1 //===--- TargetInfo.cpp - Information about Target machine ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the TargetInfo and TargetInfoImpl interfaces. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Basic/TargetInfo.h" 14 #include "clang/Basic/AddressSpaces.h" 15 #include "clang/Basic/CharInfo.h" 16 #include "clang/Basic/Diagnostic.h" 17 #include "clang/Basic/LangOptions.h" 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include "llvm/Support/TargetParser.h" 22 #include <cstdlib> 23 using namespace clang; 24 25 static const LangASMap DefaultAddrSpaceMap = {0}; 26 27 // TargetInfo Constructor. 28 TargetInfo::TargetInfo(const llvm::Triple &T) : Triple(T) { 29 // Set defaults. Defaults are set for a 32-bit RISC platform, like PPC or 30 // SPARC. These should be overridden by concrete targets as needed. 31 BigEndian = !T.isLittleEndian(); 32 TLSSupported = true; 33 VLASupported = true; 34 NoAsmVariants = false; 35 HasLegalHalfType = false; 36 HasFloat128 = false; 37 HasIbm128 = false; 38 HasFloat16 = false; 39 HasBFloat16 = false; 40 HasLongDouble = true; 41 HasFPReturn = true; 42 HasStrictFP = false; 43 PointerWidth = PointerAlign = 32; 44 BoolWidth = BoolAlign = 8; 45 IntWidth = IntAlign = 32; 46 LongWidth = LongAlign = 32; 47 LongLongWidth = LongLongAlign = 64; 48 49 // Fixed point default bit widths 50 ShortAccumWidth = ShortAccumAlign = 16; 51 AccumWidth = AccumAlign = 32; 52 LongAccumWidth = LongAccumAlign = 64; 53 ShortFractWidth = ShortFractAlign = 8; 54 FractWidth = FractAlign = 16; 55 LongFractWidth = LongFractAlign = 32; 56 57 // Fixed point default integral and fractional bit sizes 58 // We give the _Accum 1 fewer fractional bits than their corresponding _Fract 59 // types by default to have the same number of fractional bits between _Accum 60 // and _Fract types. 61 PaddingOnUnsignedFixedPoint = false; 62 ShortAccumScale = 7; 63 AccumScale = 15; 64 LongAccumScale = 31; 65 66 SuitableAlign = 64; 67 DefaultAlignForAttributeAligned = 128; 68 MinGlobalAlign = 0; 69 // From the glibc documentation, on GNU systems, malloc guarantees 16-byte 70 // alignment on 64-bit systems and 8-byte alignment on 32-bit systems. See 71 // https://www.gnu.org/software/libc/manual/html_node/Malloc-Examples.html. 72 // This alignment guarantee also applies to Windows and Android. On Darwin 73 // and OpenBSD, the alignment is 16 bytes on both 64-bit and 32-bit systems. 74 if (T.isGNUEnvironment() || T.isWindowsMSVCEnvironment() || T.isAndroid()) 75 NewAlign = Triple.isArch64Bit() ? 128 : Triple.isArch32Bit() ? 64 : 0; 76 else if (T.isOSDarwin() || T.isOSOpenBSD()) 77 NewAlign = 128; 78 else 79 NewAlign = 0; // Infer from basic type alignment. 80 HalfWidth = 16; 81 HalfAlign = 16; 82 FloatWidth = 32; 83 FloatAlign = 32; 84 DoubleWidth = 64; 85 DoubleAlign = 64; 86 LongDoubleWidth = 64; 87 LongDoubleAlign = 64; 88 Float128Align = 128; 89 Ibm128Align = 128; 90 LargeArrayMinWidth = 0; 91 LargeArrayAlign = 0; 92 MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0; 93 MaxVectorAlign = 0; 94 MaxTLSAlign = 0; 95 SimdDefaultAlign = 0; 96 SizeType = UnsignedLong; 97 PtrDiffType = SignedLong; 98 IntMaxType = SignedLongLong; 99 IntPtrType = SignedLong; 100 WCharType = SignedInt; 101 WIntType = SignedInt; 102 Char16Type = UnsignedShort; 103 Char32Type = UnsignedInt; 104 Int64Type = SignedLongLong; 105 Int16Type = SignedShort; 106 SigAtomicType = SignedInt; 107 ProcessIDType = SignedInt; 108 UseSignedCharForObjCBool = true; 109 UseBitFieldTypeAlignment = true; 110 UseZeroLengthBitfieldAlignment = false; 111 UseLeadingZeroLengthBitfield = true; 112 UseExplicitBitFieldAlignment = true; 113 ZeroLengthBitfieldBoundary = 0; 114 MaxAlignedAttribute = 0; 115 HalfFormat = &llvm::APFloat::IEEEhalf(); 116 FloatFormat = &llvm::APFloat::IEEEsingle(); 117 DoubleFormat = &llvm::APFloat::IEEEdouble(); 118 LongDoubleFormat = &llvm::APFloat::IEEEdouble(); 119 Float128Format = &llvm::APFloat::IEEEquad(); 120 Ibm128Format = &llvm::APFloat::PPCDoubleDouble(); 121 MCountName = "mcount"; 122 UserLabelPrefix = "_"; 123 RegParmMax = 0; 124 SSERegParmMax = 0; 125 HasAlignMac68kSupport = false; 126 HasBuiltinMSVaList = false; 127 IsRenderScriptTarget = false; 128 HasAArch64SVETypes = false; 129 HasRISCVVTypes = false; 130 AllowAMDGPUUnsafeFPAtomics = false; 131 ARMCDECoprocMask = 0; 132 133 // Default to no types using fpret. 134 RealTypeUsesObjCFPRet = 0; 135 136 // Default to not using fp2ret for __Complex long double 137 ComplexLongDoubleUsesFP2Ret = false; 138 139 // Set the C++ ABI based on the triple. 140 TheCXXABI.set(Triple.isKnownWindowsMSVCEnvironment() 141 ? TargetCXXABI::Microsoft 142 : TargetCXXABI::GenericItanium); 143 144 // Default to an empty address space map. 145 AddrSpaceMap = &DefaultAddrSpaceMap; 146 UseAddrSpaceMapMangling = false; 147 148 // Default to an unknown platform name. 149 PlatformName = "unknown"; 150 PlatformMinVersion = VersionTuple(); 151 152 MaxOpenCLWorkGroupSize = 1024; 153 ProgramAddrSpace = 0; 154 } 155 156 // Out of line virtual dtor for TargetInfo. 157 TargetInfo::~TargetInfo() {} 158 159 void TargetInfo::resetDataLayout(StringRef DL, const char *ULP) { 160 DataLayoutString = DL.str(); 161 UserLabelPrefix = ULP; 162 } 163 164 bool 165 TargetInfo::checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const { 166 Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=branch"; 167 return false; 168 } 169 170 bool 171 TargetInfo::checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const { 172 Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=return"; 173 return false; 174 } 175 176 /// getTypeName - Return the user string for the specified integer type enum. 177 /// For example, SignedShort -> "short". 178 const char *TargetInfo::getTypeName(IntType T) { 179 switch (T) { 180 default: llvm_unreachable("not an integer!"); 181 case SignedChar: return "signed char"; 182 case UnsignedChar: return "unsigned char"; 183 case SignedShort: return "short"; 184 case UnsignedShort: return "unsigned short"; 185 case SignedInt: return "int"; 186 case UnsignedInt: return "unsigned int"; 187 case SignedLong: return "long int"; 188 case UnsignedLong: return "long unsigned int"; 189 case SignedLongLong: return "long long int"; 190 case UnsignedLongLong: return "long long unsigned int"; 191 } 192 } 193 194 /// getTypeConstantSuffix - Return the constant suffix for the specified 195 /// integer type enum. For example, SignedLong -> "L". 196 const char *TargetInfo::getTypeConstantSuffix(IntType T) const { 197 switch (T) { 198 default: llvm_unreachable("not an integer!"); 199 case SignedChar: 200 case SignedShort: 201 case SignedInt: return ""; 202 case SignedLong: return "L"; 203 case SignedLongLong: return "LL"; 204 case UnsignedChar: 205 if (getCharWidth() < getIntWidth()) 206 return ""; 207 LLVM_FALLTHROUGH; 208 case UnsignedShort: 209 if (getShortWidth() < getIntWidth()) 210 return ""; 211 LLVM_FALLTHROUGH; 212 case UnsignedInt: return "U"; 213 case UnsignedLong: return "UL"; 214 case UnsignedLongLong: return "ULL"; 215 } 216 } 217 218 /// getTypeFormatModifier - Return the printf format modifier for the 219 /// specified integer type enum. For example, SignedLong -> "l". 220 221 const char *TargetInfo::getTypeFormatModifier(IntType T) { 222 switch (T) { 223 default: llvm_unreachable("not an integer!"); 224 case SignedChar: 225 case UnsignedChar: return "hh"; 226 case SignedShort: 227 case UnsignedShort: return "h"; 228 case SignedInt: 229 case UnsignedInt: return ""; 230 case SignedLong: 231 case UnsignedLong: return "l"; 232 case SignedLongLong: 233 case UnsignedLongLong: return "ll"; 234 } 235 } 236 237 /// getTypeWidth - Return the width (in bits) of the specified integer type 238 /// enum. For example, SignedInt -> getIntWidth(). 