1 //===--- TargetInfo.cpp - Information about Target machine ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements the TargetInfo and TargetInfoImpl interfaces.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Basic/TargetInfo.h"
14 #include "clang/Basic/AddressSpaces.h"
15 #include "clang/Basic/CharInfo.h"
16 #include "clang/Basic/Diagnostic.h"
17 #include "clang/Basic/LangOptions.h"
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/TargetParser.h"
22 #include <cstdlib>
23 using namespace clang;
24 
25 static const LangASMap DefaultAddrSpaceMap = {0};
26 
27 // TargetInfo Constructor.
28 TargetInfo::TargetInfo(const llvm::Triple &T) : TargetOpts(), Triple(T) {
29   // Set defaults.  Defaults are set for a 32-bit RISC platform, like PPC or
30   // SPARC.  These should be overridden by concrete targets as needed.
31   BigEndian = !T.isLittleEndian();
32   TLSSupported = true;
33   VLASupported = true;
34   NoAsmVariants = false;
35   HasLegalHalfType = false;
36   HasFloat128 = false;
37   HasFloat16 = false;
38   PointerWidth = PointerAlign = 32;
39   BoolWidth = BoolAlign = 8;
40   IntWidth = IntAlign = 32;
41   LongWidth = LongAlign = 32;
42   LongLongWidth = LongLongAlign = 64;
43 
44   // Fixed point default bit widths
45   ShortAccumWidth = ShortAccumAlign = 16;
46   AccumWidth = AccumAlign = 32;
47   LongAccumWidth = LongAccumAlign = 64;
48   ShortFractWidth = ShortFractAlign = 8;
49   FractWidth = FractAlign = 16;
50   LongFractWidth = LongFractAlign = 32;
51 
52   // Fixed point default integral and fractional bit sizes
53   // We give the _Accum 1 fewer fractional bits than their corresponding _Fract
54   // types by default to have the same number of fractional bits between _Accum
55   // and _Fract types.
56   PaddingOnUnsignedFixedPoint = false;
57   ShortAccumScale = 7;
58   AccumScale = 15;
59   LongAccumScale = 31;
60 
61   SuitableAlign = 64;
62   DefaultAlignForAttributeAligned = 128;
63   MinGlobalAlign = 0;
64   // From the glibc documentation, on GNU systems, malloc guarantees 16-byte
65   // alignment on 64-bit systems and 8-byte alignment on 32-bit systems. See
66   // https://www.gnu.org/software/libc/manual/html_node/Malloc-Examples.html.
67   // This alignment guarantee also applies to Windows and Android.
68   if (T.isGNUEnvironment() || T.isWindowsMSVCEnvironment() || T.isAndroid())
69     NewAlign = Triple.isArch64Bit() ? 128 : Triple.isArch32Bit() ? 64 : 0;
70   else
71     NewAlign = 0; // Infer from basic type alignment.
72   HalfWidth = 16;
73   HalfAlign = 16;
74   FloatWidth = 32;
75   FloatAlign = 32;
76   DoubleWidth = 64;
77   DoubleAlign = 64;
78   LongDoubleWidth = 64;
79   LongDoubleAlign = 64;
80   Float128Align = 128;
81   LargeArrayMinWidth = 0;
82   LargeArrayAlign = 0;
83   MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0;
84   MaxVectorAlign = 0;
85   MaxTLSAlign = 0;
86   SimdDefaultAlign = 0;
87   SizeType = UnsignedLong;
88   PtrDiffType = SignedLong;
89   IntMaxType = SignedLongLong;
90   IntPtrType = SignedLong;
91   WCharType = SignedInt;
92   WIntType = SignedInt;
93   Char16Type = UnsignedShort;
94   Char32Type = UnsignedInt;
95   Int64Type = SignedLongLong;
96   SigAtomicType = SignedInt;
97   ProcessIDType = SignedInt;
98   UseSignedCharForObjCBool = true;
99   UseBitFieldTypeAlignment = true;
100   UseZeroLengthBitfieldAlignment = false;
101   UseExplicitBitFieldAlignment = true;
102   ZeroLengthBitfieldBoundary = 0;
103   HalfFormat = &llvm::APFloat::IEEEhalf();
104   FloatFormat = &llvm::APFloat::IEEEsingle();
105   DoubleFormat = &llvm::APFloat::IEEEdouble();
106   LongDoubleFormat = &llvm::APFloat::IEEEdouble();
107   Float128Format = &llvm::APFloat::IEEEquad();
108   MCountName = "mcount";
109   RegParmMax = 0;
110   SSERegParmMax = 0;
111   HasAlignMac68kSupport = false;
112   HasBuiltinMSVaList = false;
113   IsRenderScriptTarget = false;
114   HasAArch64SVETypes = false;
115 
116   // Default to no types using fpret.
