1 //===--- TargetInfo.cpp - Information about Target machine ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the TargetInfo and TargetInfoImpl interfaces. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Basic/TargetInfo.h" 14 #include "clang/Basic/AddressSpaces.h" 15 #include "clang/Basic/CharInfo.h" 16 #include "clang/Basic/Diagnostic.h" 17 #include "clang/Basic/LangOptions.h" 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/Support/TargetParser.h" 23 #include <cstdlib> 24 using namespace clang; 25 26 static const LangASMap DefaultAddrSpaceMap = {0}; 27 28 // TargetInfo Constructor. 29 TargetInfo::TargetInfo(const llvm::Triple &T) : TargetOpts(), Triple(T) { 30 // Set defaults. Defaults are set for a 32-bit RISC platform, like PPC or 31 // SPARC. These should be overridden by concrete targets as needed. 32 BigEndian = !T.isLittleEndian(); 33 TLSSupported = true; 34 VLASupported = true; 35 NoAsmVariants = false; 36 HasLegalHalfType = false; 37 HasFloat128 = false; 38 HasFloat16 = false; 39 PointerWidth = PointerAlign = 32; 40 BoolWidth = BoolAlign = 8; 41 IntWidth = IntAlign = 32; 42 LongWidth = LongAlign = 32; 43 LongLongWidth = LongLongAlign = 64; 44 45 // Fixed point default bit widths 46 ShortAccumWidth = ShortAccumAlign = 16; 47 AccumWidth = AccumAlign = 32; 48 LongAccumWidth = LongAccumAlign = 64; 49 ShortFractWidth = ShortFractAlign = 8; 50 FractWidth = FractAlign = 16; 51 LongFractWidth = LongFractAlign = 32; 52 53 // Fixed point default integral and fractional bit sizes 54 // We give the _Accum 1 fewer fractional bits than their corresponding _Fract 55 // types by default to have the same number of fractional bits between _Accum 56 // and _Fract types. 57 PaddingOnUnsignedFixedPoint = false; 58 ShortAccumScale = 7; 59 AccumScale = 15; 60 LongAccumScale = 31; 61 62 SuitableAlign = 64; 63 DefaultAlignForAttributeAligned = 128; 64 MinGlobalAlign = 0; 65 // From the glibc documentation, on GNU systems, malloc guarantees 16-byte 66 // alignment on 64-bit systems and 8-byte alignment on 32-bit systems. See 67 // https://www.gnu.org/software/libc/manual/html_node/Malloc-Examples.html. 68 // This alignment guarantee also applies to Windows and Android. 69 if (T.isGNUEnvironment() || T.isWindowsMSVCEnvironment() || T.isAndroid()) 70 NewAlign = Triple.isArch64Bit() ? 128 : Triple.isArch32Bit() ? 64 : 0; 71 else 72 NewAlign = 0; // Infer from basic type alignment. 73 HalfWidth = 16; 74 HalfAlign = 16; 75 FloatWidth = 32; 76 FloatAlign = 32; 77 DoubleWidth = 64; 78 DoubleAlign = 64; 79 LongDoubleWidth = 64; 80 LongDoubleAlign = 64; 81 Float128Align = 128; 82 LargeArrayMinWidth = 0; 83 LargeArrayAlign = 0; 84 MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0; 85 MaxVectorAlign = 0; 86 MaxTLSAlign = 0; 87 SimdDefaultAlign = 0; 88 SizeType = UnsignedLong; 89 PtrDiffType = SignedLong; 90 IntMaxType = SignedLongLong; 91 IntPtrType = SignedLong; 92 WCharType = SignedInt; 93 WIntType = SignedInt; 94 Char16Type = UnsignedShort; 95 Char32Type = UnsignedInt; 96 Int64Type = SignedLongLong; 97 SigAtomicType = SignedInt; 98 ProcessIDType = SignedInt; 99 UseSignedCharForObjCBool = true; 100 UseBitFieldTypeAlignment = true; 101 UseZeroLengthBitfieldAlignment = false; 102 UseExplicitBitFieldAlignment = true; 103 ZeroLengthBitfieldBoundary = 0; 104 HalfFormat = &llvm::APFloat::IEEEhalf(); 105 FloatFormat = &llvm::APFloat::IEEEsingle(); 106 DoubleFormat = &llvm::APFloat::IEEEdouble(); 107 LongDoubleFormat = &llvm::APFloat::IEEEdouble(); 108 Float128Format = &llvm::APFloat::IEEEquad(); 109 MCountName = "mcount"; 110 RegParmMax = 0; 111 SSERegParmMax = 0; 112 HasAlignMac68kSupport = false; 113 HasBuiltinMSVaList = false; 114 IsRenderScriptTarget = false; 115 HasAArch64SVETypes = false; 116 ARMCDECoprocMask = 0; 117 118 // Default to no types using fpret. 