239 unsigned TargetInfo::getTypeWidth(IntType T) const { 240 switch (T) { 241 default: llvm_unreachable("not an integer!"); 242 case SignedChar: 243 case UnsignedChar: return getCharWidth(); 244 case SignedShort: 245 case UnsignedShort: return getShortWidth(); 246 case SignedInt: 247 case UnsignedInt: return getIntWidth(); 248 case SignedLong: 249 case UnsignedLong: return getLongWidth(); 250 case SignedLongLong: 251 case UnsignedLongLong: return getLongLongWidth(); 252 }; 253 } 254 255 TargetInfo::IntType TargetInfo::getIntTypeByWidth( 256 unsigned BitWidth, bool IsSigned) const { 257 if (getCharWidth() == BitWidth) 258 return IsSigned ? SignedChar : UnsignedChar; 259 if (getShortWidth() == BitWidth) 260 return IsSigned ? SignedShort : UnsignedShort; 261 if (getIntWidth() == BitWidth) 262 return IsSigned ? SignedInt : UnsignedInt; 263 if (getLongWidth() == BitWidth) 264 return IsSigned ? SignedLong : UnsignedLong; 265 if (getLongLongWidth() == BitWidth) 266 return IsSigned ? SignedLongLong : UnsignedLongLong; 267 return NoInt; 268 } 269 270 TargetInfo::IntType TargetInfo::getLeastIntTypeByWidth(unsigned BitWidth, 271 bool IsSigned) const { 272 if (getCharWidth() >= BitWidth) 273 return IsSigned ? SignedChar : UnsignedChar; 274 if (getShortWidth() >= BitWidth) 275 return IsSigned ? SignedShort : UnsignedShort; 276 if (getIntWidth() >= BitWidth) 277 return IsSigned ? SignedInt : UnsignedInt; 278 if (getLongWidth() >= BitWidth) 279 return IsSigned ? SignedLong : UnsignedLong; 280 if (getLongLongWidth() >= BitWidth) 281 return IsSigned ? SignedLongLong : UnsignedLongLong; 282 return NoInt; 283 } 284 285 FloatModeKind TargetInfo::getRealTypeByWidth(unsigned BitWidth, 286 FloatModeKind ExplicitType) const { 287 if (getFloatWidth() == BitWidth) 288 return FloatModeKind::Float; 289 if (getDoubleWidth() == BitWidth) 290 return FloatModeKind::Double; 291 292 switch (BitWidth) { 293 case 96: 294 if (&getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended()) 295 return FloatModeKind::LongDouble; 296 break; 297 case 128: 298 // The caller explicitly asked for an IEEE compliant type but we still 299 // have to check if the target supports it. 300 if (ExplicitType == FloatModeKind::Float128) 301 return hasFloat128Type() ? FloatModeKind::Float128 302 : FloatModeKind::NoFloat; 303 if (ExplicitType == FloatModeKind::Ibm128) 304 return hasIbm128Type() ? FloatModeKind::Ibm128 305 : FloatModeKind::NoFloat; 306 if (&getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble() || 307 &getLongDoubleFormat() == &llvm::APFloat::IEEEquad()) 308 return FloatModeKind::LongDouble; 309 if (hasFloat128Type()) 310 return FloatModeKind::Float128; 311 break; 312 } 313 314 return FloatModeKind::NoFloat; 315 } 316 317 /// getTypeAlign - Return the alignment (in bits) of the specified integer type 318 /// enum. For example, SignedInt -> getIntAlign(). 319 unsigned TargetInfo::getTypeAlign(IntType T) const { 320 switch (T) { 321 default: llvm_unreachable("not an integer!"); 322 case SignedChar: 323 case UnsignedChar: return getCharAlign(); 324 case SignedShort: 325 case UnsignedShort: return getShortAlign(); 326 case SignedInt: 327 case UnsignedInt: return getIntAlign(); 328 case SignedLong: 329 case UnsignedLong: return getLongAlign(); 330 case SignedLongLong: 331 case UnsignedLongLong: return getLongLongAlign(); 332 }; 333 } 334 335 /// isTypeSigned - Return whether an integer types is signed. Returns true if 336 /// the type is signed; false otherwise. 