1 //===--- TargetInfo.cpp - Information about Target machine ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the TargetInfo and TargetInfoImpl interfaces. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Basic/TargetInfo.h" 14 #include "clang/Basic/AddressSpaces.h" 15 #include "clang/Basic/CharInfo.h" 16 #include "clang/Basic/Diagnostic.h" 17 #include "clang/Basic/LangOptions.h" 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/Support/TargetParser.h" 23 #include <cstdlib> 24 using namespace clang; 25 26 static const LangASMap DefaultAddrSpaceMap = {0}; 27 28 // TargetInfo Constructor. 29 TargetInfo::TargetInfo(const llvm::Triple &T) : TargetOpts(), Triple(T) { 30 // Set defaults. Defaults are set for a 32-bit RISC platform, like PPC or 31 // SPARC. These should be overridden by concrete targets as needed. 32 BigEndian = !T.isLittleEndian(); 33 TLSSupported = true; 34 VLASupported = true; 35 NoAsmVariants = false; 36 HasLegalHalfType = false; 37 HasFloat128 = false; 38 HasFloat16 = false; 39 HasBFloat16 = false; 40 HasStrictFP = false; 41 PointerWidth = PointerAlign = 32; 42 BoolWidth = BoolAlign = 8; 43 IntWidth = IntAlign = 32; 44 LongWidth = LongAlign = 32; 45 LongLongWidth = LongLongAlign = 64; 46 47 // Fixed point default bit widths 48 ShortAccumWidth = ShortAccumAlign = 16; 49 AccumWidth = AccumAlign = 32; 50 LongAccumWidth = LongAccumAlign = 64; 51 ShortFractWidth = ShortFractAlign = 8; 52 FractWidth = FractAlign = 16; 53 LongFractWidth = LongFractAlign = 32; 54 55 // Fixed point default integral and fractional bit sizes 56 // We give the _Accum 1 fewer fractional bits than their corresponding _Fract 57 // types by default to have the same number of fractional bits between _Accum 58 // and _Fract types. 59 PaddingOnUnsignedFixedPoint = false; 60 ShortAccumScale = 7; 61 AccumScale = 15; 62 LongAccumScale = 31; 63 64 SuitableAlign = 64; 65 DefaultAlignForAttributeAligned = 128; 66 MinGlobalAlign = 0; 67 // From the glibc documentation, on GNU systems, malloc guarantees 16-byte 68 // alignment on 64-bit systems and 8-byte alignment on 32-bit systems. See 69 // https://www.gnu.org/software/libc/manual/html_node/Malloc-Examples.html. 70 // This alignment guarantee also applies to Windows and Android. On Darwin, 71 // the alignment is 16 bytes on both 64-bit and 32-bit systems. 72 if (T.isGNUEnvironment() || T.isWindowsMSVCEnvironment() || T.isAndroid()) 73 NewAlign = Triple.isArch64Bit() ? 128 : Triple.isArch32Bit() ? 64 : 0; 74 else if (T.isOSDarwin()) 75 NewAlign = 128; 76 else 77 NewAlign = 0; // Infer from basic type alignment. 78 HalfWidth = 16; 79 HalfAlign = 16; 80 FloatWidth = 32; 81 FloatAlign = 32; 82 DoubleWidth = 64; 83 DoubleAlign = 64; 84 LongDoubleWidth = 64; 85 LongDoubleAlign = 64; 86 Float128Align = 128; 87 LargeArrayMinWidth = 0; 88 LargeArrayAlign = 0; 89 MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0; 90 MaxVectorAlign = 0; 91 MaxTLSAlign = 0; 92 SimdDefaultAlign = 0; 93 SizeType = UnsignedLong; 94 PtrDiffType = SignedLong; 95 IntMaxType = SignedLongLong; 96 IntPtrType = SignedLong; 97 WCharType = SignedInt; 98 WIntType = SignedInt; 99 Char16Type = UnsignedShort; 100 Char32Type = UnsignedInt; 101 Int64Type = SignedLongLong; 102 SigAtomicType = SignedInt; 103 ProcessIDType = SignedInt; 104 UseSignedCharForObjCBool = true; 105 UseBitFieldTypeAlignment = true; 106 UseZeroLengthBitfieldAlignment = false; 107 UseExplicitBitFieldAlignment = true; 108 ZeroLengthBitfieldBoundary = 0; 109 