119 RealTypeUsesObjCFPRet = 0; 120 121 // Default to not using fp2ret for __Complex long double 122 ComplexLongDoubleUsesFP2Ret = false; 123 124 // Set the C++ ABI based on the triple. 125 TheCXXABI.set(Triple.isKnownWindowsMSVCEnvironment() 126 ? TargetCXXABI::Microsoft 127 : TargetCXXABI::GenericItanium); 128 129 // Default to an empty address space map. 130 AddrSpaceMap = &DefaultAddrSpaceMap; 131 UseAddrSpaceMapMangling = false; 132 133 // Default to an unknown platform name. 134 PlatformName = "unknown"; 135 PlatformMinVersion = VersionTuple(); 136 137 MaxOpenCLWorkGroupSize = 1024; 138 } 139 140 // Out of line virtual dtor for TargetInfo. 141 TargetInfo::~TargetInfo() {} 142 143 void TargetInfo::resetDataLayout(StringRef DL) { 144 DataLayout.reset(new llvm::DataLayout(DL)); 145 } 146 147 bool 148 TargetInfo::checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const { 149 Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=branch"; 150 return false; 151 } 152 153 bool 154 TargetInfo::checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const { 155 Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=return"; 156 return false; 157 } 158 159 /// getTypeName - Return the user string for the specified integer type enum. 160 /// For example, SignedShort -> "short". 161 const char *TargetInfo::getTypeName(IntType T) { 162 switch (T) { 163 default: llvm_unreachable("not an integer!"); 164 case SignedChar: return "signed char"; 165 case UnsignedChar: return "unsigned char"; 166 case SignedShort: return "short"; 167 case UnsignedShort: return "unsigned short"; 168 case SignedInt: return "int"; 169 case UnsignedInt: return "unsigned int"; 170 case SignedLong: return "long int"; 171 case UnsignedLong: return "long unsigned int"; 172 case SignedLongLong: return "long long int"; 173 case UnsignedLongLong: return "long long unsigned int"; 174 } 175 } 176 177 /// getTypeConstantSuffix - Return the constant suffix for the specified 178 /// integer type enum. For example, SignedLong -> "L". 179 const char *TargetInfo::getTypeConstantSuffix(IntType T) const { 180 switch (T) { 181 default: llvm_unreachable("not an integer!"); 182 case SignedChar: 183 case SignedShort: 184 case SignedInt: return ""; 185 case SignedLong: return "L"; 186 case SignedLongLong: return "LL"; 187 case UnsignedChar: 188 if (getCharWidth() < getIntWidth()) 189 return ""; 190 LLVM_FALLTHROUGH; 191 case UnsignedShort: 192 if (getShortWidth() < getIntWidth()) 193 return ""; 194 LLVM_FALLTHROUGH; 195 case UnsignedInt: return "U"; 196 case UnsignedLong: return "UL"; 197 case UnsignedLongLong: return "ULL"; 198 } 199 } 200 201 /// getTypeFormatModifier - Return the printf format modifier for the 202 /// specified integer type enum. For example, SignedLong -> "l". 203 204 const char *TargetInfo::getTypeFormatModifier(IntType T) { 205 switch (T) { 206 default: llvm_unreachable("not an integer!"); 207 case SignedChar: 208 case UnsignedChar: return "hh"; 209 case SignedShort: 210 case UnsignedShort: return "h"; 211 case SignedInt: 212 case UnsignedInt: return ""; 213 case SignedLong: 214 case UnsignedLong: return "l"; 215 case SignedLongLong: 216 case UnsignedLongLong: return "ll"; 217 } 218 } 219 220 /// getTypeWidth - Return the width (in bits) of the specified integer type 221 /// enum. For example, SignedInt -> getIntWidth(). 