337 bool TargetInfo::isTypeSigned(IntType T) { 338 switch (T) { 339 default: llvm_unreachable("not an integer!"); 340 case SignedChar: 341 case SignedShort: 342 case SignedInt: 343 case SignedLong: 344 case SignedLongLong: 345 return true; 346 case UnsignedChar: 347 case UnsignedShort: 348 case UnsignedInt: 349 case UnsignedLong: 350 case UnsignedLongLong: 351 return false; 352 }; 353 } 354 355 /// adjust - Set forced language options. 356 /// Apply changes to the target information with respect to certain 357 /// language options which change the target configuration and adjust 358 /// the language based on the target options where applicable. 359 void TargetInfo::adjust(DiagnosticsEngine &Diags, LangOptions &Opts) { 360 if (Opts.NoBitFieldTypeAlign) 361 UseBitFieldTypeAlignment = false; 362 363 switch (Opts.WCharSize) { 364 default: llvm_unreachable("invalid wchar_t width"); 365 case 0: break; 366 case 1: WCharType = Opts.WCharIsSigned ? SignedChar : UnsignedChar; break; 367 case 2: WCharType = Opts.WCharIsSigned ? SignedShort : UnsignedShort; break; 368 case 4: WCharType = Opts.WCharIsSigned ? SignedInt : UnsignedInt; break; 369 } 370 371 if (Opts.AlignDouble) { 372 DoubleAlign = LongLongAlign = 64; 373 LongDoubleAlign = 64; 374 } 375 376 if (Opts.OpenCL) { 377 // OpenCL C requires specific widths for types, irrespective of 378 // what these normally are for the target. 379 // We also define long long and long double here, although the 380 // OpenCL standard only mentions these as "reserved". 381 IntWidth = IntAlign = 32; 382 LongWidth = LongAlign = 64; 383 LongLongWidth = LongLongAlign = 128; 384 HalfWidth = HalfAlign = 16; 385 FloatWidth = FloatAlign = 32; 386 387 // Embedded 32-bit targets (OpenCL EP) might have double C type 388 // defined as float. Let's not override this as it might lead 389 // to generating illegal code that uses 64bit doubles. 390 if (DoubleWidth != FloatWidth) { 391 DoubleWidth = DoubleAlign = 64; 392 DoubleFormat = &llvm::APFloat::IEEEdouble(); 393 } 394 LongDoubleWidth = LongDoubleAlign = 128; 395 396 unsigned MaxPointerWidth = getMaxPointerWidth(); 397 assert(MaxPointerWidth == 32 || MaxPointerWidth == 64); 398 bool Is32BitArch = MaxPointerWidth == 32; 399 SizeType = Is32BitArch ? UnsignedInt : UnsignedLong; 400 PtrDiffType = Is32BitArch ? SignedInt : SignedLong; 401 IntPtrType = Is32BitArch ? SignedInt : SignedLong; 402 403 IntMaxType = SignedLongLong; 404 Int64Type = SignedLong; 405 406 HalfFormat = &llvm::APFloat::IEEEhalf(); 407 FloatFormat = &llvm::APFloat::IEEEsingle(); 408 LongDoubleFormat = &llvm::APFloat::IEEEquad(); 409 410 // OpenCL C v3.0 s6.7.5 - The generic address space requires support for 411 // OpenCL C 2.0 or OpenCL C 3.0 with the __opencl_c_generic_address_space 412 // feature 413 // OpenCL C v3.0 s6.2.1 - OpenCL pipes require support of OpenCL C 2.0 414 // or later and __opencl_c_pipes feature 415 // FIXME: These language options are also defined in setLangDefaults() 416 // for OpenCL C 2.0 but with no access to target capabilities. Target 417 // should be immutable once created and thus these language options need 418 // to be defined only once. 419 if (Opts.getOpenCLCompatibleVersion() == 300) { 420 const auto &OpenCLFeaturesMap = getSupportedOpenCLOpts(); 421 Opts.OpenCLGenericAddressSpace = hasFeatureEnabled( 422 OpenCLFeaturesMap, "__opencl_c_generic_address_space"); 423 Opts.OpenCLPipes = 424 hasFeatureEnabled(OpenCLFeaturesMap, "__opencl_c_pipes"); 425 Opts.Blocks = 426 hasFeatureEnabled(OpenCLFeaturesMap, "__opencl_c_device_enqueue"); 427 } 428 } 429 430 if (Opts.DoubleSize) { 431 if (Opts.DoubleSize == 32) { 432 DoubleWidth = 32; 433 LongDoubleWidth = 32; 434 DoubleFormat = &llvm::APFloat::IEEEsingle(); 435 LongDoubleFormat = &llvm::APFloat::IEEEsingle(); 436 } else if (Opts.DoubleSize == 64) { 437 