117   RealTypeUsesObjCFPRet = 0;
118 
119   // Default to not using fp2ret for __Complex long double
120   ComplexLongDoubleUsesFP2Ret = false;
121 
122   // Set the C++ ABI based on the triple.
123   TheCXXABI.set(Triple.isKnownWindowsMSVCEnvironment()
124                     ? TargetCXXABI::Microsoft
125                     : TargetCXXABI::GenericItanium);
126 
127   // Default to an empty address space map.
128   AddrSpaceMap = &DefaultAddrSpaceMap;
129   UseAddrSpaceMapMangling = false;
130 
131   // Default to an unknown platform name.
132   PlatformName = "unknown";
133   PlatformMinVersion = VersionTuple();
134 }
135 
136 // Out of line virtual dtor for TargetInfo.
137 TargetInfo::~TargetInfo() {}
138 
139 bool
140 TargetInfo::checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const {
141   Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=branch";
142   return false;
143 }
144 
145 bool
146 TargetInfo::checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const {
147   Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=return";
148   return false;
149 }
150 
151 /// getTypeName - Return the user string for the specified integer type enum.
152 /// For example, SignedShort -> "short".
153 const char *TargetInfo::getTypeName(IntType T) {
154   switch (T) {
155   default: llvm_unreachable("not an integer!");
156   case SignedChar:       return "signed char";
157   case UnsignedChar:     return "unsigned char";
158   case SignedShort:      return "short";
159   case UnsignedShort:    return "unsigned short";
160   case SignedInt:        return "int";
161   case UnsignedInt:      return "unsigned int";
162   case SignedLong:       return "long int";
163   case UnsignedLong:     return "long unsigned int";
164   case SignedLongLong:   return "long long int";
165   case UnsignedLongLong: return "long long unsigned int";
166   }
167 }
168 
169 /// getTypeConstantSuffix - Return the constant suffix for the specified
170 /// integer type enum. For example, SignedLong -> "L".
171 const char *TargetInfo::getTypeConstantSuffix(IntType T) const {
172   switch (T) {
173   default: llvm_unreachable("not an integer!");
174   case SignedChar:
175   case SignedShort:
176   case SignedInt:        return "";
177   case SignedLong:       return "L";
178   case SignedLongLong:   return "LL";
179   case UnsignedChar:
180     if (getCharWidth() < getIntWidth())
181       return "";
182     LLVM_FALLTHROUGH;
183   case UnsignedShort:
184     if (getShortWidth() < getIntWidth())
185       return "";
186     LLVM_FALLTHROUGH;
187   case UnsignedInt:      return "U";
188   case UnsignedLong:     return "UL";
189   case UnsignedLongLong: return "ULL";
190   }
191 }
192 
193 /// getTypeFormatModifier - Return the printf format modifier for the
194 /// specified integer type enum. For example, SignedLong -> "l".
