1 //===--- TargetInfo.cpp - Information about Target machine ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements the TargetInfo and TargetInfoImpl interfaces.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Basic/TargetInfo.h"
15 #include "clang/Basic/AddressSpaces.h"
16 #include "clang/Basic/CharInfo.h"
17 #include "clang/Basic/Diagnostic.h"
18 #include "clang/Basic/LangOptions.h"
19 #include "llvm/ADT/APFloat.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/TargetParser.h"
23 #include <cstdlib>
24 using namespace clang;
25 
26 static const LangASMap DefaultAddrSpaceMap = {0};
27 
28 // TargetInfo Constructor.
29 TargetInfo::TargetInfo(const llvm::Triple &T) : TargetOpts(), Triple(T) {
30   // Set defaults.  Defaults are set for a 32-bit RISC platform, like PPC or
31   // SPARC.  These should be overridden by concrete targets as needed.
32   BigEndian = !T.isLittleEndian();
33   TLSSupported = true;
34   VLASupported = true;
35   NoAsmVariants = false;
36   HasLegalHalfType = false;
37   HasFloat128 = false;
38   PointerWidth = PointerAlign = 32;
39   BoolWidth = BoolAlign = 8;
40   IntWidth = IntAlign = 32;
41   LongWidth = LongAlign = 32;
42   LongLongWidth = LongLongAlign = 64;
43 
44   // Fixed point default bit widths
45   ShortAccumWidth = ShortAccumAlign = 16;
46   AccumWidth = AccumAlign = 32;
47   LongAccumWidth = LongAccumAlign = 64;
48   ShortFractWidth = ShortFractAlign = 8;
49   FractWidth = FractAlign = 16;
50   LongFractWidth = LongFractAlign = 32;
51 
52   // Fixed point default integral and fractional bit sizes
53   // We give the _Accum 1 fewer fractional bits than their corresponding _Fract
54   // types by default to have the same number of fractional bits between _Accum
55   // and _Fract types.
56   PaddingOnUnsignedFixedPoint = false;
57   ShortAccumScale = 7;
58   AccumScale = 15;
59   LongAccumScale = 31;
60 
61   SuitableAlign = 64;
62   DefaultAlignForAttributeAligned = 128;
63   MinGlobalAlign = 0;
64   // From the glibc documentation, on GNU systems, malloc guarantees 16-byte
65   // alignment on 64-bit systems and 8-byte alignment on 32-bit systems. See
66   // https://www.gnu.org/software/libc/manual/html_node/Malloc-Examples.html.
67   // This alignment guarantee also applies to Windows and Android.
68   if (T.isGNUEnvironment() || T.isWindowsMSVCEnvironment() || T.isAndroid())
69     NewAlign = Triple.isArch64Bit() ? 128 : Triple.isArch32Bit() ? 64 : 0;
70   else
71     NewAlign = 0; // Infer from basic type alignment.
72   HalfWidth = 16;
73   HalfAlign = 16;
74   FloatWidth = 32;
75   FloatAlign = 32;
76   DoubleWidth = 64;
77   DoubleAlign = 64;
78   LongDoubleWidth = 64;
79   LongDoubleAlign = 64;
80   Float128Align = 128;
81   LargeArrayMinWidth = 0;
82   LargeArrayAlign = 0;
83   MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0;
84   MaxVectorAlign = 0;
85   MaxTLSAlign = 0;
86   SimdDefaultAlign = 0;
87   SizeType = UnsignedLong;
88   PtrDiffType = SignedLong;
89   IntMaxType = SignedLongLong;
90   IntPtrType = SignedLong;
91   WCharType = SignedInt;
92   WIntType = SignedInt;
93   Char16Type = UnsignedShort;
94   Char32Type = UnsignedInt;
95   Int64Type = SignedLongLong;
96   SigAtomicType = SignedInt;
97   ProcessIDType = SignedInt;
98   UseSignedCharForObjCBool = true;
99   UseBitFieldTypeAlignment = true;
100   UseZeroLengthBitfieldAlignment = false;
101   UseExplicitBitFieldAlignment = true;
102   ZeroLengthBitfieldBoundary = 0;
103   HalfFormat = &llvm::APFloat::IEEEhalf();
104   FloatFormat = &llvm::APFloat::IEEEsingle();
105   DoubleFormat = &llvm::APFloat::IEEEdouble();
106   LongDoubleFormat = &llvm::APFloat::IEEEdouble();
107   Float128Format = &llvm::APFloat::IEEEquad();
108   MCountName = "mcount";
109   RegParmMax = 0;
110   SSERegParmMax = 0;
111   HasAlignMac68kSupport = false;
112   HasBuiltinMSVaList = false;
113   IsRenderScriptTarget = false;
114 
115   // Default to no types using fpret.