DoubleWidth = 64; 438 LongDoubleWidth = 64; 439 DoubleFormat = &llvm::APFloat::IEEEdouble(); 440 LongDoubleFormat = &llvm::APFloat::IEEEdouble(); 441 } 442 } 443 444 if (Opts.LongDoubleSize) { 445 if (Opts.LongDoubleSize == DoubleWidth) { 446 LongDoubleWidth = DoubleWidth; 447 LongDoubleAlign = DoubleAlign; 448 LongDoubleFormat = DoubleFormat; 449 } else if (Opts.LongDoubleSize == 128) { 450 LongDoubleWidth = LongDoubleAlign = 128; 451 LongDoubleFormat = &llvm::APFloat::IEEEquad(); 452 } else if (Opts.LongDoubleSize == 80) { 453 LongDoubleFormat = &llvm::APFloat::x87DoubleExtended(); 454 if (getTriple().isWindowsMSVCEnvironment()) { 455 LongDoubleWidth = 128; 456 LongDoubleAlign = 128; 457 } else { // Linux 458 if (getTriple().getArch() == llvm::Triple::x86) { 459 LongDoubleWidth = 96; 460 LongDoubleAlign = 32; 461 } else { 462 LongDoubleWidth = 128; 463 LongDoubleAlign = 128; 464 } 465 } 466 } 467 } 468 469 if (Opts.NewAlignOverride) 470 NewAlign = Opts.NewAlignOverride * getCharWidth(); 471 472 // Each unsigned fixed point type has the same number of fractional bits as 473 // its corresponding signed type. 474 PaddingOnUnsignedFixedPoint |= Opts.PaddingOnUnsignedFixedPoint; 475 CheckFixedPointBits(); 476 477 if (Opts.ProtectParens && !checkArithmeticFenceSupported()) { 478 Diags.Report(diag::err_opt_not_valid_on_target) << "-fprotect-parens"; 479 Opts.ProtectParens = false; 480 } 481 } 482 483 bool TargetInfo::initFeatureMap( 484 llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU, 485 const std::vector<std::string> &FeatureVec) const { 486 for (const auto &F : FeatureVec) { 487 StringRef Name = F; 488 // Apply the feature via the target. 489 bool Enabled = Name[0] == '+'; 490 setFeatureEnabled(Features, Name.substr(1), Enabled); 491 } 492 return true; 493 } 494 495 TargetInfo::CallingConvKind 496 TargetInfo::getCallingConvKind(bool ClangABICompat4) const { 497 if (getCXXABI() != TargetCXXABI::Microsoft && 498 (ClangABICompat4 || getTriple().getOS() == llvm::Triple::PS4)) 499 return CCK_ClangABI4OrPS4; 500 return CCK_Default; 501 } 502 503 LangAS TargetInfo::getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const { 504 switch (TK) { 505 case OCLTK_Image: 506 case OCLTK_Pipe: 507 return LangAS::opencl_global; 508 509 case OCLTK_Sampler: 510 return LangAS::opencl_constant; 511 512 default: 513 return LangAS::Default; 514 } 515 } 516 517 //===----------------------------------------------------------------------===// 518 519 520 static StringRef removeGCCRegisterPrefix(StringRef Name) { 521 if (Name[0] == '%' || Name[0] == '#') 522 Name = Name.substr(1); 523 524 return Name; 525 } 526 527 /// isValidClobber - Returns whether the passed in string is 528 /// a valid clobber in an inline asm statement. This is used by 529 /// Sema. 530 bool TargetInfo::isValidClobber(StringRef Name) const { 531 return (isValidGCCRegisterName(Name) || Name == "memory" || Name == "cc" || 532 Name == "unwind"); 533 } 534 535 /// isValidGCCRegisterName - Returns whether the passed in string 536 /// is a valid register name according to GCC. This is used by Sema for 537 /// inline asm statements. 538 bool TargetInfo::isValidGCCRegisterName(StringRef Name) const { 539 if (Name.empty()) 540 return false; 541 542 // Get rid of any register prefix. 543 Name = removeGCCRegisterPrefix(Name); 544 if (Name.empty()) 545 return false; 546 547 ArrayRef<const char *> Names = getGCCRegNames(); 548 549 // If we have a number it maps to an entry in the register name array. 550 if (isDigit(Name[0])) { 551 unsigned n; 552 if (!Name.getAsInteger(0, n)) 553 return n < Names.size(); 554 } 555 556 // Check register names. 