 481 Diags.Report(diag::err_opt_not_valid_on_target) << "-fprotect-parens"; 482 Opts.ProtectParens = false; 483 } 484 485 if (Opts.MaxBitIntWidth) 486 MaxBitIntWidth = Opts.MaxBitIntWidth; 487 } 488 489 bool TargetInfo::initFeatureMap( 490 llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU, 491 const std::vector<std::string> &FeatureVec) const { 492 for (const auto &F : FeatureVec) { 493 StringRef Name = F; 494 // Apply the feature via the target. 495 bool Enabled = Name[0] == '+'; 496 setFeatureEnabled(Features, Name.substr(1), Enabled); 497 } 498 return true; 499 } 500 501 TargetInfo::CallingConvKind 502 TargetInfo::getCallingConvKind(bool ClangABICompat4) const { 503 if (getCXXABI() != TargetCXXABI::Microsoft && 504 (ClangABICompat4 || getTriple().getOS() == llvm::Triple::PS4)) 505 return CCK_ClangABI4OrPS4; 506 return CCK_Default; 507 } 508 509 LangAS TargetInfo::getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const { 510 switch (TK) { 511 case OCLTK_Image: 512 case OCLTK_Pipe: 513 return LangAS::opencl_global; 514 515 case OCLTK_Sampler: 516 return LangAS::opencl_constant; 517 518 default: 519 return LangAS::Default; 520 } 521 } 522 523 //===----------------------------------------------------------------------===// 524 525 526 static StringRef removeGCCRegisterPrefix(StringRef Name) { 527 if (Name[0] == '%' || Name[0] == '#') 528 Name = Name.substr(1); 529 530 return Name; 531 } 532 533 /// isValidClobber - Returns whether the passed in string is 534 /// a valid clobber in an inline asm statement. This is used by 535 /// Sema. 536 bool TargetInfo::isValidClobber(StringRef Name) const { 537 return (isValidGCCRegisterName(Name) || Name == "memory" || Name == "cc" || 538 Name == "unwind"); 539 } 540 541 /// isValidGCCRegisterName - Returns whether the passed in string 542 /// is a valid register name according to GCC. This is used by Sema for 543 /// inline asm statements. 544 bool TargetInfo::isValidGCCRegisterName(StringRef Name) const { 545 if (Name.empty()) 546 return false; 547 548 // Get rid of any register prefix. 549 Name = removeGCCRegisterPrefix(Name); 550 if (Name.empty()) 551 return false; 552 553 ArrayRef<const char *> Names = getGCCRegNames(); 554 555 // If we have a number it maps to an entry in the register name array. 556 if (isDigit(Name[0])) { 557 unsigned n; 558 if (!Name.getAsInteger(0, n)) 559 return n < Names.size(); 560 } 561 562 // Check register names. 563 if (llvm::is_contained(Names, Name)) 564 return true; 565 566 // Check any additional names that we have. 567 for (const AddlRegName &ARN : getGCCAddlRegNames()) 568 for (const char *AN : ARN.Names) { 569 if (!AN) 570 break; 571 // Make sure the register that the additional name is for is within 572 // the bounds of the register names from above. 573 if (AN == Name && ARN.RegNum < Names.size()) 574 return true; 575 } 576 577 // Now check aliases. 578 for (const GCCRegAlias &GRA : getGCCRegAliases()) 579 for (const char *A : GRA.Aliases) { 580 if (!A) 581 break; 582 if (A == Name) 583 return true; 584 } 585 586 return false; 587 } 588 589 StringRef TargetInfo::getNormalizedGCCRegisterName(StringRef Name, 590 bool ReturnCanonical) const { 591 assert(isValidGCCRegisterName(Name) && "Invalid register passed in"); 592 593 // Get rid of any register prefix. 594 Name = removeGCCRegisterPrefix(Name); 595 596 ArrayRef<const char *> Names = getGCCRegNames(); 597 598 // First, check if we have a number. 