HalfFormat = &llvm::APFloat::IEEEhalf(); 110 FloatFormat = &llvm::APFloat::IEEEsingle(); 111 DoubleFormat = &llvm::APFloat::IEEEdouble(); 112 LongDoubleFormat = &llvm::APFloat::IEEEdouble(); 113 Float128Format = &llvm::APFloat::IEEEquad(); 114 MCountName = "mcount"; 115 RegParmMax = 0; 116 SSERegParmMax = 0; 117 HasAlignMac68kSupport = false; 118 HasBuiltinMSVaList = false; 119 IsRenderScriptTarget = false; 120 HasAArch64SVETypes = false; 121 AllowAMDGPUUnsafeFPAtomics = false; 122 ARMCDECoprocMask = 0; 123 124 // Default to no types using fpret. 125 RealTypeUsesObjCFPRet = 0; 126 127 // Default to not using fp2ret for __Complex long double 128 ComplexLongDoubleUsesFP2Ret = false; 129 130 // Set the C++ ABI based on the triple. 131 TheCXXABI.set(Triple.isKnownWindowsMSVCEnvironment() 132 ? TargetCXXABI::Microsoft 133 : TargetCXXABI::GenericItanium); 134 135 // Default to an empty address space map. 136 AddrSpaceMap = &DefaultAddrSpaceMap; 137 UseAddrSpaceMapMangling = false; 138 139 // Default to an unknown platform name. 140 PlatformName = "unknown"; 141 PlatformMinVersion = VersionTuple(); 142 143 MaxOpenCLWorkGroupSize = 1024; 144 } 145 146 // Out of line virtual dtor for TargetInfo. 147 TargetInfo::~TargetInfo() {} 148 149 void TargetInfo::resetDataLayout(StringRef DL) { 150 DataLayout.reset(new llvm::DataLayout(DL)); 151 } 152 153 bool 154 TargetInfo::checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const { 155 Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=branch"; 156 return false; 157 } 158 159 bool 160 TargetInfo::checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const { 161 Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=return"; 162 return false; 163 } 164 165 /// getTypeName - Return the user string for the specified integer type enum. 166 /// For example, SignedShort -> "short". 167 const char *TargetInfo::getTypeName(IntType T) { 168 switch (T) { 169 default: llvm_unreachable("not an integer!"); 170 case SignedChar: return "signed char"; 171 case UnsignedChar: return "unsigned char"; 172 case SignedShort: return "short"; 173 case UnsignedShort: return "unsigned short"; 174 case SignedInt: return "int"; 175 case UnsignedInt: return "unsigned int"; 176 case SignedLong: return "long int"; 177 case UnsignedLong: return "long unsigned int"; 178 case SignedLongLong: return "long long int"; 179 case UnsignedLongLong: return "long long unsigned int"; 180 } 181 } 182 183 /// getTypeConstantSuffix - Return the constant suffix for the specified 184 /// integer type enum. For example, SignedLong -> "L". 185 const char *TargetInfo::getTypeConstantSuffix(IntType T) const { 186 switch (T) { 187 default: llvm_unreachable("not an integer!"); 188 case SignedChar: 189 case SignedShort: 190 case SignedInt: return ""; 191 case SignedLong: return "L"; 192 case SignedLongLong: return "LL"; 193 case UnsignedChar: 194 if (getCharWidth() < getIntWidth()) 195 return ""; 196 LLVM_FALLTHROUGH; 197 case UnsignedShort: 198 if (getShortWidth() < getIntWidth()) 199 return ""; 200 LLVM_FALLTHROUGH; 201 case UnsignedInt: return "U"; 202 case UnsignedLong: return "UL"; 203 case UnsignedLongLong: return "ULL"; 204 } 205 } 206 207 /// getTypeFormatModifier - Return the printf format modifier for the 208 /// specified integer type enum. For example, SignedLong -> "l". 