116   RealTypeUsesObjCFPRet = 0;
117 
118   // Default to not using fp2ret for __Complex long double
119   ComplexLongDoubleUsesFP2Ret = false;
120 
121   // Set the C++ ABI based on the triple.
122   TheCXXABI.set(Triple.isKnownWindowsMSVCEnvironment()
123                     ? TargetCXXABI::Microsoft
124                     : TargetCXXABI::GenericItanium);
125 
126   // Default to an empty address space map.
127   AddrSpaceMap = &DefaultAddrSpaceMap;
128   UseAddrSpaceMapMangling = false;
129 
130   // Default to an unknown platform name.
131   PlatformName = "unknown";
132   PlatformMinVersion = VersionTuple();
133 }
134 
135 // Out of line virtual dtor for TargetInfo.
136 TargetInfo::~TargetInfo() {}
137 
138 bool
139 TargetInfo::checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const {
140   Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=branch";
141   return false;
142 }
143 
144 bool
145 TargetInfo::checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const {
146   Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=return";
147   return false;
148 }
149 
150 /// getTypeName - Return the user string for the specified integer type enum.
151 /// For example, SignedShort -> "short".
152 const char *TargetInfo::getTypeName(IntType T) {
153   switch (T) {
154   default: llvm_unreachable("not an integer!");
155   case SignedChar:       return "signed char";
156   case UnsignedChar:     return "unsigned char";
157   case SignedShort:      return "short";
158   case UnsignedShort:    return "unsigned short";
159   case SignedInt:        return "int";
160   case UnsignedInt:      return "unsigned int";
161   case SignedLong:       return "long int";
162   case UnsignedLong:     return "long unsigned int";
163   case SignedLongLong:   return "long long int";
164   case UnsignedLongLong: return "long long unsigned int";
165   }
166 }
167 
168 /// getTypeConstantSuffix - Return the constant suffix for the specified
169 /// integer type enum. For example, SignedLong -> "L".
170 const char *TargetInfo::getTypeConstantSuffix(IntType T) const {
171   switch (T) {
172   default: llvm_unreachable("not an integer!");
173   case SignedChar:
174   case SignedShort:
175   case SignedInt:        return "";
176   case SignedLong:       return "L";
177   case SignedLongLong:   return "LL";
178   case UnsignedChar:
179     if (getCharWidth() < getIntWidth())
180       return "";
181     LLVM_FALLTHROUGH;
182   case UnsignedShort:
183     if (getShortWidth() < getIntWidth())
184       return "";
185     LLVM_FALLTHROUGH;
186   case UnsignedInt:      return "U";
187   case UnsignedLong:     return "UL";
188   case UnsignedLongLong: return "ULL";
189   }
190 }
191 
192 /// getTypeFormatModifier - Return the printf format modifier for the
193 /// specified integer type enum. For example, SignedLong -> "l".
194 
195 const char *TargetInfo::getTypeFormatModifier(IntType T) {
196   switch (T) {
197   default: llvm_unreachable("not an integer!");
198   case SignedChar:
199   case UnsignedChar:     return "hh";
200   case SignedShort:
201   case UnsignedShort:    return "h";
202   case SignedInt:
203   case UnsignedInt:      return "";
204   case SignedLong:
205   case UnsignedLong:     return "l";
206   case SignedLongLong:
207   case UnsignedLongLong: return "ll";
208   }
209 }
210 
211 /// getTypeWidth - Return the width (in bits) of the specified integer type
212 /// enum. For example, SignedInt -> getIntWidth().