222 unsigned TargetInfo::getTypeWidth(IntType T) const { 223 switch (T) { 224 default: llvm_unreachable("not an integer!"); 225 case SignedChar: 226 case UnsignedChar: return getCharWidth(); 227 case SignedShort: 228 case UnsignedShort: return getShortWidth(); 229 case SignedInt: 230 case UnsignedInt: return getIntWidth(); 231 case SignedLong: 232 case UnsignedLong: return getLongWidth(); 233 case SignedLongLong: 234 case UnsignedLongLong: return getLongLongWidth(); 235 }; 236 } 237 238 TargetInfo::IntType TargetInfo::getIntTypeByWidth( 239 unsigned BitWidth, bool IsSigned) const { 240 if (getCharWidth() == BitWidth) 241 return IsSigned ? SignedChar : UnsignedChar; 242 if (getShortWidth() == BitWidth) 243 return IsSigned ? SignedShort : UnsignedShort; 244 if (getIntWidth() == BitWidth) 245 return IsSigned ? SignedInt : UnsignedInt; 246 if (getLongWidth() == BitWidth) 247 return IsSigned ? SignedLong : UnsignedLong; 248 if (getLongLongWidth() == BitWidth) 249 return IsSigned ? SignedLongLong : UnsignedLongLong; 250 return NoInt; 251 } 252 253 TargetInfo::IntType TargetInfo::getLeastIntTypeByWidth(unsigned BitWidth, 254 bool IsSigned) const { 255 if (getCharWidth() >= BitWidth) 256 return IsSigned ? SignedChar : UnsignedChar; 257 if (getShortWidth() >= BitWidth) 258 return IsSigned ? SignedShort : UnsignedShort; 259 if (getIntWidth() >= BitWidth) 260 return IsSigned ? SignedInt : UnsignedInt; 261 if (getLongWidth() >= BitWidth) 262 return IsSigned ? SignedLong : UnsignedLong; 263 if (getLongLongWidth() >= BitWidth) 264 return IsSigned ? SignedLongLong : UnsignedLongLong; 265 return NoInt; 266 } 267 268 TargetInfo::RealType TargetInfo::getRealTypeByWidth(unsigned BitWidth, 269 bool ExplicitIEEE) const { 270 if (getFloatWidth() == BitWidth) 271 return Float; 272 if (getDoubleWidth() == BitWidth) 273 return Double; 274 275 switch (BitWidth) { 276 case 96: 277 if (&getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended()) 278 return LongDouble; 279 break; 280 case 128: 281 // The caller explicitly asked for an IEEE compliant type but we still 282 // have to check if the target supports it. 283 if (ExplicitIEEE) 284 return hasFloat128Type() ? Float128 : NoFloat; 285 if (&getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble() || 286 &getLongDoubleFormat() == &llvm::APFloat::IEEEquad()) 287 return LongDouble; 288 if (hasFloat128Type()) 289 return Float128; 290 break; 291 } 292 293 return NoFloat; 294 } 295 296 /// getTypeAlign - Return the alignment (in bits) of the specified integer type 297 /// enum. For example, SignedInt -> getIntAlign(). 298 unsigned TargetInfo::getTypeAlign(IntType T) const { 299 switch (T) { 300 default: llvm_unreachable("not an integer!"); 301 case SignedChar: 302 case UnsignedChar: return getCharAlign(); 303 case SignedShort: 304 case UnsignedShort: return getShortAlign(); 305 case SignedInt: 306 case UnsignedInt: return getIntAlign(); 307 case SignedLong: 308 case UnsignedLong: return getLongAlign(); 309 case SignedLongLong: 310 case UnsignedLongLong: return getLongLongAlign(); 311 }; 312 } 313 314 /// isTypeSigned - Return whether an integer types is signed. Returns true if 315 /// the type is signed; false otherwise. 