209 210 const char *TargetInfo::getTypeFormatModifier(IntType T) { 211 switch (T) { 212 default: llvm_unreachable("not an integer!"); 213 case SignedChar: 214 case UnsignedChar: return "hh"; 215 case SignedShort: 216 case UnsignedShort: return "h"; 217 case SignedInt: 218 case UnsignedInt: return ""; 219 case SignedLong: 220 case UnsignedLong: return "l"; 221 case SignedLongLong: 222 case UnsignedLongLong: return "ll"; 223 } 224 } 225 226 /// getTypeWidth - Return the width (in bits) of the specified integer type 227 /// enum. For example, SignedInt -> getIntWidth(). 228 unsigned TargetInfo::getTypeWidth(IntType T) const { 229 switch (T) { 230 default: llvm_unreachable("not an integer!"); 231 case SignedChar: 232 case UnsignedChar: return getCharWidth(); 233 case SignedShort: 234 case UnsignedShort: return getShortWidth(); 235 case SignedInt: 236 case UnsignedInt: return getIntWidth(); 237 case SignedLong: 238 case UnsignedLong: return getLongWidth(); 239 case SignedLongLong: 240 case UnsignedLongLong: return getLongLongWidth(); 241 }; 242 } 243 244 TargetInfo::IntType TargetInfo::getIntTypeByWidth( 245 unsigned BitWidth, bool IsSigned) const { 246 if (getCharWidth() == BitWidth) 247 return IsSigned ? SignedChar : UnsignedChar; 248 if (getShortWidth() == BitWidth) 249 return IsSigned ? SignedShort : UnsignedShort; 250 if (getIntWidth() == BitWidth) 251 return IsSigned ? SignedInt : UnsignedInt; 252 if (getLongWidth() == BitWidth) 253 return IsSigned ? SignedLong : UnsignedLong; 254 if (getLongLongWidth() == BitWidth) 255 return IsSigned ? SignedLongLong : UnsignedLongLong; 256 return NoInt; 257 } 258 259 TargetInfo::IntType TargetInfo::getLeastIntTypeByWidth(unsigned BitWidth, 260 bool IsSigned) const { 261 if (getCharWidth() >= BitWidth) 262 return IsSigned ? SignedChar : UnsignedChar; 263 if (getShortWidth() >= BitWidth) 264 return IsSigned ? SignedShort : UnsignedShort; 265 if (getIntWidth() >= BitWidth) 266 return IsSigned ? SignedInt : UnsignedInt; 267 if (getLongWidth() >= BitWidth) 268 return IsSigned ? SignedLong : UnsignedLong; 269 if (getLongLongWidth() >= BitWidth) 270 return IsSigned ? SignedLongLong : UnsignedLongLong; 271 return NoInt; 272 } 273 274 TargetInfo::RealType TargetInfo::getRealTypeByWidth(unsigned BitWidth, 275 bool ExplicitIEEE) const { 276 if (getFloatWidth() == BitWidth) 277 return Float; 278 if (getDoubleWidth() == BitWidth) 279 return Double; 280 281 switch (BitWidth) { 282 case 96: 283 if (&getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended()) 284 return LongDouble; 285 break; 286 case 128: 287 // The caller explicitly asked for an IEEE compliant type but we still 288 // have to check if the target supports it. 289 if (ExplicitIEEE) 290 return hasFloat128Type() ? Float128 : NoFloat; 291 if (&getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble() || 292 &getLongDoubleFormat() == &llvm::APFloat::IEEEquad()) 293 return LongDouble; 294 if (hasFloat128Type()) 295 return Float128; 296 break; 297 } 298 299 return NoFloat; 300 } 301 302 /// getTypeAlign - Return the alignment (in bits) of the specified integer type 303 /// enum. For example, SignedInt -> getIntAlign(). 304 unsigned TargetInfo::getTypeAlign(IntType T) const { 305 switch (T) { 306 default: llvm_unreachable("not an integer!"); 307 case SignedChar: 308 case UnsignedChar: return getCharAlign(); 309 case SignedShort: 310 case UnsignedShort: return getShortAlign(); 311 case SignedInt: 312 case UnsignedInt: return getIntAlign(); 313 case SignedLong: 314 case UnsignedLong: return getLongAlign(); 315 case SignedLongLong: 316 case UnsignedLongLong: return getLongLongAlign(); 317 }; 318 } 319 320 /// isTypeSigned - Return whether an integer types is signed. Returns true if 321 /// the type is signed; false otherwise. 