557 if (llvm::is_contained(Names, Name)) 558 return true; 559 560 // Check any additional names that we have. 561 for (const AddlRegName &ARN : getGCCAddlRegNames()) 562 for (const char *AN : ARN.Names) { 563 if (!AN) 564 break; 565 // Make sure the register that the additional name is for is within 566 // the bounds of the register names from above. 567 if (AN == Name && ARN.RegNum < Names.size()) 568 return true; 569 } 570 571 // Now check aliases. 572 for (const GCCRegAlias &GRA : getGCCRegAliases()) 573 for (const char *A : GRA.Aliases) { 574 if (!A) 575 break; 576 if (A == Name) 577 return true; 578 } 579 580 return false; 581 } 582 583 StringRef TargetInfo::getNormalizedGCCRegisterName(StringRef Name, 584 bool ReturnCanonical) const { 585 assert(isValidGCCRegisterName(Name) && "Invalid register passed in"); 586 587 // Get rid of any register prefix. 588 Name = removeGCCRegisterPrefix(Name); 589 590 ArrayRef<const char *> Names = getGCCRegNames(); 591 592 // First, check if we have a number. 593 if (isDigit(Name[0])) { 594 unsigned n; 595 if (!Name.getAsInteger(0, n)) { 596 assert(n < Names.size() && "Out of bounds register number!"); 597 return Names[n]; 598 } 599 } 600 601 // Check any additional names that we have. 602 for (const AddlRegName &ARN : getGCCAddlRegNames()) 603 for (const char *AN : ARN.Names) { 604 if (!AN) 605 break; 606 // Make sure the register that the additional name is for is within 607 // the bounds of the register names from above. 608 if (AN == Name && ARN.RegNum < Names.size()) 609 return ReturnCanonical ? Names[ARN.RegNum] : Name; 610 } 611 612 // Now check aliases. 613 for (const GCCRegAlias &RA : getGCCRegAliases()) 614 for (const char *A : RA.Aliases) { 615 if (!A) 616 break; 617 if (A == Name) 618 return RA.Register; 619 } 620 621 return Name; 622 } 623 624 bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const { 625 const char *Name = Info.getConstraintStr().c_str(); 626 // An output constraint must start with '=' or '+' 627 if (*Name != '=' && *Name != '+') 628 return false; 629 630 if (*Name == '+') 631 Info.setIsReadWrite(); 632 633 Name++; 634 while (*Name) { 635 switch (*Name) { 636 default: 637 if (!validateAsmConstraint(Name, Info)) { 638 // FIXME: We temporarily return false 639 // so we can add more constraints as we hit it. 640 // Eventually, an unknown constraint should just be treated as 'g'. 641 return false; 642 } 643 break; 644 case '&': // early clobber. 645 Info.setEarlyClobber(); 646 break; 647 case '%': // commutative. 648 // FIXME: Check that there is a another register after this one. 649 break; 650 case 'r': // general register. 651 Info.setAllowsRegister(); 652 break; 653 case 'm': // memory operand. 654 case 'o': // offsetable memory operand. 655 case 'V': // non-offsetable memory operand. 656 case '<': // autodecrement memory operand. 657 case '>': // autoincrement memory operand. 658 Info.setAllowsMemory(); 659 break; 660 case 'g': // general register, memory operand or immediate integer. 661 case 'X': // any operand. 662 Info.setAllowsRegister(); 663 Info.setAllowsMemory(); 664 break; 665 case ',': // multiple alternative constraint. Pass it. 666 // Handle additional optional '=' or '+' modifiers. 667 if (Name[1] == '=' || Name[1] == '+') 668 Name++; 669 break; 670 case '#': // Ignore as constraint. 671 while (Name[1] && Name[1] != ',') 672 Name++; 673 break; 674 case '?': // Disparage slightly code. 675 case '!': // Disparage severely. 676 case '*': // Ignore for choosing register preferences. 677 case 'i': // Ignore i,n,E,F as output constraints (match from the other 678 // chars) 679 case 'n': 680 case 'E': 681 case 'F': 682 break; // Pass them. 683 } 684 685 Name++; 686 } 687 688 // Early clobber with a read-write constraint which doesn't permit registers 689 // is invalid. 