195 
196 const char *TargetInfo::getTypeFormatModifier(IntType T) {
197   switch (T) {
198   default: llvm_unreachable("not an integer!");
199   case SignedChar:
200   case UnsignedChar:     return "hh";
201   case SignedShort:
202   case UnsignedShort:    return "h";
203   case SignedInt:
204   case UnsignedInt:      return "";
205   case SignedLong:
206   case UnsignedLong:     return "l";
207   case SignedLongLong:
208   case UnsignedLongLong: return "ll";
209   }
210 }
211 
212 /// getTypeWidth - Return the width (in bits) of the specified integer type
213 /// enum. For example, SignedInt -> getIntWidth().
214 unsigned TargetInfo::getTypeWidth(IntType T) const {
215   switch (T) {
216   default: llvm_unreachable("not an integer!");
217   case SignedChar:
218   case UnsignedChar:     return getCharWidth();
219   case SignedShort:
220   case UnsignedShort:    return getShortWidth();
221   case SignedInt:
222   case UnsignedInt:      return getIntWidth();
223   case SignedLong:
224   case UnsignedLong:     return getLongWidth();
225   case SignedLongLong:
226   case UnsignedLongLong: return getLongLongWidth();
227   };
228 }
229 
230 TargetInfo::IntType TargetInfo::getIntTypeByWidth(
231     unsigned BitWidth, bool IsSigned) const {
232   if (getCharWidth() == BitWidth)
233     return IsSigned ? SignedChar : UnsignedChar;
234   if (getShortWidth() == BitWidth)
235     return IsSigned ? SignedShort : UnsignedShort;
236   if (getIntWidth() == BitWidth)
237     return IsSigned ? SignedInt : UnsignedInt;
238   if (getLongWidth() == BitWidth)
239     return IsSigned ? SignedLong : UnsignedLong;
240   if (getLongLongWidth() == BitWidth)
241     return IsSigned ? SignedLongLong : UnsignedLongLong;
242   return NoInt;
243 }
244 
245 TargetInfo::IntType TargetInfo::getLeastIntTypeByWidth(unsigned BitWidth,
246                                                        bool IsSigned) const {
247   if (getCharWidth() >= BitWidth)
248     return IsSigned ? SignedChar : UnsignedChar;
249   if (getShortWidth() >= BitWidth)
250     return IsSigned ? SignedShort : UnsignedShort;
251   if (getIntWidth() >= BitWidth)
252     return IsSigned ? SignedInt : UnsignedInt;
253   if (getLongWidth() >= BitWidth)
254     return IsSigned ? SignedLong : UnsignedLong;
255   if (getLongLongWidth() >= BitWidth)
256     return IsSigned ? SignedLongLong : UnsignedLongLong;
257   return NoInt;
258 }
259 
260 TargetInfo::RealType TargetInfo::getRealTypeByWidth(unsigned BitWidth) const {
261   if (getFloatWidth() == BitWidth)
262     return Float;
263   if (getDoubleWidth() == BitWidth)
264     return Double;
265 
266   switch (BitWidth) {
267   case 96:
268     if (&getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended())
269       return LongDouble;
270     break;
271   case 128:
272     if (&getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble() ||
273         &getLongDoubleFormat() == &llvm::APFloat::IEEEquad())
274       return LongDouble;
275     if (hasFloat128Type())
276       return Float128;
277     break;
278   }
279 
280   return NoFloat;
281 }
282 
283 /// getTypeAlign - Return the alignment (in bits) of the specified integer type
284 /// enum. For example, SignedInt -> getIntAlign().
285 unsigned TargetInfo::getTypeAlign(IntType T) const {
286   switch (T) {
287   default: llvm_unreachable("not an integer!");
288   case SignedChar:
289   case UnsignedChar:     return getCharAlign();
290   case SignedShort:
291   case UnsignedShort:    return getShortAlign();
292   case SignedInt:
293   case UnsignedInt:      return getIntAlign();
294   case SignedLong:
295   case UnsignedLong:     return getLongAlign();
296   case SignedLongLong:
297   case UnsignedLongLong: return getLongLongAlign();
298   };
299 }
300 
301 /// isTypeSigned - Return whether an integer types is signed. Returns true if
302 /// the type is signed; false otherwise.