599 if (isDigit(Name[0])) { 600 unsigned n; 601 if (!Name.getAsInteger(0, n)) { 602 assert(n < Names.size() && "Out of bounds register number!"); 603 return Names[n]; 604 } 605 } 606 607 // Check any additional names that we have. 608 for (const AddlRegName &ARN : getGCCAddlRegNames()) 609 for (const char *AN : ARN.Names) { 610 if (!AN) 611 break; 612 // Make sure the register that the additional name is for is within 613 // the bounds of the register names from above. 614 if (AN == Name && ARN.RegNum < Names.size()) 615 return ReturnCanonical ? Names[ARN.RegNum] : Name; 616 } 617 618 // Now check aliases. 619 for (const GCCRegAlias &RA : getGCCRegAliases()) 620 for (const char *A : RA.Aliases) { 621 if (!A) 622 break; 623 if (A == Name) 624 return RA.Register; 625 } 626 627 return Name; 628 } 629 630 bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const { 631 const char *Name = Info.getConstraintStr().c_str(); 632 // An output constraint must start with '=' or '+' 633 if (*Name != '=' && *Name != '+') 634 return false; 635 636 if (*Name == '+') 637 Info.setIsReadWrite(); 638 639 Name++; 640 while (*Name) { 641 switch (*Name) { 642 default: 643 if (!validateAsmConstraint(Name, Info)) { 644 // FIXME: We temporarily return false 645 // so we can add more constraints as we hit it. 646 // Eventually, an unknown constraint should just be treated as 'g'. 647 return false; 648 } 649 break; 650 case '&': // early clobber. 651 Info.setEarlyClobber(); 652 break; 653 case '%': // commutative. 654 // FIXME: Check that there is a another register after this one. 655 break; 656 case 'r': // general register. 657 Info.setAllowsRegister(); 658 break; 659 case 'm': // memory operand. 660 case 'o': // offsetable memory operand. 661 case 'V': // non-offsetable memory operand. 662 case '<': // autodecrement memory operand. 663 case '>': // autoincrement memory operand. 664 Info.setAllowsMemory(); 665 break; 666 case 'g': // general register, memory operand or immediate integer. 667 case 'X': // any operand. 668 Info.setAllowsRegister(); 669 Info.setAllowsMemory(); 670 break; 671 case ',': // multiple alternative constraint. Pass it. 672 // Handle additional optional '=' or '+' modifiers. 673 if (Name[1] == '=' || Name[1] == '+') 674 Name++; 675 break; 676 case '#': // Ignore as constraint. 677 while (Name[1] && Name[1] != ',') 678 Name++; 679 break; 680 case '?': // Disparage slightly code. 681 case '!': // Disparage severely. 682 case '*': // Ignore for choosing register preferences. 683 case 'i': // Ignore i,n,E,F as output constraints (match from the other 684 // chars) 685 case 'n': 686 case 'E': 687 case 'F': 688 break; // Pass them. 689 } 690 691 Name++; 692 } 693 694 // Early clobber with a read-write constraint which doesn't permit registers 695 // is invalid. 696 if (Info.earlyClobber() && Info.isReadWrite() && !Info.allowsRegister()) 697 return false; 698 699 // If a constraint allows neither memory nor register operands it contains 700 // only modifiers. Reject it. 701 return Info.allowsMemory() || Info.allowsRegister(); 702 } 703 704 bool TargetInfo::resolveSymbolicName(const char *&Name, 705 ArrayRef<ConstraintInfo> OutputConstraints, 706 unsigned &Index) const { 707 assert(*Name == '[' && "Symbolic name did not start with '['"); 708 Name++; 709 const char *Start = Name; 710 while (*Name && *Name != ']') 711 Name++; 712 713 if (!