690 if (Info.earlyClobber() && Info.isReadWrite() && !Info.allowsRegister()) 691 return false; 692 693 // If a constraint allows neither memory nor register operands it contains 694 // only modifiers. Reject it. 695 return Info.allowsMemory() || Info.allowsRegister(); 696 } 697 698 bool TargetInfo::resolveSymbolicName(const char *&Name, 699 ArrayRef<ConstraintInfo> OutputConstraints, 700 unsigned &Index) const { 701 assert(*Name == '[' && "Symbolic name did not start with '['"); 702 Name++; 703 const char *Start = Name; 704 while (*Name && *Name != ']') 705 Name++; 706 707 if (!*Name) { 708 // Missing ']' 709 return false; 710 } 711 712 std::string SymbolicName(Start, Name - Start); 713 714 for (Index = 0; Index != OutputConstraints.size(); ++Index) 715 if (SymbolicName == OutputConstraints[Index].getName()) 716 return true; 717 718 return false; 719 } 720 721 bool TargetInfo::validateInputConstraint( 722 MutableArrayRef<ConstraintInfo> OutputConstraints, 723 ConstraintInfo &Info) const { 724 const char *Name = Info.ConstraintStr.c_str(); 725 726 if (!*Name) 727 return false; 728 729 while (*Name) { 730 switch (*Name) { 731 default: 732 // Check if we have a matching constraint 733 if (*Name >= '0' && *Name <= '9') { 734 const char *DigitStart = Name; 735 while (Name[1] >= '0' && Name[1] <= '9') 736 Name++; 737 const char *DigitEnd = Name; 738 unsigned i; 739 if (StringRef(DigitStart, DigitEnd - DigitStart + 1) 740 .getAsInteger(10, i)) 741 return false; 742 743 // Check if matching constraint is out of bounds. 744 if (i >= OutputConstraints.size()) return false; 745 746 // A number must refer to an output only operand. 747 if (OutputConstraints[i].isReadWrite()) 748 return false; 749 750 // If the constraint is already tied, it must be tied to the 751 // same operand referenced to by the number. 752 if (Info.hasTiedOperand() && Info.getTiedOperand() != i) 753 return false; 754 755 // The constraint should have the same info as the respective 756 // output constraint. 757 Info.setTiedOperand(i, OutputConstraints[i]); 758 } else if (!validateAsmConstraint(Name, Info)) { 759 // FIXME: This error return is in place temporarily so we can 760 // add more constraints as we hit it. Eventually, an unknown 761 // constraint should just be treated as 'g'. 762 return false; 763 } 764 break; 765 case '[': { 766 unsigned Index = 0; 767 if (!resolveSymbolicName(Name, OutputConstraints, Index)) 768 return false; 769 770 // If the constraint is already tied, it must be tied to the 771 // same operand referenced to by the number. 772 if (Info.hasTiedOperand() && Info.getTiedOperand() != Index) 773 return false; 774 775 // A number must refer to an output only operand. 776 if (OutputConstraints[Index].isReadWrite()) 777 return false; 778 779 Info.setTiedOperand(Index, OutputConstraints[Index]); 780 break; 781 } 782 case '%': // commutative 783 // FIXME: Fail if % is used with the last operand. 784 break; 785 case 'i': // immediate integer. 786 break; 787 case 'n': // immediate integer with a known value. 788 Info.setRequiresImmediate(); 789 break; 790 case 'I': // Various constant constraints with target-specific meanings. 791 case 'J': 792 case 'K': 793 case 'L': 794 case 'M': 795 case 'N': 796 case 'O': 797 case 'P': 798 if (!validateAsmConstraint(Name, Info)) 799 return false; 800 break; 801 case 'r': // general register. 802 Info.setAllowsRegister(); 803 break; 804 case 'm': // memory operand. 805 case 'o': // offsettable memory operand. 806 case 'V': // non-offsettable memory operand. 807 case '<': // autodecrement memory operand. 808 case '>': // autoincrement memory operand. 809 Info.setAllowsMemory(); 810 break; 811 case 'g': // general register, memory operand or immediate integer. 812 case 'X': // any operand. 813 Info.setAllowsRegister(); 814 Info.setAllowsMemory(); 815 break; 816 case 'E': // immediate floating point. 