303 bool TargetInfo::isTypeSigned(IntType T) {
304   switch (T) {
305   default: llvm_unreachable("not an integer!");
306   case SignedChar:
307   case SignedShort:
308   case SignedInt:
309   case SignedLong:
310   case SignedLongLong:
311     return true;
312   case UnsignedChar:
313   case UnsignedShort:
314   case UnsignedInt:
315   case UnsignedLong:
316   case UnsignedLongLong:
317     return false;
318   };
319 }
320 
321 /// adjust - Set forced language options.
322 /// Apply changes to the target information with respect to certain
323 /// language options which change the target configuration and adjust
324 /// the language based on the target options where applicable.
325 void TargetInfo::adjust(LangOptions &Opts) {
326   if (Opts.NoBitFieldTypeAlign)
327     UseBitFieldTypeAlignment = false;
328 
329   switch (Opts.WCharSize) {
330   default: llvm_unreachable("invalid wchar_t width");
331   case 0: break;
332   case 1: WCharType = Opts.WCharIsSigned ? SignedChar : UnsignedChar; break;
333   case 2: WCharType = Opts.WCharIsSigned ? SignedShort : UnsignedShort; break;
334   case 4: WCharType = Opts.WCharIsSigned ? SignedInt : UnsignedInt; break;
335   }
336 
337   if (Opts.AlignDouble) {
338     DoubleAlign = LongLongAlign = 64;
339     LongDoubleAlign = 64;
340   }
341 
342   if (Opts.OpenCL) {
343     // OpenCL C requires specific widths for types, irrespective of
344     // what these normally are for the target.
345     // We also define long long and long double here, although the
346     // OpenCL standard only mentions these as "reserved".
347     IntWidth = IntAlign = 32;
348     LongWidth = LongAlign = 64;
349     LongLongWidth = LongLongAlign = 128;
350     HalfWidth = HalfAlign = 16;
351     FloatWidth = FloatAlign = 32;
352 
353     // Embedded 32-bit targets (OpenCL EP) might have double C type
354     // defined as float. Let's not override this as it might lead
355     // to generating illegal code that uses 64bit doubles.
356     if (DoubleWidth != FloatWidth) {
357       DoubleWidth = DoubleAlign = 64;
358       DoubleFormat = &llvm::APFloat::IEEEdouble();
359     }
360     LongDoubleWidth = LongDoubleAlign = 128;
361 
362     unsigned MaxPointerWidth = getMaxPointerWidth();
363     assert(MaxPointerWidth == 32 || MaxPointerWidth == 64);
364     bool Is32BitArch = MaxPointerWidth == 32;
365     SizeType = Is32BitArch ? UnsignedInt : UnsignedLong;
366     PtrDiffType = Is32BitArch ? SignedInt : SignedLong;
367     IntPtrType = Is32BitArch ? SignedInt : SignedLong;
368 
369     IntMaxType = SignedLongLong;
370     Int64Type = SignedLong;
371 
372     HalfFormat = &llvm::APFloat::IEEEhalf();
373     FloatFormat = &llvm::APFloat::IEEEsingle();
374     LongDoubleFormat = &llvm::APFloat::IEEEquad();
375   }
376 
377   if (Opts.LongDoubleSize) {
378     if (Opts.LongDoubleSize == DoubleWidth) {
379       LongDoubleWidth = DoubleWidth;
380       LongDoubleAlign = DoubleAlign;
381       LongDoubleFormat = DoubleFormat;
382     } else if (Opts.LongDoubleSize == 128) {
383       LongDoubleWidth = LongDoubleAlign = 128;
384       LongDoubleFormat = &llvm::APFloat::IEEEquad();
385     }
386   }
387 
388   if (Opts.NewAlignOverride)
389     NewAlign = Opts.NewAlignOverride * getCharWidth();
390 
391   // Each unsigned fixed point type has the same number of fractional bits as
392   // its corresponding signed type.