322 bool TargetInfo::isTypeSigned(IntType T) { 323 switch (T) { 324 default: llvm_unreachable("not an integer!"); 325 case SignedChar: 326 case SignedShort: 327 case SignedInt: 328 case SignedLong: 329 case SignedLongLong: 330 return true; 331 case UnsignedChar: 332 case UnsignedShort: 333 case UnsignedInt: 334 case UnsignedLong: 335 case UnsignedLongLong: 336 return false; 337 }; 338 } 339 340 /// adjust - Set forced language options. 341 /// Apply changes to the target information with respect to certain 342 /// language options which change the target configuration and adjust 343 /// the language based on the target options where applicable. 344 void TargetInfo::adjust(LangOptions &Opts) { 345 if (Opts.NoBitFieldTypeAlign) 346 UseBitFieldTypeAlignment = false; 347 348 switch (Opts.WCharSize) { 349 default: llvm_unreachable("invalid wchar_t width"); 350 case 0: break; 351 case 1: WCharType = Opts.WCharIsSigned ? SignedChar : UnsignedChar; break; 352 case 2: WCharType = Opts.WCharIsSigned ? SignedShort : UnsignedShort; break; 353 case 4: WCharType = Opts.WCharIsSigned ? SignedInt : UnsignedInt; break; 354 } 355 356 if (Opts.AlignDouble) { 357 DoubleAlign = LongLongAlign = 64; 358 LongDoubleAlign = 64; 359 } 360 361 if (Opts.OpenCL) { 362 // OpenCL C requires specific widths for types, irrespective of 363 // what these normally are for the target. 364 // We also define long long and long double here, although the 365 // OpenCL standard only mentions these as "reserved". 366 IntWidth = IntAlign = 32; 367 LongWidth = LongAlign = 64; 368 LongLongWidth = LongLongAlign = 128; 369 HalfWidth = HalfAlign = 16; 370 FloatWidth = FloatAlign = 32; 371 372 // Embedded 32-bit targets (OpenCL EP) might have double C type 373 // defined as float. Let's not override this as it might lead 374 // to generating illegal code that uses 64bit doubles. 375 if (DoubleWidth != FloatWidth) { 376 DoubleWidth = DoubleAlign = 64; 377 DoubleFormat = &llvm::APFloat::IEEEdouble(); 378 } 379 LongDoubleWidth = LongDoubleAlign = 128; 380 381 unsigned MaxPointerWidth = getMaxPointerWidth(); 382 assert(MaxPointerWidth == 32 || MaxPointerWidth == 64); 383 bool Is32BitArch = MaxPointerWidth == 32; 384 SizeType = Is32BitArch ? UnsignedInt : UnsignedLong; 385 PtrDiffType = Is32BitArch ? SignedInt : SignedLong; 386 IntPtrType = Is32BitArch ? SignedInt : SignedLong; 387 388 IntMaxType = SignedLongLong; 389 Int64Type = SignedLong; 390 391 HalfFormat = &llvm::APFloat::IEEEhalf(); 392 FloatFormat = &llvm::APFloat::IEEEsingle(); 393 LongDoubleFormat = &llvm::APFloat::IEEEquad(); 394 } 395 396 if (Opts.DoubleSize) { 397 if (Opts.DoubleSize == 32) { 398 DoubleWidth = 32; 399 LongDoubleWidth = 32; 400 DoubleFormat = &llvm::APFloat::IEEEsingle(); 401 LongDoubleFormat = &llvm::APFloat::IEEEsingle(); 402 } else if (Opts.DoubleSize == 64) { 403 DoubleWidth = 64; 404 LongDoubleWidth = 64; 405 DoubleFormat = &llvm::APFloat::IEEEdouble(); 406 LongDoubleFormat = &llvm::APFloat::IEEEdouble(); 407 } 408 } 409 410 if (Opts.LongDoubleSize) { 411 if (Opts.LongDoubleSize == DoubleWidth) { 412 LongDoubleWidth = DoubleWidth; 413 LongDoubleAlign = DoubleAlign; 414 LongDoubleFormat = DoubleFormat; 415 } else if (Opts.LongDoubleSize == 128) { 416 LongDoubleWidth = LongDoubleAlign = 128; 417 LongDoubleFormat = &llvm::APFloat::IEEEquad(); 418 } 419 } 420 421 if (Opts.NewAlignOverride) 422 NewAlign = Opts.NewAlignOverride * getCharWidth(); 423 424 // Each unsigned fixed point type has the same number of fractional bits as 425 // its corresponding signed type. 426 PaddingOnUnsignedFixedPoint |= Opts.PaddingOnUnsignedFixedPoint; 427 CheckFixedPointBits(); 428 } 429 430 bool TargetInfo::initFeatureMap( 431 llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU, 432 const std::vector<std::string> &FeatureVec) const { 433 for (const auto &F : FeatureVec) { 434 StringRef Name = F; 435 // Apply the feature via the target. 436 bool Enabled = Name[0] == '+'; 437 setFeatureEnabled(Features, Name.substr(1), Enabled); 438 } 439 return true; 440 } 441 442 TargetInfo::CallingConvKind 443 TargetInfo::getCallingConvKind(bool ClangABICompat4) const { 444 if (getCXXABI() != TargetCXXABI::Microsoft && 445 (ClangABICompat4 || getTriple().getOS() == llvm::Triple::PS4)) 446 return CCK_ClangABI4OrPS4; 447 return CCK_Default; 448 } 449 450 LangAS TargetInfo::getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const { 451 switch (TK) { 452 case OCLTK_Image: 453 case OCLTK_Pipe: 454 return LangAS::opencl_global; 455 456 case OCLTK_Sampler: 457 return LangAS::opencl_constant; 458 459 default: 460 return LangAS::Default; 461 } 462 } 463 464 //===----------------------------------------------------------------------===// 465 466 467 static StringRef removeGCCRegisterPrefix(StringRef Name) { 468 if (Name[0] == '%' || Name[0] == '#') 469 Name = Name.substr(1); 470 471 return Name; 472 } 473 474 /// isValidClobber - Returns whether the passed in string is 475 /// a valid clobber in an inline asm statement. This is used by 476 /// Sema. 477 bool TargetInfo::isValidClobber(StringRef Name) const { 478 return (isValidGCCRegisterName(Name) || 479 Name == "memory" || Name == "cc"); 480 } 481 482 /// isValidGCCRegisterName - Returns whether the passed in string 483 /// is a valid register name according to GCC. This is used by Sema for 484 /// inline asm statements. 485 bool TargetInfo::isValidGCCRegisterName(StringRef Name) const { 486 if (Name.empty()) 487 return false; 488 489 // Get rid of any register prefix. 490 Name = removeGCCRegisterPrefix(Name); 491 if (Name.empty()) 492 return false; 493 494 ArrayRef<const char *> Names = getGCCRegNames(); 495 496 // If we have a number it maps to an entry in the register name array. 497 if (isDigit(Name[0])) { 498 unsigned n; 499 if (!Name.getAsInteger(0, n)) 500 return n < Names.size(); 501 } 502 503 // Check register names. 504 if (llvm::is_contained(Names, Name)) 505 return true; 506 507 // Check any additional names that we have. 508 for (const AddlRegName &ARN : getGCCAddlRegNames()) 509 for (const char *AN : ARN.Names) { 510 if (!AN) 511 break; 512 // Make sure the register that the additional name is for is within 513 // the bounds of the register names from above. 514 if (AN == Name && ARN.RegNum < Names.size()) 515 return true; 516 } 517 518 // Now check aliases. 519 for (const GCCRegAlias &GRA : getGCCRegAliases()) 520 for (const char *A : GRA.Aliases) { 521 if (!A) 522 break; 523 if (A == Name) 524 return true; 525 } 526 527 return false; 528 } 529 530 StringRef TargetInfo::getNormalizedGCCRegisterName(StringRef Name, 531 bool ReturnCanonical) const { 532 assert(isValidGCCRegisterName(Name) && "Invalid register passed in"); 533 534 // Get rid of any register prefix. 535 Name = removeGCCRegisterPrefix(Name); 536 537 ArrayRef<const char *> Names = getGCCRegNames(); 538 539 // First, check if we have a number. 