316 bool TargetInfo::isTypeSigned(IntType T) { 317 switch (T) { 318 default: llvm_unreachable("not an integer!"); 319 case SignedChar: 320 case SignedShort: 321 case SignedInt: 322 case SignedLong: 323 case SignedLongLong: 324 return true; 325 case UnsignedChar: 326 case UnsignedShort: 327 case UnsignedInt: 328 case UnsignedLong: 329 case UnsignedLongLong: 330 return false; 331 }; 332 } 333 334 /// adjust - Set forced language options. 335 /// Apply changes to the target information with respect to certain 336 /// language options which change the target configuration and adjust 337 /// the language based on the target options where applicable. 338 void TargetInfo::adjust(LangOptions &Opts) { 339 if (Opts.NoBitFieldTypeAlign) 340 UseBitFieldTypeAlignment = false; 341 342 switch (Opts.WCharSize) { 343 default: llvm_unreachable("invalid wchar_t width"); 344 case 0: break; 345 case 1: WCharType = Opts.WCharIsSigned ? SignedChar : UnsignedChar; break; 346 case 2: WCharType = Opts.WCharIsSigned ? SignedShort : UnsignedShort; break; 347 case 4: WCharType = Opts.WCharIsSigned ? SignedInt : UnsignedInt; break; 348 } 349 350 if (Opts.AlignDouble) { 351 DoubleAlign = LongLongAlign = 64; 352 LongDoubleAlign = 64; 353 } 354 355 if (Opts.OpenCL) { 356 // OpenCL C requires specific widths for types, irrespective of 357 // what these normally are for the target. 358 // We also define long long and long double here, although the 359 // OpenCL standard only mentions these as "reserved". 360 IntWidth = IntAlign = 32; 361 LongWidth = LongAlign = 64; 362 LongLongWidth = LongLongAlign = 128; 363 HalfWidth = HalfAlign = 16; 364 FloatWidth = FloatAlign = 32; 365 366 // Embedded 32-bit targets (OpenCL EP) might have double C type 367 // defined as float. Let's not override this as it might lead 368 // to generating illegal code that uses 64bit doubles. 369 if (DoubleWidth != FloatWidth) { 370 DoubleWidth = DoubleAlign = 64; 371 DoubleFormat = &llvm::APFloat::IEEEdouble(); 372 } 373 LongDoubleWidth = LongDoubleAlign = 128; 374 375 unsigned MaxPointerWidth = getMaxPointerWidth(); 376 assert(MaxPointerWidth == 32 || MaxPointerWidth == 64); 377 bool Is32BitArch = MaxPointerWidth == 32; 378 SizeType = Is32BitArch ? UnsignedInt : UnsignedLong; 379 PtrDiffType = Is32BitArch ? SignedInt : SignedLong; 380 IntPtrType = Is32BitArch ? SignedInt : SignedLong; 381 382 IntMaxType = SignedLongLong; 383 Int64Type = SignedLong; 384 385 HalfFormat = &llvm::APFloat::IEEEhalf(); 386 FloatFormat = &llvm::APFloat::IEEEsingle(); 387 LongDoubleFormat = &llvm::APFloat::IEEEquad(); 388 } 389 390 if (Opts.DoubleSize) { 391 if (Opts.DoubleSize == 32) { 392 DoubleWidth = 32; 393 LongDoubleWidth = 32; 394 DoubleFormat = &llvm::APFloat::IEEEsingle(); 395 LongDoubleFormat = &llvm::APFloat::IEEEsingle(); 396 } else if (Opts.DoubleSize == 64) { 397 DoubleWidth = 64; 398 LongDoubleWidth = 64; 399 DoubleFormat = &llvm::APFloat::IEEEdouble(); 400 LongDoubleFormat = &llvm::APFloat::IEEEdouble(); 401 } 402 } 403 404 if (Opts.LongDoubleSize) { 405 if (Opts.LongDoubleSize == DoubleWidth) { 406 LongDoubleWidth = DoubleWidth; 407 LongDoubleAlign = DoubleAlign; 408 LongDoubleFormat = DoubleFormat; 409 } else if (Opts.LongDoubleSize == 128) { 410 LongDoubleWidth = LongDoubleAlign = 128; 411 LongDoubleFormat = &llvm::APFloat::IEEEquad(); 412 } 413 } 414 415 if (Opts.NewAlignOverride) 416 NewAlign = Opts.NewAlignOverride * getCharWidth(); 417 418 // Each unsigned fixed point type has the same number of fractional bits as 419 // its corresponding signed type. 420 PaddingOnUnsignedFixedPoint |= Opts.PaddingOnUnsignedFixedPoint; 421 CheckFixedPointBits(); 422 } 423 424 bool TargetInfo::initFeatureMap( 425 llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU, 426 const std::vector<std::string> &FeatureVec) const { 427 for (const auto &F : FeatureVec) { 428 StringRef Name = F; 429 // Apply the feature via the target. 