393   PaddingOnUnsignedFixedPoint |= Opts.PaddingOnUnsignedFixedPoint;
394   CheckFixedPointBits();
395 }
396 
397 bool TargetInfo::initFeatureMap(
398     llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU,
399     const std::vector<std::string> &FeatureVec) const {
400   for (const auto &F : FeatureVec) {
401     StringRef Name = F;
402     // Apply the feature via the target.
403     bool Enabled = Name[0] == '+';
404     setFeatureEnabled(Features, Name.substr(1), Enabled);
405   }
406   return true;
407 }
408 
409 TargetInfo::CallingConvKind
410 TargetInfo::getCallingConvKind(bool ClangABICompat4) const {
411   if (getCXXABI() != TargetCXXABI::Microsoft &&
412       (ClangABICompat4 || getTriple().getOS() == llvm::Triple::PS4))
413     return CCK_ClangABI4OrPS4;
414   return CCK_Default;
415 }
416 
417 LangAS TargetInfo::getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const {
418   switch (TK) {
419   case OCLTK_Image:
420   case OCLTK_Pipe:
421     return LangAS::opencl_global;
422 
423   case OCLTK_Sampler:
424     return LangAS::opencl_constant;
425 
426   default:
427     return LangAS::Default;
428   }
429 }
430 
431 //===----------------------------------------------------------------------===//
432 
433 
434 static StringRef removeGCCRegisterPrefix(StringRef Name) {
435   if (Name[0] == '%' || Name[0] == '#')
436     Name = Name.substr(1);
437 
438   return Name;
439 }
440 
441 /// isValidClobber - Returns whether the passed in string is
442 /// a valid clobber in an inline asm statement. This is used by
443 /// Sema.
444 bool TargetInfo::isValidClobber(StringRef Name) const {
445   return (isValidGCCRegisterName(Name) ||
446           Name == "memory" || Name == "cc");
447 }
448 
449 /// isValidGCCRegisterName - Returns whether the passed in string
450 /// is a valid register name according to GCC. This is used by Sema for
451 /// inline asm statements.
452 bool TargetInfo::isValidGCCRegisterName(StringRef Name) const {
453   if (Name.empty())
454     return false;
455 
456   // Get rid of any register prefix.
457   Name = removeGCCRegisterPrefix(Name);
458   if (Name.empty())
459     return false;
460 
461   ArrayRef<const char *> Names = getGCCRegNames();
462 
463   // If we have a number it maps to an entry in the register name array.
464   if (isDigit(Name[0])) {
465     unsigned n;
466     if (!Name.getAsInteger(0, n))
467       return n < Names.size();
468   }
469 
470   // Check register names.
471   if (llvm::is_contained(Names, Name))
472     return true;
473 
474   // Check any additional names that we have.
475   for (const AddlRegName &ARN : getGCCAddlRegNames())
476     for (const char *AN : ARN.Names) {
477       if (!AN)
478         break;
479       // Make sure the register that the additional name is for is within
480       // the bounds of the register names from above.
481       if (AN == Name && ARN.RegNum < Names.size())
482         return true;
483     }
484 
485   // Now check aliases.
486   for (const GCCRegAlias &GRA : getGCCRegAliases())
487     for (const char *A : GRA.Aliases) {
488       if (!A)
489         break;
490       if (A == Name)
491         return true;
492     }
493 
494   return false;
495 }
496 
497 StringRef TargetInfo::getNormalizedGCCRegisterName(StringRef Name,
498                                                    bool ReturnCanonical) const {
499   assert(isValidGCCRegisterName(Name) && "Invalid register passed in");
500 
501   // Get rid of any register prefix.
502   Name = removeGCCRegisterPrefix(Name);
503 
504   ArrayRef<const char *> Names = getGCCRegNames();
505 
506   // First, check if we have a number.