817 case 'F': // immediate floating point. 818 case 'p': // address operand. 819 break; 820 case ',': // multiple alternative constraint. Ignore comma. 821 break; 822 case '#': // Ignore as constraint. 823 while (Name[1] && Name[1] != ',') 824 Name++; 825 break; 826 case '?': // Disparage slightly code. 827 case '!': // Disparage severely. 828 case '*': // Ignore for choosing register preferences. 829 break; // Pass them. 830 } 831 832 Name++; 833 } 834 835 return true; 836 } 837 838 void TargetInfo::CheckFixedPointBits() const { 839 // Check that the number of fractional and integral bits (and maybe sign) can 840 // fit into the bits given for a fixed point type. 841 assert(ShortAccumScale + getShortAccumIBits() + 1 <= ShortAccumWidth); 842 assert(AccumScale + getAccumIBits() + 1 <= AccumWidth); 843 assert(LongAccumScale + getLongAccumIBits() + 1 <= LongAccumWidth); 844 assert(getUnsignedShortAccumScale() + getUnsignedShortAccumIBits() <= 845 ShortAccumWidth); 846 assert(getUnsignedAccumScale() + getUnsignedAccumIBits() <= AccumWidth); 847 assert(getUnsignedLongAccumScale() + getUnsignedLongAccumIBits() <= 848 LongAccumWidth); 849 850 assert(getShortFractScale() + 1 <= ShortFractWidth); 851 assert(getFractScale() + 1 <= FractWidth); 852 assert(getLongFractScale() + 1 <= LongFractWidth); 853 assert(getUnsignedShortFractScale() <= ShortFractWidth); 854 assert(getUnsignedFractScale() <= FractWidth); 855 assert(getUnsignedLongFractScale() <= LongFractWidth); 856 857 // Each unsigned fract type has either the same number of fractional bits 858 // as, or one more fractional bit than, its corresponding signed fract type. 859 assert(getShortFractScale() == getUnsignedShortFractScale() || 860 getShortFractScale() == getUnsignedShortFractScale() - 1); 861 assert(getFractScale() == getUnsignedFractScale() || 862 getFractScale() == getUnsignedFractScale() - 1); 863 assert(getLongFractScale() == getUnsignedLongFractScale() || 864 getLongFractScale() == getUnsignedLongFractScale() - 1); 865 866 // When arranged in order of increasing rank (see 6.3.1.3a), the number of 867 // fractional bits is nondecreasing for each of the following sets of 868 // fixed-point types: 869 // - signed fract types 870 // - unsigned fract types 871 // - signed accum types 872 // - unsigned accum types. 873 assert(getLongFractScale() >= getFractScale() && 874 getFractScale() >= getShortFractScale()); 875 assert(getUnsignedLongFractScale() >= getUnsignedFractScale() && 876 getUnsignedFractScale() >= getUnsignedShortFractScale()); 877 assert(LongAccumScale >= AccumScale && AccumScale >= ShortAccumScale); 878 assert(getUnsignedLongAccumScale() >= getUnsignedAccumScale() && 879 getUnsignedAccumScale() >= getUnsignedShortAccumScale()); 880 881 // When arranged in order of increasing rank (see 6.3.1.3a), the number of 882 // integral bits is nondecreasing for each of the following sets of 883 // fixed-point types: 884 // - signed accum types 885 // - unsigned accum types 886 assert(getLongAccumIBits() >= getAccumIBits() && 887 getAccumIBits() >= getShortAccumIBits()); 888 assert(getUnsignedLongAccumIBits() >= getUnsignedAccumIBits() && 889 getUnsignedAccumIBits() >= getUnsignedShortAccumIBits()); 890 891 // Each signed accum type has at least as many integral bits as its 892 // corresponding unsigned accum type. 893 assert(getShortAccumIBits() >= getUnsignedShortAccumIBits()); 894 assert(getAccumIBits() >= getUnsignedAccumIBits()); 895 assert(getLongAccumIBits() >= getUnsignedLongAccumIBits()); 896 } 897 898 void TargetInfo::copyAuxTarget(const TargetInfo *Aux) { 899 auto *Target = static_cast<TransferrableTargetInfo*>(this); 900 auto *Src = static_cast<const TransferrableTargetInfo*>(Aux); 901 *Target = *Src; 902 } 903