*Name) { 714 // Missing ']' 715 return false; 716 } 717 718 std::string SymbolicName(Start, Name - Start); 719 720 for (Index = 0; Index != OutputConstraints.size(); ++Index) 721 if (SymbolicName == OutputConstraints[Index].getName()) 722 return true; 723 724 return false; 725 } 726 727 bool TargetInfo::validateInputConstraint( 728 MutableArrayRef<ConstraintInfo> OutputConstraints, 729 ConstraintInfo &Info) const { 730 const char *Name = Info.ConstraintStr.c_str(); 731 732 if (!*Name) 733 return false; 734 735 while (*Name) { 736 switch (*Name) { 737 default: 738 // Check if we have a matching constraint 739 if (*Name >= '0' && *Name <= '9') { 740 const char *DigitStart = Name; 741 while (Name[1] >= '0' && Name[1] <= '9') 742 Name++; 743 const char *DigitEnd = Name; 744 unsigned i; 745 if (StringRef(DigitStart, DigitEnd - DigitStart + 1) 746 .getAsInteger(10, i)) 747 return false; 748 749 // Check if matching constraint is out of bounds. 750 if (i >= OutputConstraints.size()) return false; 751 752 // A number must refer to an output only operand. 753 if (OutputConstraints[i].isReadWrite()) 754 return false; 755 756 // If the constraint is already tied, it must be tied to the 757 // same operand referenced to by the number. 758 if (Info.hasTiedOperand() && Info.getTiedOperand() != i) 759 return false; 760 761 // The constraint should have the same info as the respective 762 // output constraint. 763 Info.setTiedOperand(i, OutputConstraints[i]); 764 } else if (!validateAsmConstraint(Name, Info)) { 765 // FIXME: This error return is in place temporarily so we can 766 // add more constraints as we hit it. Eventually, an unknown 767 // constraint should just be treated as 'g'. 768 return false; 769 } 770 break; 771 case '[': { 772 unsigned Index = 0; 773 if (!resolveSymbolicName(Name, OutputConstraints, Index)) 774 return false; 775 776 // If the constraint is already tied, it must be tied to the 777 // same operand referenced to by the number. 778 if (Info.hasTiedOperand() && Info.getTiedOperand() != Index) 779 return false; 780 781 // A number must refer to an output only operand. 782 if (OutputConstraints[Index].isReadWrite()) 783 return false; 784 785 Info.setTiedOperand(Index, OutputConstraints[Index]); 786 break; 787 } 788 case '%': // commutative 789 // FIXME: Fail if % is used with the last operand. 790 break; 791 case 'i': // immediate integer. 792 break; 793 case 'n': // immediate integer with a known value. 794 Info.setRequiresImmediate(); 795 break; 796 case 'I': // Various constant constraints with target-specific meanings. 797 case 'J': 798 case 'K': 799 case 'L': 800 case 'M': 801 case 'N': 802 case 'O': 803 case 'P': 804 if (!validateAsmConstraint(Name, Info)) 805 return false; 806 break; 807 case 'r': // general register. 808 Info.setAllowsRegister(); 809 break; 810 case 'm': // memory operand. 811 case 'o': // offsettable memory operand. 812 case 'V': // non-offsettable memory operand. 813 case '<': // autodecrement memory operand. 814 case '>': // autoincrement memory operand. 815 Info.setAllowsMemory(); 816 break; 817 case 'g': // general register, memory operand or immediate integer. 818 case 'X': // any operand. 819 Info.setAllowsRegister(); 820 Info.setAllowsMemory(); 821 break; 822 case 'E': // immediate floating point. 823 case 'F': // immediate floating point. 824 case 'p': // address operand. 825 break; 826 case ',': // multiple alternative constraint. Ignore comma. 827 break; 828 case '#': // Ignore as constraint. 829 while (Name[1] && Name[1] != ',') 830 Name++; 831 break; 832 case '?': // Disparage slightly code. 833 case '!': // Disparage severely. 