507   if (isDigit(Name[0])) {
508     unsigned n;
509     if (!Name.getAsInteger(0, n)) {
510       assert(n < Names.size() && "Out of bounds register number!");
511       return Names[n];
512     }
513   }
514 
515   // Check any additional names that we have.
516   for (const AddlRegName &ARN : getGCCAddlRegNames())
517     for (const char *AN : ARN.Names) {
518       if (!AN)
519         break;
520       // Make sure the register that the additional name is for is within
521       // the bounds of the register names from above.
522       if (AN == Name && ARN.RegNum < Names.size())
523         return ReturnCanonical ? Names[ARN.RegNum] : Name;
524     }
525 
526   // Now check aliases.
527   for (const GCCRegAlias &RA : getGCCRegAliases())
528     for (const char *A : RA.Aliases) {
529       if (!A)
530         break;
531       if (A == Name)
532         return RA.Register;
533     }
534 
535   return Name;
536 }
537 
538 bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const {
539   const char *Name = Info.getConstraintStr().c_str();
540   // An output constraint must start with '=' or '+'
541   if (*Name != '=' && *Name != '+')
542     return false;
543 
544   if (*Name == '+')
545     Info.setIsReadWrite();
546 
547   Name++;
548   while (*Name) {
549     switch (*Name) {
550     default:
551       if (!validateAsmConstraint(Name, Info)) {
552         // FIXME: We temporarily return false
553         // so we can add more constraints as we hit it.
554         // Eventually, an unknown constraint should just be treated as 'g'.
555         return false;
556       }
557       break;
558     case '&': // early clobber.
559       Info.setEarlyClobber();
560       break;
561     case '%': // commutative.
562       // FIXME: Check that there is a another register after this one.
563       break;
564     case 'r': // general register.
565       Info.setAllowsRegister();
566       break;
567     case 'm': // memory operand.
568     case 'o': // offsetable memory operand.
569     case 'V': // non-offsetable memory operand.
570     case '<': // autodecrement memory operand.
571     case '>': // autoincrement memory operand.
572       Info.setAllowsMemory();
573       break;
574     case 'g': // general register, memory operand or immediate integer.
575     case 'X': // any operand.
576       Info.setAllowsRegister();
577       Info.setAllowsMemory();
578       break;
579     case ',': // multiple alternative constraint.  Pass it.
580       // Handle additional optional '=' or '+' modifiers.
581       if (Name[1] == '=' || Name[1] == '+')
582         Name++;
583       break;
584     case '#': // Ignore as constraint.
585       while (Name[1] && Name[1] != ',')
586         Name++;
587       break;
588     case '?': // Disparage slightly code.
589     case '!': // Disparage severely.
590     case '*': // Ignore for choosing register preferences.
591     case 'i': // Ignore i,n,E,F as output constraints (match from the other
592               // chars)
593     case 'n':
594     case 'E':
595     case 'F':
596       break;  // Pass them.
597     }
598 
599     Name++;
600   }
601 
602   // Early clobber with a read-write constraint which doesn't permit registers
603   // is invalid.
604   if (Info.earlyClobber() && Info.isReadWrite() && !Info.allowsRegister())
605     return false;
606 
607   // If a constraint allows neither memory nor register operands it contains
608   // only modifiers. Reject it.