540 if (isDigit(Name[0])) { 541 unsigned n; 542 if (!Name.getAsInteger(0, n)) { 543 assert(n < Names.size() && "Out of bounds register number!"); 544 return Names[n]; 545 } 546 } 547 548 // Check any additional names that we have. 549 for (const AddlRegName &ARN : getGCCAddlRegNames()) 550 for (const char *AN : ARN.Names) { 551 if (!AN) 552 break; 553 // Make sure the register that the additional name is for is within 554 // the bounds of the register names from above. 555 if (AN == Name && ARN.RegNum < Names.size()) 556 return ReturnCanonical ? Names[ARN.RegNum] : Name; 557 } 558 559 // Now check aliases. 560 for (const GCCRegAlias &RA : getGCCRegAliases()) 561 for (const char *A : RA.Aliases) { 562 if (!A) 563 break; 564 if (A == Name) 565 return RA.Register; 566 } 567 568 return Name; 569 } 570 571 bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const { 572 const char *Name = Info.getConstraintStr().c_str(); 573 // An output constraint must start with '=' or '+' 574 if (*Name != '=' && *Name != '+') 575 return false; 576 577 if (*Name == '+') 578 Info.setIsReadWrite(); 579 580 Name++; 581 while (*Name) { 582 switch (*Name) { 583 default: 584 if (!validateAsmConstraint(Name, Info)) { 585 // FIXME: We temporarily return false 586 // so we can add more constraints as we hit it. 587 // Eventually, an unknown constraint should just be treated as 'g'. 588 return false; 589 } 590 break; 591 case '&': // early clobber. 592 Info.setEarlyClobber(); 593 break; 594 case '%': // commutative. 595 // FIXME: Check that there is a another register after this one. 596 break; 597 case 'r': // general register. 598 Info.setAllowsRegister(); 599 break; 600 case 'm': // memory operand. 601 case 'o': // offsetable memory operand. 602 case 'V': // non-offsetable memory operand. 603 case '<': // autodecrement memory operand. 604 case '>': // autoincrement memory operand. 605 Info.setAllowsMemory(); 606 break; 607 case 'g': // general register, memory operand or immediate integer. 608 case 'X': // any operand. 609 Info.setAllowsRegister(); 610 Info.setAllowsMemory(); 611 break; 612 case ',': // multiple alternative constraint. Pass it. 613 // Handle additional optional '=' or '+' modifiers. 614 if (Name[1] == '=' || Name[1] == '+') 615 Name++; 616 break; 617 case '#': // Ignore as constraint. 618 while (Name[1] && Name[1] != ',') 619 Name++; 620 break; 621 case '?': // Disparage slightly code. 622 case '!': // Disparage severely. 623 case '*': // Ignore for choosing register preferences. 624 case 'i': // Ignore i,n,E,F as output constraints (match from the other 625 // chars) 626 case 'n': 627 case 'E': 628 case 'F': 629 break; // Pass them. 630 } 631 632 Name++; 633 } 634 635 // Early clobber with a read-write constraint which doesn't permit registers 636 // is invalid. 637 if (Info.earlyClobber() && Info.isReadWrite() && !Info.allowsRegister()) 638 return false; 639 640 // If a constraint allows neither memory nor register operands it contains 641 // only modifiers. Reject it. 642 return Info.allowsMemory() || Info.allowsRegister(); 643 } 644 645 bool TargetInfo::resolveSymbolicName(const char *&Name, 646 ArrayRef<ConstraintInfo> OutputConstraints, 647 unsigned &Index) const { 648 assert(*Name == '[' && "Symbolic name did not start with '['"); 649 Name++; 650 const char *Start = Name; 651 while (*Name && *Name != ']') 652 Name++; 653 654 if (!