430 bool Enabled = Name[0] == '+'; 431 setFeatureEnabled(Features, Name.substr(1), Enabled); 432 } 433 return true; 434 } 435 436 TargetInfo::CallingConvKind 437 TargetInfo::getCallingConvKind(bool ClangABICompat4) const { 438 if (getCXXABI() != TargetCXXABI::Microsoft && 439 (ClangABICompat4 || getTriple().getOS() == llvm::Triple::PS4)) 440 return CCK_ClangABI4OrPS4; 441 return CCK_Default; 442 } 443 444 LangAS TargetInfo::getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const { 445 switch (TK) { 446 case OCLTK_Image: 447 case OCLTK_Pipe: 448 return LangAS::opencl_global; 449 450 case OCLTK_Sampler: 451 return LangAS::opencl_constant; 452 453 default: 454 return LangAS::Default; 455 } 456 } 457 458 //===----------------------------------------------------------------------===// 459 460 461 static StringRef removeGCCRegisterPrefix(StringRef Name) { 462 if (Name[0] == '%' || Name[0] == '#') 463 Name = Name.substr(1); 464 465 return Name; 466 } 467 468 /// isValidClobber - Returns whether the passed in string is 469 /// a valid clobber in an inline asm statement. This is used by 470 /// Sema. 471 bool TargetInfo::isValidClobber(StringRef Name) const { 472 return (isValidGCCRegisterName(Name) || 473 Name == "memory" || Name == "cc"); 474 } 475 476 /// isValidGCCRegisterName - Returns whether the passed in string 477 /// is a valid register name according to GCC. This is used by Sema for 478 /// inline asm statements. 479 bool TargetInfo::isValidGCCRegisterName(StringRef Name) const { 480 if (Name.empty()) 481 return false; 482 483 // Get rid of any register prefix. 484 Name = removeGCCRegisterPrefix(Name); 485 if (Name.empty()) 486 return false; 487 488 ArrayRef<const char *> Names = getGCCRegNames(); 489 490 // If we have a number it maps to an entry in the register name array. 491 if (isDigit(Name[0])) { 492 unsigned n; 493 if (!Name.getAsInteger(0, n)) 494 return n < Names.size(); 495 } 496 497 // Check register names. 498 if (llvm::is_contained(Names, Name)) 499 return true; 500 501 // Check any additional names that we have. 502 for (const AddlRegName &ARN : getGCCAddlRegNames()) 503 for (const char *AN : ARN.Names) { 504 if (!AN) 505 break; 506 // Make sure the register that the additional name is for is within 507 // the bounds of the register names from above. 508 if (AN == Name && ARN.RegNum < Names.size()) 509 return true; 510 } 511 512 // Now check aliases. 513 for (const GCCRegAlias &GRA : getGCCRegAliases()) 514 for (const char *A : GRA.Aliases) { 515 if (!A) 516 break; 517 if (A == Name) 518 return true; 519 } 520 521 return false; 522 } 523 524 StringRef TargetInfo::getNormalizedGCCRegisterName(StringRef Name, 525 bool ReturnCanonical) const { 526 assert(isValidGCCRegisterName(Name) && "Invalid register passed in"); 527 528 // Get rid of any register prefix. 529 Name = removeGCCRegisterPrefix(Name); 530 531 ArrayRef<const char *> Names = getGCCRegNames(); 532 533 // First, check if we have a number. 