834 case '*': // Ignore for choosing register preferences. 835 break; // Pass them. 836 } 837 838 Name++; 839 } 840 841 return true; 842 } 843 844 void TargetInfo::CheckFixedPointBits() const { 845 // Check that the number of fractional and integral bits (and maybe sign) can 846 // fit into the bits given for a fixed point type. 847 assert(ShortAccumScale + getShortAccumIBits() + 1 <= ShortAccumWidth); 848 assert(AccumScale + getAccumIBits() + 1 <= AccumWidth); 849 assert(LongAccumScale + getLongAccumIBits() + 1 <= LongAccumWidth); 850 assert(getUnsignedShortAccumScale() + getUnsignedShortAccumIBits() <= 851 ShortAccumWidth); 852 assert(getUnsignedAccumScale() + getUnsignedAccumIBits() <= AccumWidth); 853 assert(getUnsignedLongAccumScale() + getUnsignedLongAccumIBits() <= 854 LongAccumWidth); 855 856 assert(getShortFractScale() + 1 <= ShortFractWidth); 857 assert(getFractScale() + 1 <= FractWidth); 858 assert(getLongFractScale() + 1 <= LongFractWidth); 859 assert(getUnsignedShortFractScale() <= ShortFractWidth); 860 assert(getUnsignedFractScale() <= FractWidth); 861 assert(getUnsignedLongFractScale() <= LongFractWidth); 862 863 // Each unsigned fract type has either the same number of fractional bits 864 // as, or one more fractional bit than, its corresponding signed fract type. 865 assert(getShortFractScale() == getUnsignedShortFractScale() || 866 getShortFractScale() == getUnsignedShortFractScale() - 1); 867 assert(getFractScale() == getUnsignedFractScale() || 868 getFractScale() == getUnsignedFractScale() - 1); 869 assert(getLongFractScale() == getUnsignedLongFractScale() || 870 getLongFractScale() == getUnsignedLongFractScale() - 1); 871 872 // When arranged in order of increasing rank (see 6.3.1.3a), the number of 873 // fractional bits is nondecreasing for each of the following sets of 874 // fixed-point types: 875 // - signed fract types 876 // - unsigned fract types 877 // - signed accum types 878 // - unsigned accum types. 879 assert(getLongFractScale() >= getFractScale() && 880 getFractScale() >= getShortFractScale()); 881 assert(getUnsignedLongFractScale() >= getUnsignedFractScale() && 882 getUnsignedFractScale() >= getUnsignedShortFractScale()); 883 assert(LongAccumScale >= AccumScale && AccumScale >= ShortAccumScale); 884 assert(getUnsignedLongAccumScale() >= getUnsignedAccumScale() && 885 getUnsignedAccumScale() >= getUnsignedShortAccumScale()); 886 887 // When arranged in order of increasing rank (see 6.3.1.3a), the number of 888 // integral bits is nondecreasing for each of the following sets of 889 // fixed-point types: 890 // - signed accum types 891 // - unsigned accum types 892 assert(getLongAccumIBits() >= getAccumIBits() && 893 getAccumIBits() >= getShortAccumIBits()); 894 assert(getUnsignedLongAccumIBits() >= getUnsignedAccumIBits() && 895 getUnsignedAccumIBits() >= getUnsignedShortAccumIBits()); 896 897 // Each signed accum type has at least as many integral bits as its 898 // corresponding unsigned accum type. 899 assert(getShortAccumIBits() >= getUnsignedShortAccumIBits()); 900 assert(getAccumIBits() >= getUnsignedAccumIBits()); 901 assert(getLongAccumIBits() >= getUnsignedLongAccumIBits()); 902 } 903 904 void TargetInfo::copyAuxTarget(const TargetInfo *Aux) { 905 auto *Target = static_cast<TransferrableTargetInfo*>(this); 906 auto *Src = static_cast<const TransferrableTargetInfo*>(Aux); 907 *Target = *Src; 908 } 909