*Name) { 655 // Missing ']' 656 return false; 657 } 658 659 std::string SymbolicName(Start, Name - Start); 660 661 for (Index = 0; Index != OutputConstraints.size(); ++Index) 662 if (SymbolicName == OutputConstraints[Index].getName()) 663 return true; 664 665 return false; 666 } 667 668 bool TargetInfo::validateInputConstraint( 669 MutableArrayRef<ConstraintInfo> OutputConstraints, 670 ConstraintInfo &Info) const { 671 const char *Name = Info.ConstraintStr.c_str(); 672 673 if (!*Name) 674 return false; 675 676 while (*Name) { 677 switch (*Name) { 678 default: 679 // Check if we have a matching constraint 680 if (*Name >= '0' && *Name <= '9') { 681 const char *DigitStart = Name; 682 while (Name[1] >= '0' && Name[1] <= '9') 683 Name++; 684 const char *DigitEnd = Name; 685 unsigned i; 686 if (StringRef(DigitStart, DigitEnd - DigitStart + 1) 687 .getAsInteger(10, i)) 688 return false; 689 690 // Check if matching constraint is out of bounds. 691 if (i >= OutputConstraints.size()) return false; 692 693 // A number must refer to an output only operand. 694 if (OutputConstraints[i].isReadWrite()) 695 return false; 696 697 // If the constraint is already tied, it must be tied to the 698 // same operand referenced to by the number. 699 if (Info.hasTiedOperand() && Info.getTiedOperand() != i) 700 return false; 701 702 // The constraint should have the same info as the respective 703 // output constraint. 704 Info.setTiedOperand(i, OutputConstraints[i]); 705 } else if (!validateAsmConstraint(Name, Info)) { 706 // FIXME: This error return is in place temporarily so we can 707 // add more constraints as we hit it. Eventually, an unknown 708 // constraint should just be treated as 'g'. 709 return false; 710 } 711 break; 712 case '[': { 713 unsigned Index = 0; 714 if (!resolveSymbolicName(Name, OutputConstraints, Index)) 715 return false; 716 717 // If the constraint is already tied, it must be tied to the 718 // same operand referenced to by the number. 719 if (Info.hasTiedOperand() && Info.getTiedOperand() != Index) 720 return false; 721 722 // A number must refer to an output only operand. 723 if (OutputConstraints[Index].isReadWrite()) 724 return false; 725 726 Info.setTiedOperand(Index, OutputConstraints[Index]); 727 break; 728 } 729 case '%': // commutative 730 // FIXME: Fail if % is used with the last operand. 731 break; 732 case 'i': // immediate integer. 733 break; 734 case 'n': // immediate integer with a known value. 735 Info.setRequiresImmediate(); 736 break; 737 case 'I': // Various constant constraints with target-specific meanings. 738 case 'J': 739 case 'K': 740 case 'L': 741 case 'M': 742 case 'N': 743 case 'O': 744 case 'P': 745 if (!validateAsmConstraint(Name, Info)) 746 return false; 747 break; 748 case 'r': // general register. 749 Info.setAllowsRegister(); 750 break; 751 case 'm': // memory operand. 752 case 'o': // offsettable memory operand. 753 case 'V': // non-offsettable memory operand. 754 case '<': // autodecrement memory operand. 755 case '>': // autoincrement memory operand. 756 Info.setAllowsMemory(); 757 break; 758 case 'g': // general register, memory operand or immediate integer. 759 case 'X': // any operand. 760 Info.setAllowsRegister(); 761 Info.setAllowsMemory(); 762 break; 763 case 'E': // immediate floating point. 764 case 'F': // immediate floating point. 765 case 'p': // address operand. 766 break; 767 case ',': // multiple alternative constraint. Ignore comma. 768 break; 769 case '#': // Ignore as constraint. 