213 unsigned TargetInfo::getTypeWidth(IntType T) const {
214   switch (T) {
215   default: llvm_unreachable("not an integer!");
216   case SignedChar:
217   case UnsignedChar:     return getCharWidth();
218   case SignedShort:
219   case UnsignedShort:    return getShortWidth();
220   case SignedInt:
221   case UnsignedInt:      return getIntWidth();
222   case SignedLong:
223   case UnsignedLong:     return getLongWidth();
224   case SignedLongLong:
225   case UnsignedLongLong: return getLongLongWidth();
226   };
227 }
228 
229 TargetInfo::IntType TargetInfo::getIntTypeByWidth(
230     unsigned BitWidth, bool IsSigned) const {
231   if (getCharWidth() == BitWidth)
232     return IsSigned ? SignedChar : UnsignedChar;
233   if (getShortWidth() == BitWidth)
234     return IsSigned ? SignedShort : UnsignedShort;
235   if (getIntWidth() == BitWidth)
236     return IsSigned ? SignedInt : UnsignedInt;
237   if (getLongWidth() == BitWidth)
238     return IsSigned ? SignedLong : UnsignedLong;
239   if (getLongLongWidth() == BitWidth)
240     return IsSigned ? SignedLongLong : UnsignedLongLong;
241   return NoInt;
242 }
243 
244 TargetInfo::IntType TargetInfo::getLeastIntTypeByWidth(unsigned BitWidth,
245                                                        bool IsSigned) const {
246   if (getCharWidth() >= BitWidth)
247     return IsSigned ? SignedChar : UnsignedChar;
248   if (getShortWidth() >= BitWidth)
249     return IsSigned ? SignedShort : UnsignedShort;
250   if (getIntWidth() >= BitWidth)
251     return IsSigned ? SignedInt : UnsignedInt;
252   if (getLongWidth() >= BitWidth)
253     return IsSigned ? SignedLong : UnsignedLong;
254   if (getLongLongWidth() >= BitWidth)
255     return IsSigned ? SignedLongLong : UnsignedLongLong;
256   return NoInt;
257 }
258 
259 TargetInfo::RealType TargetInfo::getRealTypeByWidth(unsigned BitWidth) const {
260   if (getFloatWidth() == BitWidth)
261     return Float;
262   if (getDoubleWidth() == BitWidth)
263     return Double;
264 
265   switch (BitWidth) {
266   case 96:
267     if (&getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended())
268       return LongDouble;
269     break;
270   case 128:
271     if (&getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble() ||
272         &getLongDoubleFormat() == &llvm::APFloat::IEEEquad())
273       return LongDouble;
274     if (hasFloat128Type())
275       return Float128;
276     break;
277   }
278 
279   return NoFloat;
280 }
281 
282 /// getTypeAlign - Return the alignment (in bits) of the specified integer type
283 /// enum. For example, SignedInt -> getIntAlign().
284 unsigned TargetInfo::getTypeAlign(IntType T) const {
285   switch (T) {
286   default: llvm_unreachable("not an integer!");
287   case SignedChar:
288   case UnsignedChar:     return getCharAlign();
289   case SignedShort:
290   case UnsignedShort:    return getShortAlign();
291   case SignedInt:
292   case UnsignedInt:      return getIntAlign();
293   case SignedLong:
294   case UnsignedLong:     return getLongAlign();
295   case SignedLongLong:
296   case UnsignedLongLong: return getLongLongAlign();
297   };
298 }
299 
300 /// isTypeSigned - Return whether an integer types is signed. Returns true if
301 /// the type is signed; false otherwise.
302 bool TargetInfo::isTypeSigned(IntType T) {
303   switch (T) {
304   default: llvm_unreachable("not an integer!");
305   case SignedChar:
306   case SignedShort:
307   case SignedInt:
308   case SignedLong:
309   case SignedLongLong:
310     return true;
311   case UnsignedChar:
312   case UnsignedShort:
313   case UnsignedInt:
314   case UnsignedLong:
315   case UnsignedLongLong:
316     return false;
317   };
318 }
319 
320 /// adjust - Set forced language options.
321 /// Apply changes to the target information with respect to certain
322 /// language options which change the target configuration and adjust
323 /// the language based on the target options where applicable.
324 void TargetInfo::adjust(LangOptions &Opts) {
325   if (Opts.NoBitFieldTypeAlign)
326     UseBitFieldTypeAlignment = false;
327 
328   switch (Opts.WCharSize) {
329   default: llvm_unreachable("invalid wchar_t width");
330   case 0: break;
331   case 1: WCharType = Opts.WCharIsSigned ? SignedChar : UnsignedChar; break;
332   case 2: WCharType = Opts.WCharIsSigned ? SignedShort : UnsignedShort; break;
333   case 4: WCharType = Opts.WCharIsSigned ? SignedInt : UnsignedInt; break;
334   }
335 
336   if (Opts.AlignDouble) {
337     DoubleAlign = LongLongAlign = 64;
338     LongDoubleAlign = 64;
339   }
340 
341   if (Opts.OpenCL) {
342     // OpenCL C requires specific widths for types, irrespective of
343     // what these normally are for the target.