609   return Info.allowsMemory() || Info.allowsRegister();
610 }
611 
612 bool TargetInfo::resolveSymbolicName(const char *&Name,
613                                      ArrayRef<ConstraintInfo> OutputConstraints,
614                                      unsigned &Index) const {
615   assert(*Name == '[' && "Symbolic name did not start with '['");
616   Name++;
617   const char *Start = Name;
618   while (*Name && *Name != ']')
619     Name++;
620 
621   if (!*Name) {
622     // Missing ']'
623     return false;
624   }
625 
626   std::string SymbolicName(Start, Name - Start);
627 
628   for (Index = 0; Index != OutputConstraints.size(); ++Index)
629     if (SymbolicName == OutputConstraints[Index].getName())
630       return true;
631 
632   return false;
633 }
634 
635 bool TargetInfo::validateInputConstraint(
636                               MutableArrayRef<ConstraintInfo> OutputConstraints,
637                               ConstraintInfo &Info) const {
638   const char *Name = Info.ConstraintStr.c_str();
639 
640   if (!*Name)
641     return false;
642 
643   while (*Name) {
644     switch (*Name) {
645     default:
646       // Check if we have a matching constraint
647       if (*Name >= '0' && *Name <= '9') {
648         const char *DigitStart = Name;
649         while (Name[1] >= '0' && Name[1] <= '9')
650           Name++;
651         const char *DigitEnd = Name;
652         unsigned i;
653         if (StringRef(DigitStart, DigitEnd - DigitStart + 1)
654                 .getAsInteger(10, i))
655           return false;
656 
657         // Check if matching constraint is out of bounds.
658         if (i >= OutputConstraints.size()) return false;
659 
660         // A number must refer to an output only operand.
661         if (OutputConstraints[i].isReadWrite())
662           return false;
663 
664         // If the constraint is already tied, it must be tied to the
665         // same operand referenced to by the number.
666         if (Info.hasTiedOperand() && Info.getTiedOperand() != i)
667           return false;
668 
669         // The constraint should have the same info as the respective
670         // output constraint.
671         Info.setTiedOperand(i, OutputConstraints[i]);
672       } else if (!validateAsmConstraint(Name, Info)) {
673         // FIXME: This error return is in place temporarily so we can
674         // add more constraints as we hit it.  Eventually, an unknown
675         // constraint should just be treated as 'g'.
676         return false;
677       }
678       break;
679     case '[': {
680       unsigned Index = 0;
681       if (!resolveSymbolicName(Name, OutputConstraints, Index))
682         return false;
683 
684       // If the constraint is already tied, it must be tied to the
685       // same operand referenced to by the number.
686       if (Info.hasTiedOperand() && Info.getTiedOperand() != Index)
687         return false;
688 
689       // A number must refer to an output only operand.
690       if (OutputConstraints[Index].isReadWrite())
691         return false;
692 
693       Info.setTiedOperand(Index, OutputConstraints[Index]);
694       break;
695     }
696     case '%': // commutative
697       // FIXME: Fail if % is used with the last operand.
698       break;
699     case 'i': // immediate integer.
700       break;
701     case 'n': // immediate integer with a known value.
702       Info.setRequiresImmediate();
703       break;
704     case 'I':  // Various constant constraints with target-specific meanings.
705     case 'J':
706     case 'K':
707     case 'L':
708     case 'M':
709     case 'N':
710     case 'O':
711     case 'P':
712       if (!validateAsmConstraint(Name, Info))
713         return false;
714       break;
715     case 'r': // general register.
716       Info.setAllowsRegister();
717       break;
718     case 'm': // memory operand.
719     case 'o': // offsettable memory operand.
720     case 'V': // non-offsettable memory operand.
721     case '<': // autodecrement memory operand.
722     case '>': // autoincrement memory operand.
723       Info.setAllowsMemory();
724       break;
725     case 'g': // general register, memory operand or immediate integer.
726     case 'X': // any operand.
727       Info.setAllowsRegister();
728       Info.setAllowsMemory();
729       break;
730     case 'E': // immediate floating point.
731     case 'F': // immediate floating point.
732     case 'p': // address operand.
733       break;
734     case ',': // multiple alternative constraint.  Ignore comma.
735       break;
736     case '#': // Ignore as constraint.
737       while (Name[1] && Name[1] != ',')
738         Name++;
739       break;
740     case '?': // Disparage slightly code.
741     case '!': // Disparage severely.
742     case '*': // Ignore for choosing register preferences.