534 if (isDigit(Name[0])) { 535 unsigned n; 536 if (!Name.getAsInteger(0, n)) { 537 assert(n < Names.size() && "Out of bounds register number!"); 538 return Names[n]; 539 } 540 } 541 542 // Check any additional names that we have. 543 for (const AddlRegName &ARN : getGCCAddlRegNames()) 544 for (const char *AN : ARN.Names) { 545 if (!AN) 546 break; 547 // Make sure the register that the additional name is for is within 548 // the bounds of the register names from above. 549 if (AN == Name && ARN.RegNum < Names.size()) 550 return ReturnCanonical ? Names[ARN.RegNum] : Name; 551 } 552 553 // Now check aliases. 554 for (const GCCRegAlias &RA : getGCCRegAliases()) 555 for (const char *A : RA.Aliases) { 556 if (!A) 557 break; 558 if (A == Name) 559 return RA.Register; 560 } 561 562 return Name; 563 } 564 565 bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const { 566 const char *Name = Info.getConstraintStr().c_str(); 567 // An output constraint must start with '=' or '+' 568 if (*Name != '=' && *Name != '+') 569 return false; 570 571 if (*Name == '+') 572 Info.setIsReadWrite(); 573 574 Name++; 575 while (*Name) { 576 switch (*Name) { 577 default: 578 if (!validateAsmConstraint(Name, Info)) { 579 // FIXME: We temporarily return false 580 // so we can add more constraints as we hit it. 581 // Eventually, an unknown constraint should just be treated as 'g'. 582 return false; 583 } 584 break; 585 case '&': // early clobber. 586 Info.setEarlyClobber(); 587 break; 588 case '%': // commutative. 589 // FIXME: Check that there is a another register after this one. 590 break; 591 case 'r': // general register. 592 Info.setAllowsRegister(); 593 break; 594 case 'm': // memory operand. 595 case 'o': // offsetable memory operand. 596 case 'V': // non-offsetable memory operand. 597 case '<': // autodecrement memory operand. 598 case '>': // autoincrement memory operand. 599 Info.setAllowsMemory(); 600 break; 601 case 'g': // general register, memory operand or immediate integer. 602 case 'X': // any operand. 603 Info.setAllowsRegister(); 604 Info.setAllowsMemory(); 605 break; 606 case ',': // multiple alternative constraint. Pass it. 607 // Handle additional optional '=' or '+' modifiers. 608 if (Name[1] == '=' || Name[1] == '+') 609 Name++; 610 break; 611 case '#': // Ignore as constraint. 612 while (Name[1] && Name[1] != ',') 613 Name++; 614 break; 615 case '?': // Disparage slightly code. 616 case '!': // Disparage severely. 617 case '*': // Ignore for choosing register preferences. 618 case 'i': // Ignore i,n,E,F as output constraints (match from the other 619 // chars) 620 case 'n': 621 case 'E': 622 case 'F': 623 break; // Pass them. 624 } 625 626 Name++; 627 } 628 629 // Early clobber with a read-write constraint which doesn't permit registers 630 // is invalid. 631 if (Info.earlyClobber() && Info.isReadWrite() && !Info.allowsRegister()) 632 return false; 633 634 // If a constraint allows neither memory nor register operands it contains 635 // only modifiers. Reject it. 636 return Info.allowsMemory() || Info.allowsRegister(); 637 } 638 639 bool TargetInfo::resolveSymbolicName(const char *&Name, 640 ArrayRef<ConstraintInfo> OutputConstraints, 641 unsigned &Index) const { 642 assert(*Name == '[' && "Symbolic name did not start with '['"); 643 Name++; 644 const char *Start = Name; 645 while (*Name && *Name != ']') 646 Name++; 647 648 if (!