344     // We also define long long and long double here, although the
345     // OpenCL standard only mentions these as "reserved".
346     IntWidth = IntAlign = 32;
347     LongWidth = LongAlign = 64;
348     LongLongWidth = LongLongAlign = 128;
349     HalfWidth = HalfAlign = 16;
350     FloatWidth = FloatAlign = 32;
351 
352     // Embedded 32-bit targets (OpenCL EP) might have double C type
353     // defined as float. Let's not override this as it might lead
354     // to generating illegal code that uses 64bit doubles.
355     if (DoubleWidth != FloatWidth) {
356       DoubleWidth = DoubleAlign = 64;
357       DoubleFormat = &llvm::APFloat::IEEEdouble();
358     }
359     LongDoubleWidth = LongDoubleAlign = 128;
360 
361     unsigned MaxPointerWidth = getMaxPointerWidth();
362     assert(MaxPointerWidth == 32 || MaxPointerWidth == 64);
363     bool Is32BitArch = MaxPointerWidth == 32;
364     SizeType = Is32BitArch ? UnsignedInt : UnsignedLong;
365     PtrDiffType = Is32BitArch ? SignedInt : SignedLong;
366     IntPtrType = Is32BitArch ? SignedInt : SignedLong;
367 
368     IntMaxType = SignedLongLong;
369     Int64Type = SignedLong;
370 
371     HalfFormat = &llvm::APFloat::IEEEhalf();
372     FloatFormat = &llvm::APFloat::IEEEsingle();
373     LongDoubleFormat = &llvm::APFloat::IEEEquad();
374   }
375 
376   if (Opts.NewAlignOverride)
377     NewAlign = Opts.NewAlignOverride * getCharWidth();
378 
379   // Each unsigned fixed point type has the same number of fractional bits as
380   // its corresponding signed type.
381   PaddingOnUnsignedFixedPoint |= Opts.PaddingOnUnsignedFixedPoint;
382   CheckFixedPointBits();
383 }
384 
385 bool TargetInfo::initFeatureMap(
386     llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU,
387     const std::vector<std::string> &FeatureVec) const {
388   for (const auto &F : FeatureVec) {
389     StringRef Name = F;
390     // Apply the feature via the target.
391     bool Enabled = Name[0] == '+';
392     setFeatureEnabled(Features, Name.substr(1), Enabled);
393   }
394   return true;
395 }
396 
397 TargetInfo::CallingConvKind
398 TargetInfo::getCallingConvKind(bool ClangABICompat4) const {
399   if (getCXXABI() != TargetCXXABI::Microsoft &&
400       (ClangABICompat4 || getTriple().getOS() == llvm::Triple::PS4))
401     return CCK_ClangABI4OrPS4;
402   return CCK_Default;
403 }
404 
405 LangAS TargetInfo::getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const {
406   switch (TK) {
407   case OCLTK_Image:
408   case OCLTK_Pipe:
409     return LangAS::opencl_global;
410 
411   case OCLTK_Sampler:
412     return LangAS::opencl_constant;
413 
414   default:
415     return LangAS::Default;
416   }
417 }
418 
419 //===----------------------------------------------------------------------===//
420 
421 
422 static StringRef removeGCCRegisterPrefix(StringRef Name) {
423   if (Name[0] == '%' || Name[0] == '#')
424     Name = Name.substr(1);
425 
426   return Name;
427 }
428 
429 /// isValidClobber - Returns whether the passed in string is
430 /// a valid clobber in an inline asm statement. This is used by
431 /// Sema.
432 bool TargetInfo::isValidClobber(StringRef Name) const {
433   return (isValidGCCRegisterName(Name) ||
434           Name == "memory" || Name == "cc");
435 }
436 
437 /// isValidGCCRegisterName - Returns whether the passed in string
438 /// is a valid register name according to GCC. This is used by Sema for
439 /// inline asm statements.