770 while (Name[1] && Name[1] != ',') 771 Name++; 772 break; 773 case '?': // Disparage slightly code. 774 case '!': // Disparage severely. 775 case '*': // Ignore for choosing register preferences. 776 break; // Pass them. 777 } 778 779 Name++; 780 } 781 782 return true; 783 } 784 785 void TargetInfo::CheckFixedPointBits() const { 786 // Check that the number of fractional and integral bits (and maybe sign) can 787 // fit into the bits given for a fixed point type. 788 assert(ShortAccumScale + getShortAccumIBits() + 1 <= ShortAccumWidth); 789 assert(AccumScale + getAccumIBits() + 1 <= AccumWidth); 790 assert(LongAccumScale + getLongAccumIBits() + 1 <= LongAccumWidth); 791 assert(getUnsignedShortAccumScale() + getUnsignedShortAccumIBits() <= 792 ShortAccumWidth); 793 assert(getUnsignedAccumScale() + getUnsignedAccumIBits() <= AccumWidth); 794 assert(getUnsignedLongAccumScale() + getUnsignedLongAccumIBits() <= 795 LongAccumWidth); 796 797 assert(getShortFractScale() + 1 <= ShortFractWidth); 798 assert(getFractScale() + 1 <= FractWidth); 799 assert(getLongFractScale() + 1 <= LongFractWidth); 800 assert(getUnsignedShortFractScale() <= ShortFractWidth); 801 assert(getUnsignedFractScale() <= FractWidth); 802 assert(getUnsignedLongFractScale() <= LongFractWidth); 803 804 // Each unsigned fract type has either the same number of fractional bits 805 // as, or one more fractional bit than, its corresponding signed fract type. 806 assert(getShortFractScale() == getUnsignedShortFractScale() || 807 getShortFractScale() == getUnsignedShortFractScale() - 1); 808 assert(getFractScale() == getUnsignedFractScale() || 809 getFractScale() == getUnsignedFractScale() - 1); 810 assert(getLongFractScale() == getUnsignedLongFractScale() || 811 getLongFractScale() == getUnsignedLongFractScale() - 1); 812 813 // When arranged in order of increasing rank (see 6.3.1.3a), the number of 814 // fractional bits is nondecreasing for each of the following sets of 815 // fixed-point types: 816 // - signed fract types 817 // - unsigned fract types 818 // - signed accum types 819 // - unsigned accum types. 820 assert(getLongFractScale() >= getFractScale() && 821 getFractScale() >= getShortFractScale()); 822 assert(getUnsignedLongFractScale() >= getUnsignedFractScale() && 823 getUnsignedFractScale() >= getUnsignedShortFractScale()); 824 assert(LongAccumScale >= AccumScale && AccumScale >= ShortAccumScale); 825 assert(getUnsignedLongAccumScale() >= getUnsignedAccumScale() && 826 getUnsignedAccumScale() >= getUnsignedShortAccumScale()); 827 828 // When arranged in order of increasing rank (see 6.3.1.3a), the number of 829 // integral bits is nondecreasing for each of the following sets of 830 // fixed-point types: 831 // - signed accum types 832 // - unsigned accum types 833 assert(getLongAccumIBits() >= getAccumIBits() && 834 getAccumIBits() >= getShortAccumIBits()); 835 assert(getUnsignedLongAccumIBits() >= getUnsignedAccumIBits() && 836 getUnsignedAccumIBits() >= getUnsignedShortAccumIBits()); 837 838 // Each signed accum type has at least as many integral bits as its 839 // corresponding unsigned accum type. 840 assert(getShortAccumIBits() >= getUnsignedShortAccumIBits()); 841 assert(getAccumIBits() >= getUnsignedAccumIBits()); 842 assert(getLongAccumIBits() >= getUnsignedLongAccumIBits()); 843 } 844 845 void TargetInfo::copyAuxTarget(const TargetInfo *Aux) { 846 auto *Target = static_cast<TransferrableTargetInfo*>(this); 847 auto *Src = static_cast<const TransferrableTargetInfo*>(Aux); 848 *Target = *Src; 849 } 850