*Name) { 649 // Missing ']' 650 return false; 651 } 652 653 std::string SymbolicName(Start, Name - Start); 654 655 for (Index = 0; Index != OutputConstraints.size(); ++Index) 656 if (SymbolicName == OutputConstraints[Index].getName()) 657 return true; 658 659 return false; 660 } 661 662 bool TargetInfo::validateInputConstraint( 663 MutableArrayRef<ConstraintInfo> OutputConstraints, 664 ConstraintInfo &Info) const { 665 const char *Name = Info.ConstraintStr.c_str(); 666 667 if (!*Name) 668 return false; 669 670 while (*Name) { 671 switch (*Name) { 672 default: 673 // Check if we have a matching constraint 674 if (*Name >= '0' && *Name <= '9') { 675 const char *DigitStart = Name; 676 while (Name[1] >= '0' && Name[1] <= '9') 677 Name++; 678 const char *DigitEnd = Name; 679 unsigned i; 680 if (StringRef(DigitStart, DigitEnd - DigitStart + 1) 681 .getAsInteger(10, i)) 682 return false; 683 684 // Check if matching constraint is out of bounds. 685 if (i >= OutputConstraints.size()) return false; 686 687 // A number must refer to an output only operand. 688 if (OutputConstraints[i].isReadWrite()) 689 return false; 690 691 // If the constraint is already tied, it must be tied to the 692 // same operand referenced to by the number. 693 if (Info.hasTiedOperand() && Info.getTiedOperand() != i) 694 return false; 695 696 // The constraint should have the same info as the respective 697 // output constraint. 698 Info.setTiedOperand(i, OutputConstraints[i]); 699 } else if (!validateAsmConstraint(Name, Info)) { 700 // FIXME: This error return is in place temporarily so we can 701 // add more constraints as we hit it. Eventually, an unknown 702 // constraint should just be treated as 'g'. 703 return false; 704 } 705 break; 706 case '[': { 707 unsigned Index = 0; 708 if (!resolveSymbolicName(Name, OutputConstraints, Index)) 709 return false; 710 711 // If the constraint is already tied, it must be tied to the 712 // same operand referenced to by the number. 713 if (Info.hasTiedOperand() && Info.getTiedOperand() != Index) 714 return false; 715 716 // A number must refer to an output only operand. 717 if (OutputConstraints[Index].isReadWrite()) 718 return false; 719 720 Info.setTiedOperand(Index, OutputConstraints[Index]); 721 break; 722 } 723 case '%': // commutative 724 // FIXME: Fail if % is used with the last operand. 725 break; 726 case 'i': // immediate integer. 727 break; 728 case 'n': // immediate integer with a known value. 729 Info.setRequiresImmediate(); 730 break; 731 case 'I': // Various constant constraints with target-specific meanings. 732 case 'J': 733 case 'K': 734 case 'L': 735 case 'M': 736 case 'N': 737 case 'O': 738 case 'P': 739 if (!validateAsmConstraint(Name, Info)) 740 return false; 741 break; 742 case 'r': // general register. 743 Info.setAllowsRegister(); 744 break; 745 case 'm': // memory operand. 746 case 'o': // offsettable memory operand. 747 case 'V': // non-offsettable memory operand. 748 case '<': // autodecrement memory operand. 749 case '>': // autoincrement memory operand. 750 Info.setAllowsMemory(); 751 break; 752 case 'g': // general register, memory operand or immediate integer. 753 case 'X': // any operand. 754 Info.setAllowsRegister(); 755 Info.setAllowsMemory(); 756 break; 757 case 'E': // immediate floating point. 758 case 'F': // immediate floating point. 759 case 'p': // address operand. 760 break; 761 case ',': // multiple alternative constraint. Ignore comma. 762 break; 763 case '#': // Ignore as constraint. 764 while (Name[1] && Name[1] != ',') 765 Name++; 766 break; 767 case '?': // Disparage slightly code. 768 case '!': // Disparage severely. 