440 bool TargetInfo::isValidGCCRegisterName(StringRef Name) const {
441   if (Name.empty())
442     return false;
443 
444   // Get rid of any register prefix.
445   Name = removeGCCRegisterPrefix(Name);
446   if (Name.empty())
447     return false;
448 
449   ArrayRef<const char *> Names = getGCCRegNames();
450 
451   // If we have a number it maps to an entry in the register name array.
452   if (isDigit(Name[0])) {
453     unsigned n;
454     if (!Name.getAsInteger(0, n))
455       return n < Names.size();
456   }
457 
458   // Check register names.
459   if (std::find(Names.begin(), Names.end(), Name) != Names.end())
460     return true;
461 
462   // Check any additional names that we have.
463   for (const AddlRegName &ARN : getGCCAddlRegNames())
464     for (const char *AN : ARN.Names) {
465       if (!AN)
466         break;
467       // Make sure the register that the additional name is for is within
468       // the bounds of the register names from above.
469       if (AN == Name && ARN.RegNum < Names.size())
470         return true;
471     }
472 
473   // Now check aliases.
474   for (const GCCRegAlias &GRA : getGCCRegAliases())
475     for (const char *A : GRA.Aliases) {
476       if (!A)
477         break;
478       if (A == Name)
479         return true;
480     }
481 
482   return false;
483 }
484 
485 StringRef TargetInfo::getNormalizedGCCRegisterName(StringRef Name,
486                                                    bool ReturnCanonical) const {
487   assert(isValidGCCRegisterName(Name) && "Invalid register passed in");
488 
489   // Get rid of any register prefix.
490   Name = removeGCCRegisterPrefix(Name);
491 
492   ArrayRef<const char *> Names = getGCCRegNames();
493 
494   // First, check if we have a number.
495   if (isDigit(Name[0])) {
496     unsigned n;
497     if (!Name.getAsInteger(0, n)) {
498       assert(n < Names.size() && "Out of bounds register number!");
499       return Names[n];
500     }
501   }
502 
503   // Check any additional names that we have.
504   for (const AddlRegName &ARN : getGCCAddlRegNames())
505     for (const char *AN : ARN.Names) {
506       if (!AN)
507         break;
508       // Make sure the register that the additional name is for is within
509       // the bounds of the register names from above.
510       if (AN == Name && ARN.RegNum < Names.size())
511         return ReturnCanonical ? Names[ARN.RegNum] : Name;
512     }
513 
514   // Now check aliases.
515   for (const GCCRegAlias &RA : getGCCRegAliases())
516     for (const char *A : RA.Aliases) {
517       if (!A)
518         break;
519       if (A == Name)
520         return RA.Register;
521     }
522 
523   return Name;
524 }
525 
526 bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const {
527   const char *Name = Info.getConstraintStr().c_str();
528   // An output constraint must start with '=' or '+'
529   if (*Name != '=' && *Name != '+')
530     return false;
531 
532   if (*Name == '+')
533     Info.setIsReadWrite();
534 
535   Name++;
536   while (*Name) {
537     switch (*Name) {
538     default:
539       if (!validateAsmConstraint(Name, Info)) {
540         // FIXME: We temporarily return false
541         // so we can add more constraints as we hit it.
542         // Eventually, an unknown constraint should just be treated as 'g'.
543         return false;
544       }
545       break;
546     case '&': // early clobber.
547       Info.setEarlyClobber();
548       break;
549     case '%': // commutative.
550       // FIXME: Check that there is a another register after this one.
551       break;
552     case 'r': // general register.
553       Info.setAllowsRegister();
554       break;
555     case 'm': // memory operand.
556     case 'o': // offsetable memory operand.
557     case 'V': // non-offsetable memory operand.
558     case '<': // autodecrement memory operand.
559     case '>': // autoincrement memory operand.
560       Info.setAllowsMemory();
561       break;
562     case 'g': // general register, memory operand or immediate integer.
563     case 'X': // any operand.
564       Info.setAllowsRegister();
565       Info.setAllowsMemory();
566       break;
567     case ',': // multiple alternative constraint.  Pass it.
568       // Handle additional optional '=' or '+' modifiers.
569       if (Name[1] == '=' || Name[1] == '+')
570         Name++;
571       break;
572     case '#': // Ignore as constraint.
573       while (Name[1] && Name[1] != ',')
574         Name++;
575       break;
576     case '?': // Disparage slightly code.