743       break;  // Pass them.
744     }
745 
746     Name++;
747   }
748 
749   return true;
750 }
751 
752 void TargetInfo::CheckFixedPointBits() const {
753   // Check that the number of fractional and integral bits (and maybe sign) can
754   // fit into the bits given for a fixed point type.
755   assert(ShortAccumScale + getShortAccumIBits() + 1 <= ShortAccumWidth);
756   assert(AccumScale + getAccumIBits() + 1 <= AccumWidth);
757   assert(LongAccumScale + getLongAccumIBits() + 1 <= LongAccumWidth);
758   assert(getUnsignedShortAccumScale() + getUnsignedShortAccumIBits() <=
759          ShortAccumWidth);
760   assert(getUnsignedAccumScale() + getUnsignedAccumIBits() <= AccumWidth);
761   assert(getUnsignedLongAccumScale() + getUnsignedLongAccumIBits() <=
762          LongAccumWidth);
763 
764   assert(getShortFractScale() + 1 <= ShortFractWidth);
765   assert(getFractScale() + 1 <= FractWidth);
766   assert(getLongFractScale() + 1 <= LongFractWidth);
767   assert(getUnsignedShortFractScale() <= ShortFractWidth);
768   assert(getUnsignedFractScale() <= FractWidth);
769   assert(getUnsignedLongFractScale() <= LongFractWidth);
770 
771   // Each unsigned fract type has either the same number of fractional bits
772   // as, or one more fractional bit than, its corresponding signed fract type.
773   assert(getShortFractScale() == getUnsignedShortFractScale() ||
774          getShortFractScale() == getUnsignedShortFractScale() - 1);
775   assert(getFractScale() == getUnsignedFractScale() ||
776          getFractScale() == getUnsignedFractScale() - 1);
777   assert(getLongFractScale() == getUnsignedLongFractScale() ||
778          getLongFractScale() == getUnsignedLongFractScale() - 1);
779 
780   // When arranged in order of increasing rank (see 6.3.1.3a), the number of
781   // fractional bits is nondecreasing for each of the following sets of
782   // fixed-point types:
783   // - signed fract types
784   // - unsigned fract types
785   // - signed accum types
786   // - unsigned accum types.
787   assert(getLongFractScale() >= getFractScale() &&
788          getFractScale() >= getShortFractScale());
789   assert(getUnsignedLongFractScale() >= getUnsignedFractScale() &&
790          getUnsignedFractScale() >= getUnsignedShortFractScale());
791   assert(LongAccumScale >= AccumScale && AccumScale >= ShortAccumScale);
792   assert(getUnsignedLongAccumScale() >= getUnsignedAccumScale() &&
793          getUnsignedAccumScale() >= getUnsignedShortAccumScale());
794 
795   // When arranged in order of increasing rank (see 6.3.1.3a), the number of
796   // integral bits is nondecreasing for each of the following sets of
797   // fixed-point types:
798   // - signed accum types
799   // - unsigned accum types
800   assert(getLongAccumIBits() >= getAccumIBits() &&
801          getAccumIBits() >= getShortAccumIBits());
802   assert(getUnsignedLongAccumIBits() >= getUnsignedAccumIBits() &&
803          getUnsignedAccumIBits() >= getUnsignedShortAccumIBits());
804 
805   // Each signed accum type has at least as many integral bits as its
806   // corresponding unsigned accum type.
807   assert(getShortAccumIBits() >= getUnsignedShortAccumIBits());
808   assert(getAccumIBits() >= getUnsignedAccumIBits());
809   assert(getLongAccumIBits() >= getUnsignedLongAccumIBits());
810 }
811 
812 void TargetInfo::copyAuxTarget(const TargetInfo *Aux) {
813   auto *Target = static_cast<TransferrableTargetInfo*>(this);
814   auto *Src = static_cast<const TransferrableTargetInfo*>(Aux);
815   *Target = *Src;
816 }
817