769 case '*': // Ignore for choosing register preferences. 770 break; // Pass them. 771 } 772 773 Name++; 774 } 775 776 return true; 777 } 778 779 void TargetInfo::CheckFixedPointBits() const { 780 // Check that the number of fractional and integral bits (and maybe sign) can 781 // fit into the bits given for a fixed point type. 782 assert(ShortAccumScale + getShortAccumIBits() + 1 <= ShortAccumWidth); 783 assert(AccumScale + getAccumIBits() + 1 <= AccumWidth); 784 assert(LongAccumScale + getLongAccumIBits() + 1 <= LongAccumWidth); 785 assert(getUnsignedShortAccumScale() + getUnsignedShortAccumIBits() <= 786 ShortAccumWidth); 787 assert(getUnsignedAccumScale() + getUnsignedAccumIBits() <= AccumWidth); 788 assert(getUnsignedLongAccumScale() + getUnsignedLongAccumIBits() <= 789 LongAccumWidth); 790 791 assert(getShortFractScale() + 1 <= ShortFractWidth); 792 assert(getFractScale() + 1 <= FractWidth); 793 assert(getLongFractScale() + 1 <= LongFractWidth); 794 assert(getUnsignedShortFractScale() <= ShortFractWidth); 795 assert(getUnsignedFractScale() <= FractWidth); 796 assert(getUnsignedLongFractScale() <= LongFractWidth); 797 798 // Each unsigned fract type has either the same number of fractional bits 799 // as, or one more fractional bit than, its corresponding signed fract type. 800 assert(getShortFractScale() == getUnsignedShortFractScale() || 801 getShortFractScale() == getUnsignedShortFractScale() - 1); 802 assert(getFractScale() == getUnsignedFractScale() || 803 getFractScale() == getUnsignedFractScale() - 1); 804 assert(getLongFractScale() == getUnsignedLongFractScale() || 805 getLongFractScale() == getUnsignedLongFractScale() - 1); 806 807 // When arranged in order of increasing rank (see 6.3.1.3a), the number of 808 // fractional bits is nondecreasing for each of the following sets of 809 // fixed-point types: 810 // - signed fract types 811 // - unsigned fract types 812 // - signed accum types 813 // - unsigned accum types. 814 assert(getLongFractScale() >= getFractScale() && 815 getFractScale() >= getShortFractScale()); 816 assert(getUnsignedLongFractScale() >= getUnsignedFractScale() && 817 getUnsignedFractScale() >= getUnsignedShortFractScale()); 818 assert(LongAccumScale >= AccumScale && AccumScale >= ShortAccumScale); 819 assert(getUnsignedLongAccumScale() >= getUnsignedAccumScale() && 820 getUnsignedAccumScale() >= getUnsignedShortAccumScale()); 821 822 // When arranged in order of increasing rank (see 6.3.1.3a), the number of 823 // integral bits is nondecreasing for each of the following sets of 824 // fixed-point types: 825 // - signed accum types 826 // - unsigned accum types 827 assert(getLongAccumIBits() >= getAccumIBits() && 828 getAccumIBits() >= getShortAccumIBits()); 829 assert(getUnsignedLongAccumIBits() >= getUnsignedAccumIBits() && 830 getUnsignedAccumIBits() >= getUnsignedShortAccumIBits()); 831 832 // Each signed accum type has at least as many integral bits as its 833 // corresponding unsigned accum type. 834 assert(getShortAccumIBits() >= getUnsignedShortAccumIBits()); 835 assert(getAccumIBits() >= getUnsignedAccumIBits()); 836 assert(getLongAccumIBits() >= getUnsignedLongAccumIBits()); 837 } 838 839 void TargetInfo::copyAuxTarget(const TargetInfo *Aux) { 840 auto *Target = static_cast<TransferrableTargetInfo*>(this); 841 auto *Src = static_cast<const TransferrableTargetInfo*>(Aux); 842 *Target = *Src; 843 } 844