577     case '!': // Disparage severely.
578     case '*': // Ignore for choosing register preferences.
579     case 'i': // Ignore i,n,E,F as output constraints (match from the other
580               // chars)
581     case 'n':
582     case 'E':
583     case 'F':
584       break;  // Pass them.
585     }
586 
587     Name++;
588   }
589 
590   // Early clobber with a read-write constraint which doesn't permit registers
591   // is invalid.
592   if (Info.earlyClobber() && Info.isReadWrite() && !Info.allowsRegister())
593     return false;
594 
595   // If a constraint allows neither memory nor register operands it contains
596   // only modifiers. Reject it.
597   return Info.allowsMemory() || Info.allowsRegister();
598 }
599 
600 bool TargetInfo::resolveSymbolicName(const char *&Name,
601                                      ArrayRef<ConstraintInfo> OutputConstraints,
602                                      unsigned &Index) const {
603   assert(*Name == '[' && "Symbolic name did not start with '['");
604   Name++;
605   const char *Start = Name;
606   while (*Name && *Name != ']')
607     Name++;
608 
609   if (!*Name) {
610     // Missing ']'
611     return false;
612   }
613 
614   std::string SymbolicName(Start, Name - Start);
615 
616   for (Index = 0; Index != OutputConstraints.size(); ++Index)
617     if (SymbolicName == OutputConstraints[Index].getName())
618       return true;
619 
620   return false;
621 }
622 
623 bool TargetInfo::validateInputConstraint(
624                               MutableArrayRef<ConstraintInfo> OutputConstraints,
625                               ConstraintInfo &Info) const {
626   const char *Name = Info.ConstraintStr.c_str();
627 
628   if (!*Name)
629     return false;
630 
631   while (*Name) {
632     switch (*Name) {
633     default:
634       // Check if we have a matching constraint
635       if (*Name >= '0' && *Name <= '9') {
636         const char *DigitStart = Name;
637         while (Name[1] >= '0' && Name[1] <= '9')
638           Name++;
639         const char *DigitEnd = Name;
640         unsigned i;
641         if (StringRef(DigitStart, DigitEnd - DigitStart + 1)
642                 .getAsInteger(10, i))
643           return false;
644 
645         // Check if matching constraint is out of bounds.
646         if (i >= OutputConstraints.size()) return false;
647 
648         // A number must refer to an output only operand.
649         if (OutputConstraints[i].isReadWrite())
650           return false;
651 
652         // If the constraint is already tied, it must be tied to the
653         // same operand referenced to by the number.
654         if (Info.hasTiedOperand() && Info.getTiedOperand() != i)
655           return false;
656 
657         // The constraint should have the same info as the respective
658         // output constraint.
659         Info.setTiedOperand(i, OutputConstraints[i]);
660       } else if (!validateAsmConstraint(Name, Info)) {
661         // FIXME: This error return is in place temporarily so we can
662         // add more constraints as we hit it.  Eventually, an unknown
663         // constraint should just be treated as 'g'.
664         return false;
665       }
666       break;
667     case '[': {
668       unsigned Index = 0;
669       if (!resolveSymbolicName(Name, OutputConstraints, Index))
670         return false;
671 
672       // If the constraint is already tied, it must be tied to the
673       // same operand referenced to by the number.
674       if (Info.hasTiedOperand() && Info.getTiedOperand() != Index)
675         return false;
676 
677       // A number must refer to an output only operand.
678       if (OutputConstraints[Index].isReadWrite())
679         return false;
680 
681       Info.setTiedOperand(Index, OutputConstraints[Index]);
682       break;
683     }
684     case '%': // commutative
685       // FIXME: Fail if % is used with the last operand.
686       break;
687     case 'i': // immediate integer.
688     case 'n': // immediate integer with a known value.
689       break;
690     case 'I':  // Various constant constraints with target-specific meanings.
691     case 'J':
692     case 'K':
693     case 'L':
694     case 'M':
695     case 'N':
696     case 'O':
697     case 'P':
698       if (!validateAsmConstraint(Name, Info))
699         return false;
700       break;
701     case 'r': // general register.
702       Info.setAllowsRegister();
703       break;
704     case 'm': // memory operand.
705     case 'o': // offsettable memory operand.
706     case 'V': // non-offsettable memory operand.
707     case '<': // autodecrement memory operand.
708     case '>': // autoincrement memory operand.
709       Info.setAllowsMemory();
710       break;
711     case 'g': // general register, memory operand or immediate integer.
712     case 'X': // any operand.
713       Info.setAllowsRegister();
714       Info.setAllowsMemory();
715       break;
716     case 'E': // immediate floating point.
717     case 'F': // immediate floating point.
718     case 'p': // address operand.
719       break;
720     case ',': // multiple alternative constraint.  Ignore comma.
721       break;
722     case '#': // Ignore as constraint.
723       while (Name[1] && Name[1] != ',')
724         Name++;
725       break;
726     case '?': // Disparage slightly code.
727     case '!': // Disparage severely.
728     case '*': // Ignore for choosing register preferences.
729       break;  // Pass them.
730     }
731 
732     Name++;
733   }
734 
735   return true;
736 }
737 
738 void TargetInfo::CheckFixedPointBits() const {
739   // Check that the number of fractional and integral bits (and maybe sign) can
740   // fit into the bits given for a fixed point type.
741   assert(ShortAccumScale + getShortAccumIBits() + 1 <= ShortAccumWidth);
742   assert(AccumScale + getAccumIBits() + 1 <= AccumWidth);
743   assert(LongAccumScale + getLongAccumIBits() + 1 <= LongAccumWidth);
744   assert(getUnsignedShortAccumScale() + getUnsignedShortAccumIBits() <=
745          ShortAccumWidth);
746   assert(getUnsignedAccumScale() + getUnsignedAccumIBits() <= AccumWidth);
747   assert(getUnsignedLongAccumScale() + getUnsignedLongAccumIBits() <=
748          LongAccumWidth);
749 
750   assert(getShortFractScale() + 1 <= ShortFractWidth);
751   assert(getFractScale() + 1 <= FractWidth);
752   assert(getLongFractScale() + 1 <= LongFractWidth);
753   assert(getUnsignedShortFractScale() <= ShortFractWidth);
754   assert(getUnsignedFractScale() <= FractWidth);
755   assert(getUnsignedLongFractScale() <= LongFractWidth);
756 
757   // Each unsigned fract type has either the same number of fractional bits
758   // as, or one more fractional bit than, its corresponding signed fract type.
759   assert(getShortFractScale() == getUnsignedShortFractScale() ||
760          getShortFractScale() == getUnsignedShortFractScale() - 1);
761   assert(getFractScale() == getUnsignedFractScale() ||
762          getFractScale() == getUnsignedFractScale() - 1);
763   assert(getLongFractScale() == getUnsignedLongFractScale() ||
764          getLongFractScale() == getUnsignedLongFractScale() - 1);
765 
766   // When arranged in order of increasing rank (see 6.3.1.3a), the number of
767   // fractional bits is nondecreasing for each of the following sets of
768   // fixed-point types:
769   // - signed fract types
770   // - unsigned fract types
771   // - signed accum types
772   // - unsigned accum types.
773   assert(getLongFractScale() >= getFractScale() &&
774          getFractScale() >= getShortFractScale());
775   assert(getUnsignedLongFractScale() >= getUnsignedFractScale() &&
776          getUnsignedFractScale() >= getUnsignedShortFractScale());
777   assert(LongAccumScale >= AccumScale && AccumScale >= ShortAccumScale);
778   assert(getUnsignedLongAccumScale() >= getUnsignedAccumScale() &&
779          getUnsignedAccumScale() >= getUnsignedShortAccumScale());
780 
781   // When arranged in order of increasing rank (see 6.3.1.3a), the number of
782   // integral bits is nondecreasing for each of the following sets of
783   // fixed-point types:
784   // - signed accum types
785   // - unsigned accum types
786   assert(getLongAccumIBits() >= getAccumIBits() &&
787          getAccumIBits() >= getShortAccumIBits());
788   assert(getUnsignedLongAccumIBits() >= getUnsignedAccumIBits() &&
789          getUnsignedAccumIBits() >= getUnsignedShortAccumIBits());
790 
791   // Each signed accum type has at least as many integral bits as its
792   // corresponding unsigned accum type.
793   assert(getShortAccumIBits() >= getUnsignedShortAccumIBits());
794   assert(getAccumIBits() >= getUnsignedAccumIBits());
795   assert(getLongAccumIBits() >= getUnsignedLongAccumIBits());
796 }
797